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1Abstract—Model Predictive Control (MPC) with constraints
is still an interesting subject and offers many problems to work
on. This study basically aims to understand the optimization
process and the decrease of convex quadratic costs in a single
model predictive controller. For those processes where the
system dynamics change so slowly it is essential to obtain the
control law as soon as possible to minimize the time delay on
the controller side. This study proposes an early termination of
the optimization process and the suboptimal solution to the
quadratic programming. To define the early termination in the
following chapters it is discussed and explained when, where.
The implementation of the strategy is also illustrated with a
case study and it is compared to the LQR controller for the
regulator problem.

Index Terms—Model predictive control, MPC, time varying
time delay, quadratic programming.

I. INTRODUCTION

The main difference between the conventional control and
model predictive control is that conventional control uses a
pre-computed control law (offline computation). Model
predictive control or receding horizon control uses on-line
optimization to solve a finite horizon open loop control
problem based on iterative algorithms, applying the plant
current state as the initial state. The advantages of model
predictive control are that it can handle multivariable or
time-varying plants; constraints can be employed directly in
the problem [1], [2].

To make the implementation of MPC easy one of the
methods that can be used is real-time implementation. Today
execution time characteristics of MPC tasks are one of most
interesting problems. The time-varying execution times
introduce delays to the control systems which are not easy to
compensate. The more time needed for the optimization the
more the latency has the systems. The latency has an effect
in control systems the same as input time delay which affects
the control performance negatively unless it is well
compensated. From a real time perspective it is held till now
only by Cervin et al who considers the MPC tasks as
periodic tasks for EDF scheduling based on early
termination of iterative algorithms. In these papers, it is
claimed that the early termination of the iterative algorithms
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can increase the performance index of MPC and still have
efficient results for the prediction of the control signals and
fulfil the stability conditions [1], [3], [4].

In the last years, MPC controllers are often studied for
time delay in sense of network control [5] where feasible
networked MPC scheme is used for discrete time
interconnected systems on which time varying transmission
delay affects the network [6] via minimizing the upper
bound of the cost function it is used as a robust one in
discrete-time uncertain systems with time-varying delay,
input constraints and bounded nonlinear perturbations.
Reference [7] discusses delay compensation of the moving
horizon estimator and aims to compensate the loss by
updating the covariance matrix for those states if there is
incoming data from the sensors for them. Another
compensation study [8] takes the time varying time delays
introduced by the communication network into consideration
and offers a solution by modelling delays as disturbances.
Reference [9] proposes MPC algorithm for linear parameter
varying systems with unbounded delay and derives the
sufficient conditions from linear matrix inequalities using
relaxation matrices. Rather than other time varying time
delays this study focuses on the delays on controller side.

II. MPC WITH TIME-VARYING TIME DELAY

The basic question in a single MPC with constraints is
how long optimization process should go on. It is known that
each iteration optimization process goes on further; a better
value is achieved for the control signal. However, while the
objective function decreases in every each iteration, the total
cost depends on delay increase.

Up to now, the previous work which has been done in this
field suggests interrupting the optimization when the costs
depending on delay begin to increase. At this point, it is
suggested to use a simple stop criterion. With this criterion it
is aimed to hold the costs depending on the delay at a certain
level. One basic illustration to this idea can be seen on
Fig. 1.

Here on the figure, line one illustrates the optimization
process which leads to a decrease of the objective function
in every iteration step. Line two illustrates the costs
depending on time-delay which is based on delay time
before the control signal is given to the process. The idea in
the previous work is to interrupt the optimization at a point
on which costs start to increase when the optimization
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process reaches a sub-optimal value which is not the best but
still good for obtaining the control signal.

Fig. 1. Simple stop criterion proposed in the previous work [1], [2].

For this figure then point A is the point where the
optimization process is interrupted at a sub-optimal value
and save time, before the delay dependent costs start
increase vigorously. However, it is not declared in the work
how this point theoretically can be obtained. The previous
work suggests us to use a simple stop criterion based on
experienced maximum allowed delay and needs to be
searched for every single system. Moreover, it is not known
if this point or maximum allowed delay is the best value
where the optimization process can be interrupted or since it
is based on the experience can there be a better value or a
point which is not experienced, yet [3].

