
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

1Abstract—The paper suggests a technique for solving the
matrix/set covering problem in all programmable systems-on-
chip. A novel very fast hardware accelerator is proposed and
implemented in the programmable logic (PL) of a Xilinx Zynq
microchip. The accelerator is managed by software running in
the processing system (ARM Cortex-A9) available on the same
microchip and communicating with the PL through high-speed
interfaces. The results of implementation, experiments, and
comparisons demonstrate significant speedup comparing to
software running in general-purpose PC and in the ARM.

Index Terms—Accelerator architectures, concurrent
computing, parallel processing, field programmable gate
arrays, system-on-chip.

I. INTRODUCTION

Combinatorial search algorithms are frequently involved
to solve optimization problems. Examples are matrix/set
covering, the Boolean satisfiability, graph coloring and
many others described and reviewed in [1]–[4]. Many tasks
are NP-complete and, thus, they are time consuming. We
consider here the matrix/set covering which belongs to
partitioning problems [1] arising in such practical
applications as scheduling aircrafts, location emergency
stations in urban areas, fault testing of electronic circuits,
resource distribution in multi-core systems, and many others
[1]. For many applications high performance is required and
it may be achieved in hardware accelerators for which
FPGA-based solutions are especially promising. It is shown
and proved in the paper that recently appeared on the market
all programmable systems-on-chip (APSoC) of Xilinx Zynq
family [5] are very appropriate for implementation of
combinatorial search algorithms enabling the problem to be
decomposed into two sub-problems that are 1) higher-level
activation of primary sub-tasks in which the algorithm has
been decomposed, and 2) fast execution of the sub-tasks in
the hardware accelerator. According to the proposals, the
first sub-problem is assigned to a processing system (PS)

Manuscript received October 28, 2013; accepted January 6, 2014.
This research was supported by EU through European Regional

Development Funds, by the institutional research funding IUT 19-1 of the
Estonian Ministry of Education and Research, ESF grant 9251, and by
Portuguese National Funds through FCT - Foundation for Science and
Technology, in the context of the project PEst-OE/EEI/UI0127/2014.

implemented on the basis of industry-standard dual-core
ARM Cortex-A9 in Zynq APSoC. The acceleration is done
in a programmable logic - PL (Xilinx Artix-7 FPGA) that is
available on the same microchip with the ARM. It is shown
that such type of hardware/software co-design permits
elegant and efficient solutions to be found that are faster
than the best known alternatives.

The remainder of the paper is organized in six sections.
Section II defines the problem and presents an example.
Section III suggests architecture of the hardware accelerator.
Section IV is dedicated to software/hardware co-design.
Experimental setup is discussed in Section V. The results
and comparisons are reported in section VI. The conclusion
is given in Section VII.

II. PROBLEM DEFINITION

The covering problem can identically be formulated on
either sets [1], [2] or matrices [1]. Let A = (aij) be a 0-1
incidence matrix. The sub-set Ai = {j | aij = 1} contains all
columns covered by row i (i.e. the row i has value 1 in all
columns of the sub-set Ai). The minimal row cover is
composed of the minimal number of the sub-sets Ai that
cover all the matrix columns. Clearly, for such sub-sets there
is at least one value 1 in each column of the matrix. Let us
consider an example from [2] of a set S and sub-sets S1,…,S6

(Fig. 1), which can be represented in the form of the
following matrix A:

1 2 3 4 5 6 7 8 9 10 11 12
S1: 1 1 0 0 1 1 0 0 1 1 0 0
S2: 0 0 0 0 0 1 1 0 0 1 1 0
S3: 1 1 1 1 0 0 0 0 0 0 0 0
S4: 0 0 1 0 1 1 1 1 0 0 0 0
S5: 0 0 0 0 0 0 0 0 1 1 1 1
S6: 0 0 0 1 0 0 0 1 0 0 0 0

Different algorithms have been proposed to solve the
covering problem [1]–[3], such as greedy heuristic [1], [2]
and a very similar method [3]. An analysis of the known
algorithms has shown the following:

1. The majority of them are approximate since the
problem is NP-complete;

Fast Matrix Covering in All Programmable
Systems-on-Chip

V. Sklyarov1, I. Skliarova1, A. Rjabov2, A. Sudnitson2

1Department of Electronics, Telecommunications and Informatics/IEETA, University of Aveiro,
3810-193 Aveiro, Portugal

2Department of Computer Engineering, Tallinn University of Technology,
12617 Tallinn, Estonia

skl@ua.pt

http://dx.doi.org/10.5755/j01.eee.20.5.7116

150

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

2. The algorithms are very similar and they differ
insignificantly;
3. The algorithms may equally be applied to either sets or
matrices and any of such models can be chosen because
they are directly convertible to each other.

