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1Abstract—This paper deals with finding the highly efficient
multifrequency excitation waveforms for fast bioimpedance
spectroscopy. However, the solutions described here could be
useful also in other fields of impedance spectroscopy.
Theoretically, the useful excitation power of optimized binary
multifrequency signals (BMS) exceeds the power of comparable
multisine waveforms. However, part of power of the BMS
waveforms is spread between higher harmonics of the wanted
frequency components. In practical use of voltage excitation,
the higher harmonics complicate the signal processing and
produce current spikes passing through the capacitive elements
of the impedance to be measured. In the paper, we show that
the excitation power of well-optimized multisine with decaying
amplitudes comes close to the power of comparable binary
waveform while reducing the problems caused by unwanted
frequency components. This allows simpler signal processing.
Besides, we also show that the overall efficiency of using of the
multisine excitation in impedance measurement becomes even
higher efficient than the BMS in practice, despite the fact that
the power of binary waveforms is the highest.

Index Terms—Signal design, binary multifrequency signal,
multisine signal, impedance measurement, bioimpedance
spectroscopy.

I. INTRODUCTION

Electrical bioimpedance spectra are widely used to
characterize the structure of tissues and cell cultures [1]. In
cases where the properties of the object are changing in time
(e.g. pumping heart muscle) or the objects move as cells in a
microfluidic channel, the frequency range of interest must be
covered in a short timeframe. Therefore, the energy of the
excitation signal must be spread between multiple
frequencies during this timeframe.

Concurrently, such an important criterion of the efficiency
of measurements – the signal-to-noise ratio (SNR) of
measured response signal – is proportional to the square of
root-mean-square (RMS) values of frequency components of
the excitation signal. Unfortunately, in bioimpedance
measurements the SNR cannot be improved by increasing
the overall amplitude of the excitation signal since it is
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limited to much lower values [2] than the signal ranges and
power supply voltages of non-biologic measurement devices.
There are still two main possibilities for improving the SNR
of bioimpedance measurements by optimizing the properties
of the wideband excitation signals.

At first, minimizing the ratio of signal’s peak value in
respect to its RMS value, called as a crest-factor (CF).
Recently a novel CF minimization method for multisine
waveform was proposed in [3], which gives the CF below
the value corresponding to a single sine wave (CF = 2 ), if
the same level frequency components are distributed equally.
The smallest crest factor (CF = 1) have the waveforms of
binary multifrequency signals (BMS).Comparison of RMS
values of the frequency components of different wideband
excitation signals is given in [4]. The significance of lower
CF values is explained hereinafter.

Secondly, the excitation waveforms with spectrally sparse
distribution of frequency components are the most
preferable. Bioimpedance spectra have a smooth shape and
tendency to decrease at higher frequencies [1]–[4] as
illustrated in Fig. 1. More accurate electrical models include
also constant phase elements (CPE) acting at lower
frequencies (α-dispersion range), but not changing the
situation in β-dispersion range of interest covering 2–3
decades within the kHz to MHz band [1]. It is obvious that
the spectral components with sparse frequencies attain
higher RMS values in the composite signals with limited
amplitudes.

A simplified architecture of the bioimpedance
spectroscopy system is shown in Fig. 2.

a)                                                      b)
Fig. 1. A magnitude spectrum of the impedance of a single cell in saline
suspension (a) using simplified electrical model (b) with Cdl = 2nF,
Cm = 1 pF, Cs = 5pF, Rs = 60 kΩ and Rcy = 100 kΩ.
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Fig. 2. A simplified architecture of the spectroscopy system designed for
measurement of complex bioimpedance Ż, with magnitude (amplitude)
spectrum |Ż( f )| and phase spectrum Φ( f ) as the functions of frequency f.

More exactly, to measure unknown impedance, we can
choose one of two approaches: either we apply a known
voltage excitation across the object and measure the current
flowing through, or we inject a known current excitation into
that object and measure the voltage response across it. We
can also measure both, current and voltage, simultaneously.
The last method is preferable, if the excitation source is not
stable. This situation is typical for current sources at very
high frequencies since their output impedance decreases
because of stray capacitances and degradation of the
performance of electronic components [5].

The accuracy of fitting of parameters of the electrical
model depends also on the number of frequency components
[4], but this topic is out of scope of the present paper.

II. ADAPTING THE SHAPE OF SPECTRUM

A current mode excitation with pre-emphasized rising
power spectrum at higher frequencies compensates a
reducing response of impedance in the high frequency range
beginning from 100 kHz in Fig. 1(a).

