
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

1Abstract—Paper inspects the reasons for the structural
difficulty of genetic representations demonstrated by a well
known tunably difficult genetic programming problem. For this
type of problem we believe the tree-like structure is not the
major cause for problem hardness. Following this we propose a
workaround, which is based on simple repetition of the
evolution using pre-evolved initial populations and therefore
provides closer focus points for evolution. This way the
problem is solved using a manageable amount of processing,
which was not possible using traditional approach. It also
requires no change to the traditional genetic code base
compared to other published solutions, which require
substantial changes both in encoding and genetic operators.
The idea is not bound to structural problems, but can be
applied to other problem domains, too.

Index Terms—Genetic programming, knowledge discovery,
tree data structures.

I. INTRODUCTION

Genetic programming (GP) is a systematic method for
getting computers to automatically solve a problem starting
from a high-level statement of what needs to be done [1]. GP
is a domain-independent method that genetically breeds a
population of solutions to a given problem. As such, GP is
often used to solve difficult optimization problems in many
engineering domains. To make the GP work, a problem
should be approached in sync with GP’s inherent nature.

Basically, GP is about automatic generation of executable
structures. The task to identify an optimal representation of
such a structure for a problem of interest is extremely hard if
not impossible and is an open issue in GP [2]. This means
we must understand the relationship between solution
representation and search clearly in order to select the best
GP representation.

The most frequently used GP structure is tree-based [1].
The decision to rely on a tree-like structure has both positive
and negative consequences. On the plus side it is very easy
to manipulate, on the downside, however, certain anomalies
arise. For one, Daida demonstrated in [3] that the

Manuscript received September 4, 2013; accepted December 14, 2013.
This paper was produced within the framework of the operation entitled

“Centre of Open innovation and ResEarch UM”. The operation is co-
funded by the European Regional Development Fund and conducted within
the framework of the Operational Programme for Strengthening Regional
Development Potentials for the period 2007–2013, development priority 1:
“Competitiveness of companies and research excellence”, priority axis 1.1:
“Encouraging competitive potential of enterprise and research excellence”.

evolutionary search using tree-representation is unable to
effectively search all tree shapes and, in particular, that very
full or very narrow tree shapes may be extremely difficult to
locate. This explains why the problem hardness can not be
viewed only from the fitness landscape perspective.

If the mere presence or absence of particular shapes in the
population affects the ability of GP to solve problems, the
GP search should be conducted in a way that replaces the
irrelevant structures that are in abundance with important
ones that are missing. This paper proposes an approach that
supplies GP with structures that are critical for its progress.

Section II is about previous work in the field with focus
on the Lid problem – a tunably difficult problem which
demonstrates the structural issues in tree-based GP. Next,
the GP performance and causes for hardness of this problem
are re-examined. Section IV is about an idea of incremental
learning applied to the evolving population of trees, which
transforms a hard problem into a series of easier ones. The
conclusion thinks about general applicability of described
findings to other problem domains.

II. PREVIOUS WORK

In at least two papers [3], [4] Daida and co-workers
showed that the tree structure alone can be difficult for
standard GP search. In particular, they theoretically derived
and empirically proved the existence of four types of regions
in the search space of tree structures. They managed to
verify this by creating a tunably hard Lid problem, where the
problem hardness is not tuned through changes in problem
contents, but exclusively in problem structure. Search space
of possible solution trees is therefore defined solely by their
depth and size.

Fig. 1. Four regions and the search space of tree structures with horizontal
and vertical cut. There are no trees possible in Region IVa or IVb.

Incremental Approach to Structurally Difficult
Problems in Genetic Programming

M. Sprogar1, V. Podgorelec1

1Faculty of Electrical Engineering and Computer Science, University of Maribor,
Smetanova St. 17, SI-2000 Maribor, Slovenia

matej.sprogar@uni-mb.si

http://dx.doi.org/10.5755/j01.eee.20.5.7117

154

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

The identified regions I-III (Fig. 1) were named according
to the ability of GP to find solutions therein: Region I
includes trees that are easy to find by GP, Region II is
transitional space, where the GP starts having problems, and
Region III is where it gets hard for GP to find a solution.
Region IV is an out-of-bounds region and consists of points
in space that are not attainable by means of a binary tree.

A. The Lid Problem
The objective of the Lid problem is to derive a tree of a

given size and depth. In order to avoid being dependent on
the content of the trees, the Lid problem has a minimal
function set of single primitive function JOIN {J}, which is
of arity-2, and the terminal set is the single primitive {X}.