1

2

3

4

6

7

8

9

10

11

12

S1

S2

S3

5

S4 S5

S6

S1 = {1,2,5,6,9,10};
S2 = {6,7,10,11};
S3 = {1,2,3,4};
S4 = {3,5,6,7,8};
S5 = {9,10,11,12};
S6 = {4,8}.

Fig. 1. An example of a set S with sub-sets S1,...,S6 from [2].

We consider below a slightly modified method from [3]
that is applied to binary matrices exemplified above and the
matrix from Fig. 1 [2] will be used to illustrate the steps of
the chosen method that are the following:

1. Finding the column Cmin with the minimum Hamming
weight (HW) that is the number of ones. If there are many
columns with the same (minimum) HW, selecting such
one for which the maximum row is larger, where the
maximum row contains 1 in the considered column and
the maximum number of ones;
2. If HW = 0 then the desired covering does not exist,
otherwise from the set of rows containing ones in the
column Cmin finding and including in the covering the row
Rmax with the maximum HW;
3. Removing the row Rmax and all the columns from the
matrix that contain ones in the row Rmax. If there are no
columns then the covering is found otherwise go to the
step 1.
Let us apply the step 1–3 to the matrix A above:
1. The column 12 is chosen;
2. The row S5 is included in the covering;
3. The row S5 and the columns 9, 10, 11, 12 are removed
from the matrix.
1. The remaining columns contain the following number

of ones: 2, 2, 2, 2, 2, 3, 2, 2. The column 3 is chosen
because for this column the row S4 has the maximum HW
equal to 5;
2. The row S4 is chosen and included in the covering;
3. The row S4 and the columns 3, 5, 6, 7, 8 are removed
from the matrix.
1. The remaining matrix contains rows S1, S2, S3, S6 and
columns 1, 2, 4 with the following HWs: 2, 2, 2. The
column 1 is chosen;
2. The row S3 is chosen and included in the covering;
3. After removing the row S3 the covering is found and it
includes the rows S3,S4,S5 shown in italic font in the
matrix above. The minimum covering is the same as in [2]
that was found with a different algorithm.

III. ARCHITECTURE OF HARDWARE ACCELERATOR

This section presents the proposed architecture of the
hardware accelerator executing the steps 1 and 2 from
Section II. We suggest the given matrix to be unrolled in
such a way that all its rows and columns are saved in the PL
registers. Note that more than a hundred of thousands of
such registers are available in the recent low-cost FPGAs.
This technique permits all rows and columns to be accessed
and processed in parallel.

Figure 2 demonstrates the unrolled matrix A shown above
in Section II (and repeated in Fig. 2 for convenience). HW
counters compute HW for all the rows/columns in parallel
using combinational circuits, such as that are proposed in
[6], [7]. These circuits are very fast allowing HWs to be
computed in less than 20 ns even in low-cost FPGAs.

The MIN column and MAX row circuits permit to find
out the minimal column Cmin and the maximum row Rmax. It
is shown in [8] that these circuits can be built as MAX-MIN
fully combinational networks producing the results faster
than in 20 ns. Since all the circuits (computing HW and the
maximum/minimum values) are functioning in parallel, the
steps 1 and 2 may be completed faster than in 20 + 20 =
40 ns even in low-cost FPGAs. So, a very significant
acceleration can be expected.

110011001100 000001100110 000000001111 000100010000
1
0
1
0
0
0

1
0
1
0
0
0

0
1
0
0
1
0

0
0
0
0
1
0

0 0 0 0

0

0

0

0

Mask register for the rows

HW counter HW counter HW counter HW counter

HW counter

HW counter

HW counter

HW counter

MAX row

0 0 0 0Select register for the rows

The maximum row

MIN
column The minimum column

PL registers for matrix rows

PL
 re

gi
st

er
s f

or
m

at
rix

 co
lu

m
ns

Mask register
for the columns

S1 S2 S5 S6

1

2

12

11

The matrix A:

Fig. 2. Architecture of the proposed hardware accelerator on an example of unrolled matrix A from Section II.

151

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

In accordance with the proposals, the matrix is unrolled
only once and any reduced matrix is formed by masking
previously selected rows and columns. One select register
and two mask registers (one for rows and another one for
columns) shown in Fig. 2 are additionally allocated in the
PL. The select register is zero-filled at the beginning of the
step 1 and after the step 1 it indicates by values 1 those rows
that have to be chosen by the selected column (i.e. such rows
have values 1 in the selected column). The mask registers
are filled in with zeroes at the beginning of the algorithm
and they mask (by the values 1) those rows and columns that
have been removed from the matrix in each iteration. For
example, the select register contains the value 000010 after
the first step in the example of Section II. The mask registers
after the first iteration in the example are set to
000000001111 for the columns and 000010 for the rows.
After the second iteration they are updated as 001011111111
for the columns and 000110 for the rows.