The rise of impedance in lower frequency area is mostly
caused by polarization of electrodes (double layer effect)
and usually does not give much information about the
properties of biological objects. Therefore, this part of the
spectrum can be excluded, paying attention to the avoidance
of possible declination in parameter fitting [6] in the
electrical model (Fig. 3(b)). There are at least two
possibilities for obtaining the rising spectrum of current
excitation at higher frequencies. As shown in [7], the BMS
waveform can be designed with such spectrum, but the mean
RMS value of excitation will be less than in the case of flat
spectrum. The similar disadvantage characterizes also
multisine waveforms though the amplitudes of signal
components are freely selectable – the CF increases almost
proportionally to the highest amplitude of the spectral
components. This is a common disadvantage of using the
current mode excitation in bioimpedance spectroscopy.

The use of a voltage source for generating a simple
excitation of binary rectangular waveform (Fig. 3) is
proposed as a robust and efficient solution for covering a
decaying part of the impedance spectrum [2]. One benefit of
using a voltage source is that only the current response could
be measured since it is relatively easy to generate the stable
voltage excitation in a required frequency range.
Furthermore, the decaying amplitude spectrum of regular
rectangular voltage (Fig. 3(a)) fits well with the also
decaying spectrum of the impedance to be measured (Fig.1).
However, this solution has an essential drawback described
in the next section – the current response will obtain the
high-peak waveform with inadmissibly high CF.

III. VOLTAGE SOURCE AND CURRENT SPIKES

A. Spikes of the Response Current and Crest Factor
A binary waveform excitation (Fig. 3(a)) produces large

current spikes due to re-charging of the capacitance Cs in the
impedance model (Fig. 3(b)), as illustrated in Fig. 4(a).
Though a series resistor Ra allows limit the peaks, the most
of the input range of the measurement device remains still
occupied by the spike like current response.

a)                                                          b)
Fig. 3. Waveforms (a) of the voltage between the points A and B (b), when
Ra = 1 kΩ, Ca = 2 pF (solid line), and when Ra = 1 kΩ, Ca = 100 pF
(dashed line). Values of other elements are the same as shown in Fig. 1.

Artificial increasing of the stray capacitance Ca in
Fig. 3(b) allows further suppressing of current spikes
(Fig. 4(c)). However, as shown in Fig. 4(d), the RMS values
of the useful spectral components in the response current are
decreasing significantly.

a) b)

c) d)
Fig. 4. Waveforms (a) and (c) and the corresponding spectra (b) and (d) of
the response current Im in case shown in Fig. 3. CF denotes the crest factor.

Note that there is also a small stray capacitance (around
0.2 pF) in parallel with Ra, which is not shown in Fig. 3(b).
In turn, this capacitance increases the current spikes.
However, the limited speed of changes in the voltage
excitation produces the opposite effect, e.g., if the duration
of voltage frontline is  2 ns, the impact of this stray
capacitance is negligible.

Despite the fact that the CF of square wave excitation
voltage is minimal, the CF of the response current becomes
high (Fig. 4(a) and Fig. 4(c)). The CF [8] is expressed in (1),
wherein T denotes the observation time of the voltage or
current signal, s (t), and a divisor of the equation represents
the RMS value of the signal.
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B. Influence of the CF on SNR
The SNR is expressed through the ratio of signal and

noise power Psig/Pnoise, while power P is equal to the square
of RMS value. Usually we expect a digital processing of
signals. The power of quantization noise of an ideal n-bit
analog-to-digital converter (ADC) diminishes approximately
by a factor of 4 for every additional bit [9]. According to (1),
the RMS level of the signal with given maximum amplitude
is decreasing proportionally to its CF, and Psig decreases by
factor of 4 if the CF increases twice. It follows that the
required resolution of the ADC in bits is proportional to the
CF of the signal to keep the same SNR of analog-to-digital
conversion.

The quantization noise is not only and neither the most
important factor in determining the SNR. The noise of
electronic components becomes more important as the
required resolution is rising. For example, the noise of the
reference voltage could have a higher impact, than the
quantization noise of high resolution ADCs. Influence of
external disturbances and the deterioration of behaviour of
electronic circuits at high frequencies can be viewed as noise
as well [9]. In addition, the jitter of clock signals transfers
also as an equivalent amplitude noise.

