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1Abstract—This paper proposes a tree-based acknowledge-
ment mechanism designed for a reliable application layer
multicast, called ATACK. The proposed mechanism divides the
group members into a hierarchy of logical acknowledgement
domains by a self-organized way, and further builds the
acknowledgement tree in terms of hierarchical
acknowledgement domains. The expected size of the
acknowledgement domain is within some fixed range, which
promises the efficient acknowledgement and avoids adjusting
acknowledgement domains frequently. In each domain, only a
part of group members send acknowledgement messages to the
corresponding acknowledgement processor according to the
error correlation of the ALM delivery tree. Therefore the
proposed acknowledgement mechanism can effectively reduce
the related load and improves the acknowledgement
performance.

Index Terms—Application layer multicast, reliable multicast,
acknowledgement mechanism, tree.

I. INTRODUCTION

As an alternative of IP multicast, application layer
multicast (ALM) implements multicast functionality at the
application layer instead of the IP layer [1]–[7]. In ALM,
network infrastructures need no additional modification,
which addresses the problem of non-ubiquitous deployment
of IP Multicast. There are two main types of ALM services,
i.e., reliable service and loss-tolerant service [8]–[9]. In
reliable service, the data source distributes the complete and
right data to all the active receivers. Examples include file
distribution and online games.

In ALMI [2], data distribution along the multicast tree
occurs on a hop by hop fashion. Depending on the
application, the data transfer between two adjacent members
can be reliable or unreliable by deploying TCP or UDP,
respectively. When TCP is used, a connection has to be
established between two adjacent nodes with one end
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initiating and the other end accepting the connection.
Providing end-to-end reliability through TCP is a choice

for implementing reliable ALM. However, it is difficult for
this approach to obtain effective flow control in the viewpoint
of group communication, because the end-to-end
transmissions are asynchronous. For the same reason, the
approach needs frequent data numbering and renumbering
operations. Additionally, some end-to-end transmissions
might be broken because the members can randomly leave the
multicast session, and it is unsuitable for reliable ALM to use
TCP-based approach in short duration multicast services (e.g.
news report) [9].

Unlike reliable ALM, reliable IP multicast has been widely
researched over the past two decades. Existing reliable IP
multicast protocols usually are based on UDP. In UDP-based
reliable IP multicast, the tree-based acknowledgement (ACK)
is an important mechanism that can achieve good throughput
with desirable scalability. This mechanism arranges the group
members into a logical tree, so that each leaf sends ACKs to
its parent which aggregates them, and passes them on up the
tree. The tree-based acknowledgement mechanism is proven
most scalable in terms of throughput, because they can ensure
that the sender's processing time is bounded by the number of
its immediate children, which remains constant in the tree
hierarchy regardless of the number of receivers [10]. In
addition, the tree-based acknowledgement mechanism can be
independent of the loss recovery way (see RMTP-II [11],
GAM [12] and TMTP), which enhances the flexibility of the
corresponding application.

In the delivery tree of IP multicast, branch nodes (other
than the root) are multicast routers, and leaf nodes are group
members. In contrast, no-leaf nodes of ALM delivery trees are
dynamic group members instead of multicast routers.
Therefore there is close error correlation in the application
layer multicast, i.e., a loss at some node must result in the
same loss at the downstream nodes of the node. Because of
the above intrinsic difference, it is unwise for reliable ALM to
directly leverage some existing tree-based ACK mechanism
approaches designed for reliable IP multicast. To our best
knowledge, so far there is no tree-based ACK mechanism
designed for reliable application layer multicast.
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This paper proposes a tree-based ACK mechanism (called
ATACK) that can be used in most reliable application layer
multicast solutions, to achieve good throughput with desirable
scalability. ATACK is dependent of the underlying data
recovery way. Therefore it can be used as a complement to
existing UDP-based reliable ALM solutions that use the ALM
tree to distribute the multicast data. There have been many
flow control approaches based on the tree-based ACK
mechanism in the field of reliable IP multicast. Since most
flow control approaches (e.g., RMTP-II and TMTP) are
dependent of the underlying data delivery and loss recovery
ways, these approaches can also be used in ALM
environment. Therefore this paper only concentrates on the
optimized tree-based ACK mechanism in tree-based ALM
environment.

II. ATACK OVERVIEW

In ALM, tree is the typical data delivery structure. ATACK
is designed for reliable ALM that uses tree structure to
distribute the multicast data, to achieve good throughput with
desirable scalability. ATACK is dependent of the underlying
data recovery way and tree building approach.