The Lid problem requires the specification of a target tree
depth (i.e., dtarget) and a target number of tree terminals (i.e.,
ttarget). The node at the root of the tree is at null (0) depth.
The fitness f is defined as

,raw d tf m m (1)

where depth metric md and terminal metric mt are defined as:

arg

arg

| |
1 ,t et actual

d d
t et

d d
m W

d

(2)

arg

arg

| |
1 , ,

0, ,

t et actual
t d d

t t et

t t
W if m W

m t

otherwise

(3)

and dactual and tactual correspond to the depth and number of
terminals for the measured Lid tree, respectively. Weights
Wd and Wt are chosen arbitrarily such that W = Wd + Wt =
100. The resulting fitness landscape is characterized by a
discontinuity at dtarget.

B. Other Work on the Lid Problem
The structural difficulty of the Lid problem was further

explored by Hoai, McKay and Essam in [5], where the
approach with tree-adjoining grammars (TAG) was applied.
The authors speculated that structural problem difficulty
occurs because of the structural step size of the structure
editing operators – subtree crossover and subtree mutation
are believed to be highly structurally discontinuous. This
discontinuity is argued to be a consequence of the fixed arity
property of standard GP representation, in that fixed arity
makes it difficult to design operators with a controllable step
size.

The team of [5] was better than [3] at finding solutions in
Regions II and III by using complex genotype-phenotype
TAG mappings and a naïve stochastic hill-climbing search.
Their approach, however, is difficult to reproduce as it’s a
major deviation from the standard approaches in the GP
literature and available libraries (genotypes are TAG
derivation trees and phenotypes are their corresponding
derived trees). Also, hill climbing is well suited for the Lid’s
fitness landscape once the optimal depth is found. How it
would perform on other landscapes remains unclear.

C. Processing
Both [3] and [5] used the same amount of processing

(100,000 evaluations of tree structures from 200 generations
of 500 individuals) to arrive at their conclusions and no
additional experiment was ever published (to our
knowledge) that would give an estimate on how hard
actually is to find the Region II/III solutions.

General statements like “GP is effectively unable to
search in this region and will not find solutions there” [5],
or “…region that might not be accessible to GP” leave open
questions. We believe a G = 200 generations on a relatively
small population of M = 500 individuals is not enough to
claim extreme difficulty. After all, this is supposed to be a
hard problem.

III. ISSUES WITH THE LID PROBLEM

The results presented in this section were obtained from a
by-the-book tournament based GP as described in e.g. [6],
page 134. The goal was to explore what can be done to
improve the GP performance on the Lid problem. If not
stated otherwise, settings from [3] were used; justification
for different settings is elaborated in the text. Like Daida’s,
our GP was run in a single thread, also using a Mersenne
Twister random number generator. Strategy parameters were
set as follows: population size = 500; crossover rate = 0.9;
replication rate = 0.1; population initialization with ramped
half-and-half, initialization depth of 2-6 levels; maximum
generations = 200. Contrary to original setup our GP used
tournament-5 selection and crossover with equal bias for
internal/terminal node selection, Wd = 30 and Wt = 70.

Daida described in detail two families of the Lid problem,
which were used to investigate the search space of tree
structures, namely “horizontal cut” and “vertical cut”. In the
horizontal family the ttarget was fixed at 256 and dtarget was
varied from 8 to 256. In the second, dtarget was fixed at 15,
while ttarget was varied from 16 to 32,768. Both cuts in the
search space are shown in Fig. 1.

Daida’s results suggest that GP has extreme difficulties
finding for example even the left-most point from horizontal
cut (d = 8, t = 256), which is at the beginning of Region III.
The right side of the horizontal cut extends even more
deeply into Region III thus it would be a complete surprise
to find the extremely degenerated (d = 255, t = 256) tree.
Similar observation was made in the vertical cut, where the
border solution (d = 15, t = 16) is much easier than the
problematic (d = 15, t = 32768).

A. Fitness and Lid GP hardness
Beside structural issues raised by Daida, experiments

suggest a more “common” issue with the Lid problem
hardness. Namely, the fitness function ignores the size for
solutions that are not at the right depth. It starts to account
for size only after the target depth has been reached. The
problem is that for most target shapes close to the lower
boundary of the search space, evolved solutions reach the
target depth at a size that is more than ttarget away from target
value. Consequently the resulting metric turns negative (!)
into a penalty and GP starts to select against such trees.