III. MATHEMATICAL METHODS WHICH CAN BE USED FOR
DEFINING THE PREMATURE OPTIMIZATION IN A SINGLE MPC

In the light of the previous works done in this field it is
known that the premature optimization process is studied
with the active set methods. For the optimization process
when active set methods are used, it is known that the
optimum point is obtained by adding and removing the
constraints to the active set. With this method it is not clear
how the objective function will decrease as the number of
the iterations increases in time. Because of working with
different constraints inside the active set at different
iterations it is also not clear how far the process should go
on to achieve a better error and how many iterations it takes
for the algorithm to reach the optimum point. All these
factors make it not clear not only to decide whether it is
logical to optimize further or not, but also theoretically not
feasible to reach to the optimum point at a certain time [3],
[4].

In the optimization process inside an MPC algorithm, the
active set, simplex and interior point methods are the
common solvers that can be used. Above it is clarified why it
wouldn’t be so suitable to use active set methods [10], [11].

For this work basically three reasons make interior point
algorithms so attractive to implement to the optimization
process for finding the premature optimal point. First the
complexity of the total algorithm is always polynomial, has
mostly O (n3l) complexity. Second, it offers an estimation of
how far from the optimal value a solution at a given iteration
is. Third, the numbers of the iteration which is needed to
find the optimal point is bounded by an upper value

bounded, and it is also one of fastest algorithm for the
solution of the convex quadratic problem [12], [13].

IV. DEFINING THE PREMATURE OPTIMIZATION IN A SINGLE
MPC

A. Defining the Cost Function for Convex Quadratic
Optimization Problem
In order to define the premature optimization in a single

MPC, system equations with a control signal with time delay
(Fig. 2) which is caused by solving the optimization problem
should be transferred from continuous time to the discrete
time.

Fig. 2. Time model of the control signal with time delay [14].

The plant (1) has a continuous-time state space model:
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Our aim is to discretise (1) with time delay so that the
time delay can be transferred from continuous time to
discrete time. Thus, the discreted time system equations [15]
are seen in (2):
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The matrix form of (2) is (3)
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The cost function which is needed for optimization
problem is shown below (4). To make the discretization
process easier here a classic LQR cost function assumptions
(5) will be used. Here after (6), it is assumed that the delay is
embedded within the control signal uk to make the following
equations easier to follow. The cost function in continuous
time is seen in (4)
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Here, cost function is chosen as LQR that’s why xref and
uref will be zero. Then, the final cost function in continuous
time is as in (6):
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Once the discretized cost function is obtained, the
following operations will be executed in order to transform
the cost function so that it fits to the convex quadratic
problem formulation.

B. Cancelling Cross Term (Cross Term Elimination) [16]
Cross term Nd is cancelled (7)–(10) since the aim in the

objective function to build the costs based on only state xk

and control signal uk:
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The system equations after cross term elimination are
(11)–(13):
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Matrix decomposition (Cholesky factorization) [16] of the
weighting terms of the cost function is (14), (15):
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The system equations (11)–(13) after Cholesky
factorization are (16)–(18):
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After these operations the discreted cost function for the
delay depended MPC is (19)
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Now the delay-depended MPC (20) can be built for the
regulator case using the transformed system equations
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where
*^

1p kp kx A X B u  and xp is substituted in cost

function J, and Q is chosen as CTC Then, our objective
function for the quadratic programming will become (21)
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C. Defining the Constraints for Convex Quadratic
Optimization Problem
It is known that MPC is solved via quadratic

programming in case of constraints. Now the constraints
(22) should be defined for the control horizon and
introduced to the convex quadratic optimization problem.
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All operations applied to the system equations and cost
function should also be applied to the constraints.

Cancelling cross term (23)–(26) (cross term elimination):
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The new constraints after cross term elimination are (27)
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Matrix decomposition of the constraints (Cholesky
factorization) is (28)–(31):
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Thus, it can easily be seen that the constraints for the
control signal in this case depended on the state vector again
nevertheless this dependence should be removed by
introducing another MPC (33) only for control horizon to
the system
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The altered constraints after MPC formulation are (34)
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V. CONVEX QUADRATIC PROGRAMMING FOR MPC VIA A
PATH FOLLOWING METHOD

Once the MPC is built under the constraints, it leads to a
quadratic programming problem. Literally this problem can
mainly be solved either using an active set algorithm
(simplex for quadratic case), or an interior point algorithm.
For this MPC structure with constraint(s) it is chosen to have
an interior point algorithm since these methods have the
following advantages: Based on the search direction
criterion it is often possible to prove that the cost function
decreases in every iteration, however, this is not possible in
active set or simplex methods since the value of the cost
function can remain same [10]. Interior point methods have
an iteration bound which gives information in the current
iteration about the distance to the optimum point [11].