ATACK groups the members into a hierarchy of logical
acknowledgement domains (called ADs) by a self-organized
way, and further forms the acknowledgement tree in terms of
the hierarchical acknowledgement domains. The expected
range of AD size promises the efficient acknowledgement and
avoids adjusting ADs frequently. In ATACK, only a part of
the nodes of ATACK acknowledgement tree send the ACK
messages, which obviously reduces the related load and
improves the acknowledgement performance. This paper
consists of two main contributions: (1) a feasible way to build
the self-organized acknowledgement tree for reliable ALM,
and (2) an optimized approach for acknowledging the receipt
of multicast data in terms of ALM's error correlation. In the
following parts, we introduce the detailed design of ATACK.

III. ATACK DESIGN

A. ATACK Acknowledgement Domains
From the root to each member, there is one unique

loop-free path along the ALM tree. In HMTP [1], the member
list of this path is called root path. Existing tree-based ALM
solutions either use the root path or have the capacity of
getting it by a simple extension. In this paper, we assume that
each group member knows its root path in the delivery tree.

ATACK organizes group members into a hierarchy of
logical acknowledgement domains in terms of the ALM
multicast tree (The AD building procedure can be seen in
following parts). In each AD, a group member is selected as
the acknowledgement processor (AP) to assemble
acknowledgement messages in the domain. An i-AD consists
of its AP, some common members, and APs at level i+1.
Except for the i-AP, all the nodes in an i-AD are also called
domain members of the AD. In this paper, we say that the AP
of an AD stands for the AD. Note that the i-AD and i-AP mean
the AD and AP at level i, respectively. The root of the
multicast tree is a special AP, and the AD including the root is
at the highest level (i.e., level 1). Figure 1 illustrates a two-tier

hierarchy of ADs. In the figure, 1-AD A is the parent domain
of the 2-AD B.

Fig. 1. The hierarchy of acknowledgement domains.

ATACK attempts to divide the multicast group into
multiple ADs of size in [λ + 1, δλ + 1] and at most an AD (i.e.
the AD that contains the root) of size in [1, δλ + 1], where both
λ and δ (δ ≥ 2) are configuration parameters. As noted
previously, the range of AD size promises the efficient
acknowledgement and avoids adjusting ADs frequently. In a
given AD, a domain member is called graft node (GN) if the
AP of the AD is not on its root path, and a GN is called TGN
if there is no GN on its root path. There is an additional
connection (called maintenance link) between a TGN and the
corresponding AP. In the example shown in Fig. 1, node 12
and 10 are GN and TGN, respectively.

Each AD has an acknowledgement maintenance subtree
(called AMS), which consists of: 1) all domain members and
the AP in the AD, 2) all maintenance links in the AD, and 3)
the delivery tree edges (called tree links) that connect two
different nodes in the AD. The union of all the AMSs is the
acknowledgement maintenance tree (called AMT). For
example, Fig. 2(b) and Fig. 2(c) show the AMS of AD A and
the AMT of the whole group shown in Fig. 3. For
distinguishing the AMT from the delivery tree, the parent and
child of a node in the AMT are also called maintenance parent
and maintenance child of the node, respectively.
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Fig. 2. The examples of the acknowledgement structure:
(a) Acknowledgement tree; (b) AMS; (c) AMT.

B. ATACK Acknowledgement Tree
Figure 2(a) illustrates the acknowledgement tree

corresponding to Fig. 1. As mentioned previously, the branch
nodes of the AMT are group members. Only the leaf nodes of
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the AMSs send ACKs to the corresponding APs, because a
leaf node receives a correct ADU only if all its upstream
nodes in the same AD receive the correct ADU. Note that
each parent-child relation between two neighbor nodes (not
including the AP) in an AMS also holds in the corresponding
ALM delivery tree.

Fig. 3. Examples of the acknowledgement trees.

In this paper, a tree is said to be k-regular if and only if each
no-leaf node of the tree has k children. Let T be an
acknowledgement tree including n nodes, then we have
Theorem 1.

Theorem 1. The minimum and maximum heights of T are
log ( 1) 1n      and ( 1) / 1n     , respectively.
Proof. In RALM, there are many ADs of size in [λ + 1, δλ +

1] and at most an AD of size in [1, δλ + 1]. Therefore T has the
minimum height if only an AD size is in [1, δλ + 1] and all the
other AD sizes are equal to δλ + 1, as Fig. 4(a) shows. Let the
minimum height of T be h, then

1(( ) 1) / ( 1) (( ) 1) / ( 1).h hn          (1)

We can further have 1 log ( 1)h n h     . Note that
h is an integer. Thus h = log ( 1) 1n      . If only a
common member node in any AD can become the AP in the
lower-level AD, then T has the maximum height, as Fig. 4(b)
explains. Similarly, we can prove that the maximum height of
T is ( 1) / 1n     . Thus the theorem has been proven.