155

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

This is visible in Fig. 2, where the population distributions
for generation 100 and 200 for target (d = 100, t = 256) are
shown. We can see GP made no actual progress in 100
generations. The existing few trees of depth 100 in G100 and
G200 had negative fitness compared to the majority of the
population. Any-size tree of depth 99 has the constant score
of 29.7. Consequently, GP was unable to make progress and
wasted 100 generations of processing.

a) b)
Fig. 2. Distribution of trees for the target (d = 100, t = 256) after 100 and
200 generations, respectively. The 3 marked candidate solutions of correct
depth are penalized with negative fitness score. No progress is possible.
Perfect score is f = 100.

Based on these observations we decided to remove the
discontinuity at dtarget from the terminals metric

arg

arg

| |
1 .t et actual

t t
t et

t t
m W

t

(4)

B. Increasing Processing Power
The performance of our GP implementation is better than

that of [5] yet several points in the search space are still
unavailable. The engineer’s task is to find a solution thus
spending more processing power is of course the first idea
that is worth trying. Therefore, several pilot runs across the
Region III with increased number of generations were made
(M = 500, G = 10,000). No improvement in standard GP
achievements was observed.

IV. INCREMENTAL LEARNING APPROACH

Fact is that crossover is able to produce any target tree
shape if provided with “correct” parents (and “correct”
crossover points are chosen). The Lid problem prevents GP
to evolve these parents in the first place – a Catch 22
scenario. Following the building block hypothesis [7], [8]
and its extension to GP [1], GP will evolve better solutions
only if “appropriate” building blocks exist in adequate
quantity. The supply of these is a recursive problem.

To explain by example, consider the topmost target shape
from the vertical cut - a full tree (d = 15, t = 32,768).
Crossover would have it easier if one of the parents were a
full tree of depth 14 and another would be any tree of depth
15 with one full sub-tree. In order to have a (d = 14, t =
16,384) parent, the (d = 13, t = 8,192) parent would be
“nice” to have… Lid problem actually prevents the GP to
evolve these intermediate full trees in favour of others. The
idea is then to provide them in the “initial” population!

A. Procedure
We propose to start with a simple problem and feed

resulting population to a more advanced problem setup. This
increment in difficulty can be achieved by moving the target
point in search space along some pre-defined path to the
desired location.

Let’s denote with iP0 the initial population for the target
point τi. In general, the i-th repetition of a GP run should
have initial population according to (5)

*0 1 ,i i G
P P (5)

where G* is a maximum number of generations needed to
find a solution for a previous target τi-1. The incremental
change of target τ is governed by a known path of points
through the problem space until the desired goal is reached
after n steps

1() .i i goali n

 (6)

One standard GP run is then simply replaced by a series
of consecutive GP runs, each with population inherited from
the previous run instead of a fresh initialization:

1. i=0, τ0=(d0, t0)
2. create initial population 0P0

3. do
3.1 GP_Run(G, iP0, τi) → i+1PG*

3.2 i=i+1
4. while τi≠τgoal

B. Paths through the Problem Space
The most obvious thing to try is to increment the Lid

difficulty along the presented horizontal or vertical cut in the
search space. However, measurements showed that
horizontal and vertical increments are not adequate. Rather,
d and t have to be modified in a balanced way that follows
the shape of the search space. This is pre-determined by the
GP designer. For the Lid problem, best path for search
among sparse trees turned out to be t(d) = d + 1, and for the
search among full trees t(d) = 2d is recommended (Fig. 3).

Fig. 3. Suggested starting points and incremental path through the Lid
search space for solving Region II and III problems. We can sample every
target point on this path (slower, safer) or proceed in greater increments
(faster, riskier). Starting points (i.e. (7,128) and (7,8)) are initialization
dependent (in our case ramped half-and-half, 2–6 levels).

156

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

C. Example Run
For the (d = 15, t = 32768) problem the GP run consists of

random initialization 0P0 with ramped half-and-half 2–6 and
initial target τ0 = (d = 7, t = 128). GP needs for example 19
generations to find τ0 solution. Next, d is incremented by 1
and t = 2d, resulting in intermediate target τ1 = (d = 8, t =
256); 0P19 is fed into GP as 1P0 for the τ1 target etc.