IV. SOFTWARE/HARDWARE CO-DESIGN

Figure 3 presents the proposed partitioning in software
and hardware modules (assuming implementation in Zynq
APSoC) of the considered algorithm that enables the
minimal covering to be found.

Software in the PS is responsible for the following steps:
1. Getting from a host computer or generating the matrix,
unrolling it, and saving in external DDR memory as a set
of rows and a set of columns;
2. As soon as Cmin is found, the PL generates an interrupt
of type a. The PS receives the Cmin and sets the select
register in the PL through general-purpose ports [5];
3. As soon as Rmax is found, the PL generates an interrupt
of type b. The PS receives the Rmax and sets the mask
registers in the PL through general-purpose ports [5];
4. At any iteration it is checked if the solution is found or
if it does not exist. If the solution is found it is indicated
by the PS or transmitted to the host computer and the
algorithm is completed.
Hardware in the PL implements the architecture in Fig. 2

and is responsible for the following steps:
1. Getting the unrolled matrix from external DDR through
high-performance Advanced eXtensible Interface (AXI)
[5] and saving the rows and columns in slice registers as it
is shown in Fig. 2.

2. Getting from the PS select/mask vectors and
setting/updating the select and the mask registers.
3. Finding out the value Cmin at each iteration and as soon
as the value of Cmin is ready, generating an interrupt of
type a.
4. Finding out the value Rmax at any iteration and as soon
as the value of Rmax is ready, generating an interrupt of
type b.

V. EXPERIMENTAL SETUP

Implementation was done in the Xilinx Zynq-7000
APSoC ZC702 evaluation kit [9] containing a microchip
(APSoC) Zynq xc7z020. The PS is the dual-core ARM
Cortex-A9 and the PL is Artix-7 FPGA from the 7th series of
Xilinx. Currently only AXI, general-purpose ports and
interrupts have been used (from 16 available interrupts we
selected only two assigned above as type a and b). Software
for the ARM was developed in C language and hardware for
the PL was synthesized from specification in VHDL.
Computing HW was done in LUT-based circuits from [7]
that are very economical and fast. Experiments were done
with two types of matrices 32 32 and 64 64. Thus, either
32 + 32 = 64 or 64 + 64 = 128 HW counters have been
implemented in the PL section and all these circuits can run
in parallel. Since Cmin and Rmax are found at different steps in
the current implementation, only half of the HW counters
work in parallel enabling either the minimal column Cmin or
the maximal row Rmax to be found.

Because the occupied resources are indeed very small [7],
we implemented all the required HW counters assuming that
in future improvements all of them might function in
parallel. The MIN and MAX circuits are built as
combinational networks and they are described in detail in
[8].

Figure 4(a) presents such a circuit for a matrix 32 32 for
which the number of bits in any HW is 6 (because the
maximum number of ones in a 32-bit vector is 32 that can be
represented by a 6-bit code).

A particular (simplified) example for only 6 input items 3,
14, 21, 11, 14, 27 is given in Fig. 4(b). The maximum value
(27) is found in a combinational circuit with only 3 gate
level delays. Clearly, there is 5 gate level delay for matrices
32 32 and 6 gate level delay for matrices 64 64.

PS
Transferring the
matrix to the PL
through the DDR

PL

External DDR

Getting Cmin and
setting the select

register

Cmin

Select register
Interrupt of type a

Getting Rmax and
updating the mask

registers

Rmax

Mask registers
Interrupt of type b

Finding out the
covering or indicating

that the covering
does not exists

AXI interface

General-purpose
ports and interrupts

Hardware
accelerator from

Fig. 2APSoC
Fig. 3. Partitioning of the algorithm in software and hardware modules.

152

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 5, 2014

3
14
21
11
14
27

14
3

21
11
27
14

27
3

14
11
21
14

6
in

pu
t d

at
a

ite
m

s The
maximum

value
21
3

14
11
27
14

Max
Min

Comparator-
swapper

3 gate level delay

32 input HWs with 6 bits each

The m
axim

um
 value

b)

a)

Fig. 4. MAX circuit from [8] for 32 32 matrix (a); an example (b).

VI. RESULTS AND COMPARISONS

We compared three different implementations in which
the covering algorithm is either:

1. Described in C language program running in PC with
Intel i7 2.66 GHz processor;
2. Described in C language program running in ARM
Cortex-A9 (for evaluation kit [9]);
3. Implemented in the PS and in the PL of Zynq-7000
APSoC as it is shown in Fig. 3 (for evaluation kit [9]).
Initial matrices have been generated randomly using the C

rand function and identically for all the described above
implementations. The number of instances (examples) was
chosen to be 100,000.