In case of uncorrelated noise sources and the maximum
possible amplitude Amax of the signal in (1), the SNR
expresses in dB as follows in (2), in which Snoise(RMS) denotes
a sum of all the noise components

10
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The SNR is inversely proportional to CF (2), but in the
case of wideband excitation, there is another important
factor to consider. The RMS value of the excitation signal
represents the cumulative value of all its components. In
case of discrete set of frequencies it expresses as

2
( ) ( )1 ( ( )) ,k

sig RMS sig RMSS S i  (3)

where i is the index of relative frequency of components and
k is the number of frequency components. Assuming that the
noise power density is uniform in the frequency range of
interest, the SNR of spectral measurement depends on the
RMS of spectral components. If the spectrum has a decaying
form as in Fig. 4d, the SNR also decays with frequency. In
this case, the CF characterizes only a mean SNR value.

One more important drawback of high CF is the higher
probability of saturation of the measurement channel, which
may substantially distort the measurement results.

C. Solutions for Reducing the CF of Response Current
A simple out-filtering of useless higher frequency

components in the rectangular signal improves the CF, but
the concurrent decrease of amplitudes of the useful signal
components (Fig. 4(d)) makes this almost worthless.

Another solution, the shaping of square wave excitation so
that it would have a smooth shape and moderate steepness of

frontline, seems reasonable. This hypothesis was tested by
modifying the square waveform with a sigmoid function

( ) 1/ (1 ).xtSigm t e   (4)

Variable x in (4) determines the frontline steepness of a
pulse waveform. The results are illustrated in Fig. 5. The
crest factor of the current response, CFr = 3.58, is
significantly better (smaller), than in the case of original
square wave excitation (Fig. 4(a)), but the amplitude
spectrum decays fast above 5 MHz. The crest factor of the
excitation waveform CFe = 1.04 maintains its low level.

Higher-order filtering and a waveform shaping could
somewhat improve the CF and spectrum of the response
current, but still two serious disadvantages remain. First, the
measurement of the excitation signal is required in the most
cases, since it is hard to guarantee accurate and stable
spectra after the filtering or shaping. Secondly, a waveform
shaping must be done in real time, which requires additional
hardware resources.

a)

b)

c)
Fig. 5. Waveforms of voltage excitation (a), current response (b) and the
spectrum of current response (c) at Ra = 1 kΩ, Ca = 2 pF and x = 100.

An alternative solution to overcome the problems
described above is proposed in the next section.

IV. SUBSTITUTING A SQUARE WAVE WITH A MULTISINE

A. Composing a Square Wave Signal
It is well known that a periodic signal can be composed of

the sum of harmonically related cosine and sine waves of
different amplitudes (Fourier series). In particular, we can
build a square wave summing up infinite number of sine
wave odd harmonics, if the amplitudes of these harmonic
components with i = 1, 3, 5, 7, …,  follow the rule

( ) 1/ ,A i i (5)

in which i is an index of the relative frequency. This
decaying form of amplitude spectrum suits well for using of
a voltage excitation source. If the unit amplitude square
wave is desired, the amplitudes A(i) in (5) must be
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multiplied by 4/π.
When the number of frequency components is finite, the

shape of the waveform somewhat differs from the square
wave. At the same time, the limited number of components
is very practical advantage because of absence of unwanted
higher harmonics in the excitation signal – only the
frequency components needed for composing the required
multisine waveform are present in the spectrum.

a)

b)

c)
Fig. 6. Waveforms of voltage excitation (a) and current response (b), and
the spectrum of response current (c) at Ra = 1 Ω, Ca = 2 pF. The relative
frequencies in the spectrum (c) are: i = 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.

a)

b)

c)
Fig. 7. Waveforms of voltage excitation (a) and current response (b), and
the spectrum of response current (c) at Ra = 1 Ω, Ca = 2 pF. The relative
frequencies in the spectrum (c) are: i = 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.

In Fig. 6, a case with 10 sine wave components is
illustrated. The components have the initial phases Φ(i) = 0
and amplitudes V (i) = 1/i. Relative frequencies were
multiplied by 500  103 to get the same frequencies as in
previous examples. The CF of this multisine waveform is
1.19, which is below the CF of a single sine wave. It means

that the amplitude of the composite signal (sum of sine
waves) is less than 1V. To allow comparison of spectra with
other ones, the amplitude of the multisine excitation was
normalized to 1V. Amplitudes of the components of
normalized multisine excitation V(i)* can be calculated as

( )* ( ) 2 / .V i V i CF (6)

The CFr of the current response is 4.19 and the spectrum
is slightly decaying (Fig. 6(c)). Optimizing of initial phases
Φ(i) of components using a method given in [3] reduces the
CFe of excitation to 1.14, and the CFr of the response current
to 3.99. However, this improvement gives rise of the RMS
value only 3.8 %, and the spectrum remains decaying.