Actually, the maximum height of T is only a theoretical
threshold, because the acknowledgement tree is built in terms
of the ALM tree, and the ALM protocol usually avoids
producing the poor ALM tree as Fig. 3(b) illustrates. We also
can deduce the following theorem.

Theorem 2. Let T1 and T2 be two trees that each consists of
n nodes, the max degree of nodes of T1 be k, and T2 be
k-regular. Then nl (T1) ≤ nl (T2) holds, where nl (T) means the
number of leaf nodes of T.

Proof. We can traverse T1 by the breadth-first search. When
visiting a node b in the search procedure, do as follows: if 1)
the number of children of b is less than k, and 2) there are
some leaf nodes which are not at the lowest two levels, one
leaf node at the lowest level becomes a child of b and is
marked with symbol UN. By the above transition procedure,
T1 will become k-regular finally. We can notice that the
number of leaf nodes is decreased if a node, with the UN
mark, becomes a branch node. Thus the theorem has been
proven.

We can easily deduce that there are only (kn-n + 1)/k leaf

nodes in the k-regular tree including n nodes. According to
Theorem 2 and the above conclusion, it is safe to say that the
number of receivers that need to send ACKs is apparently
reduced in ATACK.

C. ATACK AD Formation
We use notation dn(m) to mean the number of member m's

downstream nodes in the AMS of the AD that contains the
domain member m. For the example shown in Fig. 2©, dn(10)
and dn(2) are 1 and 2, respectively. Particularly, the dn value
of leaf node of an AMS is 0. Each maintenance child (denoted
by c) of member m records a cn(c) value, where
cn(c)= )(cdn +1. Notation )(cdn means a proximate dn(c),

)(cdn =


d

i
iccn

1
)( , where ci (1≤ i≤d)is a maintenance child of

m and d is the number of maintenance children of m. We will
further explain dn in the next part.

The AD formation procedure is progressively finished as
new members join the group. When a new member joins a
group, a NEW message is transmitted one by one from its
parent node to the root along its root path. When a node
receives the NEW message, the corresponding cn value is
increased by 1. Additionally, the extended refresh procedure
updates the states of nodes of the AMT. Therefore each
member (denoted by m) can get the proximate dn(m) (i.e.,

)(mdn . In the steady group, )(mdn is equal to dn(m).
However, it is difficult (even impossible) for member m to get
the instant dn(m) in ALM environment because of the
dynamics of members, i.e., )(mdn might be unequal to dn(m)

in the unsteady group. Note that the dn value of an AP
implies the proximate size of the corresponding AD that the
AP stands for. The root is the first AP, and initial AD only
contains the root. When a member joins a group, it contacts
the last AP, denoted by a, on its root path to try to join the AD
A that a stands for. Let i mean the level of the AD A and AP a.
If the proximate size (i.e., dc(a) + 1) of A is larger than δλ + 1,
A is divided into two ADs as the following rules:

Vertical split rule: If AP a has a child c such that
( ) / 2dn c     holds, a breadth-first search is performed

along the AMS of AD A. Once finding a node n such that
dn (n) ≤  2/ holds, the search procedure ends, and the
maintenance parent of the node becomes a new i + 1-AP. Note
also that all the downstream nodes of the i + 1-AP in the AMS
become domain members of the new AD that the i + 1-AP
stands for.

Horizontal split rule: Assume that AP a has x maintenance
children. If vertical spilt rule fails to implement the partition
and x ≥ 3, AD A will be divided in terms of the horizontal split
rule. In the rule, the children of a is divided into two
groups-G1 and G2 (

1 2

( ) ( )
i G j G

cn i cn j
 

  ), such that

1

( ) / 2 1
i G

cn i 


    (2)

and

1,q G  (3)
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1 { }
( ) / 2 1.

i G q
cn i 

 
    (4)

Then a random node in G1 is selected as a new i + 1-AP,
and maintenance links are created between the i + 1-AP and
other nodes in G1.

Graft rule: Assume that the above two rules divide AD A
into A1 and A2, A1 contains the new i + 1-AP, and A2 contains
a. If a is not the root and the proximate size of A2 is less than
λ + 1, one or more nodes of A2 are designated as the TGNs in
A1, such that the proximate sizes of A1 and A2 are both within
the expected range (i.e., [λ + 1, δλ + 1]). Note that: 1) the
number of TGNs should be as small as possible, and 2) all
downstream nodes of TGNs in original AD A are GNs in A1.

Clearly, even partition is helpful for each divided AD to
contain as more potential domain members as possible. In
addition, even partition can alleviate the negative impact
caused by the change of the delivery tree. We can see that the
above partitioning procedure is a tradeoff between the
capability of containing more potential domain members and
the cost of building the ADs.