In the last case (see the point 3 above) that is the original
contribution of the paper, the following results have been
obtained:

1. Generating in the PS and transmitting the matrices from
the PS to the PL requires about 31 s for 32 rows and 32
columns and about 34 s for 64 rows and 64 columns.
Only one AXI 32-bit (for the matrices 32 32) or 64-bit
(for the matrices 64 64) port from the 4 available ports
has been used. Clearly, additional ports permit the
indicated time to be reduced;
2. Each iteration in the PL is executed in about 28 ns for
the matrices 64 64 and about 24 ns for the matrices
32 32;
3. Communications between the PS and the PL (through
interrupts and general-purpose ports) at any iteration of
the algorithm require negligible time comparing to other
operations.
The covering is found significantly faster than in software.

The acceleration comparing with the PS only (see point 2
above) is from 30 to 50 times and comparing with the PC
(see point 1 above) is from 5 to 10 times. This is because
operations of the covering algorithm in software require
many cycles and frequent transmission of data between
processors and memories. For example, if we consider
64 64 matrices then a single matrix transfer from the PS to
the DDR takes 33,300 ns on average and this is the most
time consuming operation. Data transfer from the DDR to
the PL is done in 284 ns on average. Once the PL receives
the matrix data, no more interaction with the DDR is

required for further processing.
For future work we will use accelerator coherency ports

available for Zynq microchips and allowing data exchange
directly with the processor cache memory [10], [11].
Besides, an additional optimization technique will be
provided looking for the better distribution of different sub-
tasks between the PS and the PL.

VII. CONCLUSIONS

The paper presents a novel technique for implementation
of matrix/set covering algorithms in hardware and software
of recent all programmable systems-on-chip. A new method
that permits the known approximate algorithm to be
executed over suggested unrolled matrices is discussed and
the relevant hardware accelerator is developed. It is shown
that the covering algorithm can efficiently be partitioned in
software and hardware modules that finally have been
completely implemented and tested in Xilinx Zynq
microchips. The results of experiments and comparisons
with two different software implementations demonstrate
significant speedup which is very important for various
practical applications that are also mentioned in the paper.

REFERENCES

[1] K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, D. R.
Shier, Handbook of Discrete and Combinatorial Mathematics. Boca
Raton, FL: CRC Press, p. 1232, 2000.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms. USA: MIT Press, p. 1312, 2009.

[3] A. Zakrevskij, Y. Pottosin, L. Cheremisiniva. Combinatorial
Algorithms of Discrete Mathematics. Tallinn: TUT Press, p. 193,
2008.

[4] I. Skliarova, A. B. Ferrari, “Reconfigurable hardware SAT solvers: a
survey of systems”, IEEE Trans. Computers, vol. 53, no. 11, pp.
1449–1461, 2004. [Online]. Available: http://dx.doi.org/10.1109/
TC.2004.102

[5] Zynq-7000 All Programmable SoC First Generation Architecture,
Xilinx Inc., USA, 2012. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds188-
XA-Zynq-7000-Overview.pdf

[6] V. Sklyarov, I. Skliarova, “Design and implementation of counting
networks”, Computing, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s00607-013-0360-y

[7] V. Sklyarov, I. Skliarova, “Digital Hamming weight and distance
analyzers for binary vectors and matrices”, Int. Journal of Innovative
Computing, Information and Control, vol. 9, no. 12, pp. 4825–4849,
2013. [Online]. Available: http://www.ijicic.org/ijicic-12-12021.pdf

[8] V. Sklyarov, I. Skliarova, “Fast regular circuits for network-based
parallel data processing”, Advances in Electrical and Computer
Engineering, vol. 13, no. 4, pp. 47–50, 2013. [Online]. Available:
http://dx.doi.org/10.4316/AECE.2013.04008

[9] Zynq-7000 EPP ZC702 evaluation kit, Xilinx Inc., USA, 2014.
[Online]. Available: http://www.xilinx.com/products/boards-and-
kits/EK-Z7-ZC702-G.htm

[10] M. Sadri, C. Weis, N. When, L. Benini, “Energy and performance
exploration of accelerator coherency port using Xilinx ZYNQ”, Proc.
10th FPGAWorld Conf., Stockholm, Sweden, 2013. [Online].
Available: http://dx.doi.org/10.1145/2513683.2513688

[11] D. Mihhailov, A. Sudnitson, V. Sklyarov, I. Skliarova, “Acceleration
of Recursive Data Sorting over Tree-based Structures”, Elektronika ir
Elektrotechnika, no. 7, pp. 51–56, 2011. [Online]. Available:
http://dx.doi.org/10.5755/j01.eee.113.7.612

153