To obtain better results, the rate of decaying the excitation
voltage amplitudes must be decreased. In Fig. 7, another
waveform of 10 sine wave components is given, where the
amplitudes of the components V (i) = 1/I β at β = 0.8, and the
initial phases of components are optimized as in [3].

B. Sparse Frequency Distribution
To cover a wider frequency range, sparse distribution of

frequencies, e.g. a quasi-logarithmic one, is reasonable. In
this case, a small “square wave” appears on top of the main
waveform as illustrated in Fig. 8(a).

a)

b)

c)
Fig. 8. Waveforms of voltage excitation (a) and current response (b), and
the spectrum of response current (c) at Ra = 1 Ω, Ca = 2 pF. The relative
frequencies in the spectrum (c) are: i = 1, 3, 5, 7, 11, 31, 51, 71 and 101.

The amplitudes of the sine wave components are decaying
as V (i) = 1/i 0.9 and the initial phases were optimized using
the method described in [3]. RMS values of the response
current spectra in a wider frequency range (from 500 kHz to
50.1 MHz) are almost the same as in the previous example,
but the CFr of the response current is near to 10 % lesser.

C. Stability of Spectra
Note that in all the examples of using multisine waveform

a low value series resistor Ra (1 Ω) was used to represent the
worst situation in respect of current spikes. Actual voltage
sources may have larger output resistance. This will also
influence the spectra of the excitation signal between the
points A and B (Fig. 3(b)).
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a) b)
Fig. 9. Deviations of the magnitude (a) and phase (b) spectra due to
switching of Ra from 1 Ω to 10 Ω at Ca = 2 pF (solid line), and due to
switching of Ca from 2 pF to 20 pF (dashed line) at Ra =10 Ω, see Fig. 3(b).

Dependence of the amplitude and phase spectra on
changes of Ra and Ca was tested with a wideband excitation
signal given in Fig.8. Differences in the spectra are shown in
Fig. 9.

V. DISCUSSION

A. SNR of Measurements When Using a Voltage Source
In general, the SNR at impedance measurement depends

on the SNR of both voltage and current measurements. In
the particular case of using a voltage excitation with known
and stable spectra, only the SNR of the response current
measurement remains. However, the crest factors of both,
the excitation voltage and current response waveforms still
affect the SNR of measurements. For a given (limited)
maximum amplitude of the multisine excitation, its RMS
value is inversely proportional to CFe in accordance with (1).
The same is true for each component of multisine. Since the
RMS values of the response signal depend directly on the
excitation signal RMS values, the SNR of impedance
measurement for a given maximum peak value of the
response current Imax can be expressed using (1) and (2)
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(7)

Iresp(RMS) is the overall RMS value of the response current.
It may be concluded that, in case of limited amplitude of the
excitation voltage, its crest factor CFe affects the SNR of
impedance measurements in the same rate as the CFr of the
response current. However, if it is possible to increase the
amplitude of the excitation voltage and a corresponding
increase of Imax is allowed, the SNR of measurements will be
improved as well.

An example: a multisine with 10 components covering the
frequency range from 500 kHz to 9.5 MHz (Fig. 7) provides
almost flat spectrum of the response current with RMS level
between 16 μA to19 μA and the product of crest factors
CFeCFr = 3.7. A binary square wave (Fig. 3(a)) with the
same distribution of frequencies provides a slightly decaying
spectrum of the response current between 13 μA to 23 μA
(Fig. 4(b)) and the product of crest factors is as high as 14.
That is, the SNR of measurements with a multisine
excitation is near to 4 times better in this particular case.

B. Covering the Frequency Areas of Impedance Spectra
As shown in Section IV, the decaying part of the

magnitude spectrum can be effectively covered with a
multisine excitation with properly chosen decay rate β of
amplitudes and optimal initial phases Φ(i). To obtain almost
flat spectrum of the response signal the first excitation
frequency in the amplitude spectrum should be placed on the
knee of the impedance spectrum curve (about 300 kHz in
Fig 1(a)).

The excitation waveform containing two separate parts
proposed in [2] allows maximizing of the RMS level of the
response signal also in a flat part of the impedance spectrum.
This solution is applicable with multisine waveforms, as
well.