Since the iteration calculation is constituted of fixed
numbers of equations, iteration has always the same
processing time on a microprocessor.

All these advantages help us to define the pre-
optimization point where the total cost begins to increase
after a certain number of iterations because of the time-
varying time delay. The more time it takes to calculate the
control signal the more the system will become distant to the
point where the state variables are measured.

A path following method is chosen here to solve the MPC
problem. Today there are several packages which can be
used to solve this problem via an interior point algorithm
(Newton-KKT [13], Quadprog-middle scale algorithms [17],
Yalmip (interior point option) [18], QPC [19], etc).

Here is (35) objective function with constraints again. The
quadratic programming solver QPC can handle this problem
directly, however for other solvers these constraints should
be altered to the form    orAx b Ax b  just as in (36):
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The constraints (37) have the form of Ax b
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In the constraint formula it shouldn’t be forgotten that the
state variable xk is the initial value of the variable. In order to
have the representation seen easier, this representation is
expressed in the form of classic quadratic programming [9]
in vector representation as in (38)

1 .
2

T TJ x Qx c x  (38)

VI. CONVERGENCE OF QUADRATIC PROGRAMMING

This part deals with solving the quadratic programming
problem in a general case. In each iteration, a pre-
optimization criterion for a delay depended MPC makes
only sense in case of decreasing costs. The decrease of the
costs in interior point methods is always guaranteed with a
safe search direction criterion. This criterion can be found
for the solvers in their convergence analysis. Together
decreasing costs and iteration bound help us to see how far a
given iteration is from the optimum point.

In this work the solver [12] is used. The following proof
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belongs to the reference [12] and is added here to explain
the idea how cost decrease in optimization process. In this
solver the regular convergence ratio (39) is defined. The
proof of (39) is explained in the following (39)–(45). Here,
some symbol definitions are listed below:

n: Number of variables in quadratic programming,
λ>0 is the barrier parameter,

and chosen as kz
n 












 1 .

sk: Slackness vector,
zk: Mean value,
α: α<1,
Sk: diag (sk),
∆X: diag (∆x),
μ = zk.

1 11 .
4

k kz z
n

  
  
 

(39)

Lemma I:

2
1 1 .

4
k kz z

nn
   

    
 

(40)

Proof:
Note that:

  1
,k k k kX s µ X x e X s


     (41)

  

 
 

1 1

1

1
e .

k k k k

k k k k

k k k k k

k k

X s X X s s

X s Xs X s X s

X s X s µ X x Xs X s

X s s µ X e

 





     

        

          

 
      

 

(42)

From (41), (42) the following (43) is obtained
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The last inequality (43) is true since the quadratic term

reaches its maximum value at this value   1

2
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(45)

With this proof lasted in (45), the aim is to show that in a
path following solver the costs are decreasing through
optimization process rather than they decrease with a regular
factor. Thus, the general iteration bound belongs to [11].
This iteration bound can be updated to the solvers using the
right decrease factors.

Lemma II: If the barrier parameter µ starts with the initial
value µ0 and updated by 1 - θ, with 0 < θ < 1

01 log .nµ
 

 
 
  

(46)

After at most iterations nµ  is obtained.
Proof: The duality gap is determined nµ0 and after the

iteration, it is decreased with 1-θ. When k iterations passes,
the duality gap is lesser than ε if

  01 .k nµ   (47)

Introducing the logarithm of both sides of (46), (47) is
obtained

   0log 1 log log ,k nµ    (48)

where -log (1 - θ) ≥ θ, this is valid if (49) is true

 
0

0log log log .nµk nµ 


   (49)

This explains the lemma II in (46).