D. Results
First, we tested the proposed incremental evolution by

gradually moving along both problem dimensions
simultaneously. We started with a simple problem (d = 15,
t = 16) and constantly advanced in depth by 1 (a smallest
step increment) and adjusted the terminals t(d) = d + 1
accordingly, until the goal target (d = 255, t = 256) was
reached. Regardless of the step size, the final solution was
found much faster than using traditional GP. Figure 4
presents some of the evolutionary runs. While the traditional
GP required 917 generations on average to find the solution,
our approach required only 253 generations. The Mann-
Whitney statistical test confirmed highly significant
advantage of our approach with p < 0.001.

Fig. 4. The results of simultaneous incremental evolution for solving the
problem (d = 255, t = 256).

Next we tested the incremental evolution in only
horizontal direction (t(d) = 256). For this purpose, we chose
a fairly hard problem (d = 200, t = 256) according to [3].
While traditional GP found the solution in 706 generations
on average, our incremental approach failed to find the
solution within 5,000 generations (see Fig. 5).

Fig. 5. The results of single horizontal (solving problem (d = 200, t =
256)) and vertical (solving problem (d = 15, t = 16384)) incremental
evolution.

Finally, we tested the incremental evolution in only
vertical direction. For this purpose, we chose another hard

problem (d = 15, t = 16,384). While the traditional GP was
not able to find the solution within 10,000 generations, our
approach starting at (d = 15, t = 16) and incrementing
number of terminals by t = t + 64 was able to find it in 5,370
generations on average. Even more, the scatter plot (see
Fig. 5) revealed that the number of generations, required to
find a solution, increases almost linearly with the size of the
problem (number of terminals) after some size (approx.
11,000 in our experiment).

V. CONCLUSIONS

A tunably hard GP problem was approached in a fresh
way, which proved to find solutions even in “hardest-to-
search” regions of the search space. While the incremental
change of fitness arguments dtarget and ttarget values, which
results in gradual increase in problem difficulty, may seem
Lid problem specific at first, it is not. The same approach
can be applied for example in classification or regression
domains, frequently addressed with the use of evolutionary
techniques [9], where the fitness is typically used to evaluate
a model solution on a set of training data. There, the
increment can be applied to size of the dataset exposed to
learning. By starting with a small subset of training data we
start with a simple(r) problem and slowly proceed towards
full problem by incrementally providing more and more
training instances to the fitness function. Which training
cases to add, however, is a scope for a new paper.

The described approach is a basis for incremental learning
and is necessary when approaching hard problems in real
life, too. Its benefits include simple and straight
implementation using existing GP code, without much
tweaking and poking of the underlying GP engine.

REFERENCES

[1] J. R. Koza, Genetic programming: on the programming of computers
by natural selection. Cambridge, MA: MIT Press, 1992.

[2] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, “Open
issues in genetic programming”, Genetic Programming and
Evolvable Machines, vol. 11, no. 3–4, pp. 339–363, 2010. [Online].
Available: http://dx.doi.org/10.1007/s10710-010-9113-2

[3] J. M. Daida, H. Li, R. Tang, A. Hilss, “What makes a problem gp-
hard? Validating a hypothesis of structural causes”, in Proc. Genetic
and Evolutionary Computation (GECCO 2003), 2003, vol. 2724, pp.
1665–1677.

[4] J. M. Daida, R. R. Bertram, S. A. Stanhope, J. C. Khoo, S. A.
Chaudhary, O. A. Chaudhri, J. A. I. Polito, “What makes a problem
gp-hard? Analysis of a tunably difficult problem in genetic
programming”, Genetic Programming and Evolvable Machines, vol.
2, no. 2, pp. 165–191, 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1011504414730

[5] N. X. Hoai, R. I. Mckay, D. Essam, “Representation and structural
difficulty in genetic programming”, IEEE Trans. Evolutionary
Computation, vol. 10, no. 2, pp. 157–166, 2006. [Online]. Available:
http://dx.doi.org/10.1109/TEVC.2006.871252

[6] W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic
programming – an introduction. San Francisco, CA: Morgan
Kaufmann, 1998. [Online]. Available: http://dx.doi.org/
10.1007/BFb0055923

[7] D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning. Boston, MA: Addison–Wesley, 1989.

[8] J. H. Holland, Hidden order – how adaptation builds complexity.
Redwood City, CA: Addison–Wesley, 1995.

[9] V. Podgorelec, S. Karakatic, “A multi-population genetic algorithm
for inducing balanced decision trees on telecommunications churn”,
Elektronika ir Elektrotechnika, vol. 19, no. 6, pp. 121–124, 2013.
[Online]. Available: http://dx.doi.org/10.5755/j01.eee.19.6.4578

157