Using of multisine with 10 equally spaced frequency
components i = 1, 2, 3, …, 10 is illustrated in Fig. 10.

a)

b)

c)
Fig. 10. Waveforms of the voltage excitation (a), the current response (b)
and the response current spectrum (c) at relative frequencies i = 1, 2, 3, 4,
5, 6, 7, 8, 9, 10. Ra = 1 Ω and Ca = 2 pF.

The RMS level of the response current is lower in
comparison with decaying impedance spectrum (Fig. 7).
However, the level of the excitation voltage can be increased
since the both crest factors are low. The product
CFe  CFr = 2.03, which is less than the product of crest
factors (3.25) of signals, shown in Fig. 7. Equation (7) gives
the basis to conclude that, in case of equal Imax, the SNR of
impedance measurements in the flat spectrum area is higher,
than in the decaying spectrum area.

A sparser distribution of frequency components, e.g.
binary logarithmic one with i = 1, 2, 4, 8, 16, 32 may be also
used for measurement the flat area of the spectrum. In this
case, typical values of CFe = 2.0 and CFr = 2.1 are met,
which provides the value of 4.2 for the product of crest
factors. However, the frequency range is also wider than in
the previous example with equally spaced frequencies.

Both areas of the impedance spectrum could be covered
also with a single multisine waveform. Properties of such
signal with 12 frequency components are illustrated in
Fig. 11.
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a)

b)

c)

d)
Fig. 11. Waveform of the voltage excitation (a) and it's spectrum (b),
waveform of the response current (c), and it's spectrum (d). Ra = 1 Ω,
Ca = 2 pF and relative frequencies i = 1, 2, 3, 5, 7, 11, 31, 51, 71, 101, 301
and 501.

The first five frequency components of the excitation
voltage are of constant amplitude 1V, and the amplitudes of
next seven components are decaying as V (i) = 1/i 0.9. The
product of the crest factors CFe  CFr = 5.0. It may be
concluded on the basis of (7) that the SNR of impedance
measurements with a single multisine excitation is less than
in the case of using two separate multisine waveforms in the
case of equal Imax.

VI. CONCLUSIONS

In general, the SNR of impedance measurement depends
on the SNR of voltage and current measurements. If the
amplitudes are limited, the crest factors of both signals are
inversely proportional to the corresponding SNR.

The product of crest factors CFeCFr can be used for
rating the efficiency of excitation. At the same time, the
product of crest factors depends also on the properties of
electrical model and measurement circuit. It follows that the
properties of the excitation signal and measurement mode
(current or voltage excitation) should be adapted to the
properties of the sample under test.

Use of the stable voltage excitation source and square
waveforms eliminates the need for the excitation
measurement and allows simple compensation of a decay of
the typical bioimpedance spectrum in high frequency area.
However, a frequency extent of the spectrum of square wave
excitation signal should be strictly limited. Otherwise, the
CFr of the response current would be high (current peaks
will appear), but removing of the trouble-making high
frequency components complicates the measurement device.

An alternative solution is composing of near square wave
excitation as a sum of sine waves (multisine waveform).
Advantage of this solution is that only desired frequency
components are present in the spectrum. Selection of
amplitudes and optimal initial phases for the signal
components allows designing of the multisine waveforms
with significantly better efficiency compared to the binary
square wave. As shown in the current paper, a multisine
excitation with ten frequency components corresponding to
the first ten components of binary square wave has similarly
flat magnitude spectrum of the response current and near to
4 times smaller product of crest factors. It follows that, in
this particular case, the SNR of measurements with a
multisine excitation is also near to 4 times better.

The flat and decaying parts of the impedance magnitude
spectrum could be covered with a single multisine excitation
signal. In this case, the product of crest factors is nearly 5.
However, a composite signal containing the separate part,
which is designed only for measurement in the flat area of
the spectrum, provides better results than a signal covering
both regions of the impedance spectrum. A multisine with
ten equally distributed relative frequencies i = 1, 2, 3, …, 10
gives the product of crest factors only 2, and a multisine with
binary logarithmic distribution of relative frequencies i = 1,
2, 4, 8, 16, 32 provides the product of crest factors 4.2.

Complexity of generation and higher power consumption
are the disadvantages of the multisine excitation in
comparison with generating of binary multifrequency
waveforms. Using of the binary waveforms is justified only
if the above-mentioned disadvantages are crucial, as it is
implantable and wearable devices.
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