VII. IMPLEMENTATION OF THE DELAY DEPENDED MPC ON
A PROCESSOR

The implementation of the time varying time delay
dependent MPC will be as follows:

Step 1: Discretise system (1) with a fixed τ which is system (1) +one iter

Step 2: Discretization + transformation of system (1)

Step 3: Calculate MPC cost function J (11) and constraints

Step 5: Iteration= iteration+1, update τ and go to Step1

Step 4: If Jk< Jk+1 QP for iteration otherwise stop, actuate u
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In the first step the time delay is defined as a fixed time
delay which is the total time of discritizing system matrices
and calculating the cost function and constraints for
quadratic programming problem plus time needed to solve
the quadratic problem. In each iteration, it is checked either
the calculated delay depended cost is higher than the cost
one iteration before. If the total cost still decrease, the QP
for given iteration steps is solved. Once the total cost starts
to increase instead of decreasing then the solver is stopped
and actuate the control signal.

This code implementation can be done both offline and
online. In offline version the cost curves of a given system
can be calculated and the optimum cost is found for
optimum iteration steps for the system. After this point there
is no need to iterate further since the total costs start to
increase instead of decreasing. In the latter one, during the
quadratic programming, the time-varying time delay costs
can be checked and compared with the help of sub-codes.
Once it is realized that the delay depended costs start to
increase the quadratic solver can be interrupted and control
signal can be actuated.

A. Case Study

pH – prediction horizon chosen as twelve sampling

instant.

uH – control horizon chosen as four sampling instant.
Plant














20
01

CA – system matrix.

 11CB – system input matrix.
h = 0.20 ms – sampling time.











10
01

C
Q – weighting sub matrix.

 00CN – weighting sub matrix.
 1CR – weighting sub matrix
   
    










RN

NQ
J TC – continuous cost function.

τ = 5 %–50 % of sampling time, time-varying time delay.
]4;2[uu ; – constraint for the control signal.

 
 
1 2

1 20

x x x

x x x u




– state vector and initial conditions.

 0130x – initial conditions.

A time-varying time delay effect always makes control
signal calculations harder since the system moves to another
point once the control signal is calculated and introduced to
the system. Here with this process which is introduced above
our aim is to minimize the time-varying time delay effect for
a MPC with constraints so that the calculated control signal
will fit to the system. Thus, it is aimed to interrupt the
optimization process in MPC with constraints in order to
minimize the time-varying time delay which is needed to
calculate the control signal.

For the given system above, the discretized cost and the
iteration for the optimization are introduced as 5 % time
delay to the system. This is increased up to 50 % percent

time delay over the optimization process which needs ten
iterations to find the minimum. It is seen that the discrete
cost function which has the time varying time delay effect
starts to increase after the third optimization iteration. After
the third optimization iteration, the discretized cost function
starts to increase instead of decreasing because of the
increasing time delay effect. Here the optimization process
interrupted at the third iteration in quadratic programming
since the calculated costs are minima at this point. The
discritized cost values over the iterations can be seen in
Fig. 3. Fig. 4 is given to compare the MPC with a traditional
one. In the trajectory following overall performance of a
MPC with a pre-interrupted optimization algorithm is faster
than traditional LQR. However, this can be the opposite
based on single state variables.

Fig. 3. Discrete cost function JD vs time varying time delay in MPC.

a)

b)
Fig. 4. States (x1, x2): traditional MPC (a) versus LQR (b).

The cost decrease is seen as on Table I. On the table, it is
seen that during the optimization process cost starts to
increase again because of the time varying time delay effect.
Here for this system the optimization algorithm can be
interrupted at the third iteration.

For a MPC with initial values the output changes of the
classical MPC and the proposed one can be seen on Fig. 6.
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TABLE I. COST DECREASE IN OPTIMIZATION PROCESS.
Iter num. JD MPC Iter num. JD MPC

1 21.9880 6 12.2703
2 11.9092 7 13.3071
3 10.5534 8 14.3183
4 11.2672 9 15.1031
5 11.9631 10 15.8042

a)

b)

c)
Fig. 5. The output changes of MPC Classic vs. MPC Pre-optimized for
step input.

VIII. CONCLUSIONS

In this work it is seen that the cost in an MPC start to
increase during the optimization process. Therefore, it is
better to interrupt the optimization algorithm where the cost
starts to increase instead of decreasing. A control signal
found this way may be smaller than a traditional one since
the interrupted cost will be smaller than the cost non-
interrupted.

In the future, our aim is to research the case with several
MPCs with different cost and initial values. This way we
intend to find an algorithm to schedule several MPCs with
different cost values running on a single processor to
increase the overall system performance.
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