Assume that the proximate size of an i - AD (i > 1) B is less
than λ + 1, the AD is incorporated with its parent AD C, and
the AP of C becomes the AP of the new extended AD. If the
proximate size of the new AD exceeds δλ + 1, the above AD
spilt procedure will be performed. Each AP (denoted by a)
periodically checks if )(adn is out of the expected range. If

)(adn is larger than δλ + 1, the vertical split rule is first used
to divide the corresponding AD. If the above procedure fails,
horizontal split rule is used to implement the partition. The
graft rule is employed as a possible supplement to the other
two rules. This paper does not introduce more trivial details of
implementations of the above procedures.

D. ATACK AD Maintenances
Similar to the root path, from the root to each member,

there is one unique loop-free path along the AMT. The
member list of this path is called acknowledgement root path
(ARP). Note that the ARP is labeled by a special mark for
distinguishing itself from the root path.

In the ALM tree, the states of members are refreshed by
periodic message exchanges between neighbors. For the
example of HMTP, each child periodically sends a REFRESH
message to its parent, and the parent replies by sending back a
PATH message. For simultaneously refreshing the states of
members in the AMT and delivery tree, ATACK extends the
above REFRESH message. The extended message is denoted
by REFRESH_E(s,t, )(sdn , f), where s and t indicate the
sender and receiver of the message respectively, and f (f
{DO, DA, DOA}) means a type flag. The extended refresh
procedure works as follows:

1. If the maintenance parent mp and parent p of a
member m (other than the root) are not the same node, m
periodically sends REFRESH_E(m,p,0,DA) to its parent
p, and sends another refreshing message
(REFRESH_E(m,mp, )(mdn ,DO)) to its maintenance
parent mp. Otherwise, m periodically sends
REFRESH_E(m,mp, )(mdn ,DOA) to p(p=mp);

2. Once receiving REFRESH_E(m,p,0,DA), p sends
back the APATH message that contains p's root path. Note
that the APATH message is similar to the PATH message.
When mp receives REFRESH_E(m,mp,,DO), it updates
the corresponding cn(m) value in terms of )(mdn , and
sends the APATH message that contains its ARP to
member m. If p receives REFRESH_E(m,p, )(mdn ,DOA),
it also updates the corresponding cn(m) value, and sends
back the APATH message, with its ARP and root path.
Member m updates the related information (ARP or root
path) when it receives the APATH message.

Each leaf node of an AMS and the corresponding AP
should periodically exchange LIVE_A messages to keep them
active. If the leaf node m of an AMS finds that the AP does not
work, it sends NEWAP_R messages to find the active
downstream node u of the AP in m's ARP, such that u is
closest to the root among all the active downstream nodes of
the AP on m's ARP. Then u contacts the closest active AP on
its ARP, and becomes a member of the AD that the found AP
stands for. The above procedure is called AP recovery.
Additionally, some messages are exchanged for informing m
of the new AP selection. If there is no node that satisfies the
above conditions, m initiates the AP recovery procedure.
Similarly, m initiates the above AP recovery procedure if it
receives no notice from a new AP in a long time. When an AP
finds that some leaf node has left the corresponding AD, it
only deletes the correlative information.

In a given AD, when a TGN leaves the group session, its
children (GNs) in the AD become TGNs. If a member
switches to a new parent in the tree-rebuilding and
maintenance procedures, it tells its maintenance parent of this,
and the AMT will make some correlative adjustments in terms
of the new delivery tree. The above two procedures can be
implemented easily. This paper does not discuss more detail
on the AD maintenances.

IV. EXPERIMENTAL RESULTS

We used the BRITE Generator to generate a 5000-node
graph as the underlying network topology. Additionally, we
generated 1000 nodes as member hosts (receivers) and a node
as the multicast source. Each member node was connected to
a random router node. The fanout (i.e. node degree) value of
each member node was between 2 and 4, and the expected AD
size was within the range from 6 to 18.

Fig. 4. The ADs in steady structure of ATACK.
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We used HMTP protocol to build ALM delivery trees, and
simulated ATACK based on the HMTP trees. We simulated
HMTP and ATACK with the network simulator NS-2.

Figure 4–Fig. 6 give some features of the stable structure of
corresponding acknowledgement trees. In Fig. 6, AN means
the node that needs to send ACK messages. From Fig. 4, we
can see that about 9 % group members become AD nodes.
Figure 5 tells us that the sizes of ADs are within the expected
range. The above two figures show that the AD building
approach of ATACK has an expected performance in the
steady cases. From Fig. 6, we can notice that the number of
receivers which send ACK messages is obviously reduced,
which means that ATACK has high effectiveness of
acknowledging the received packets.

Fig. 5. The domain members in steady structure of ATACK.

Fig. 6. The ANs in steady structure of ATACK.

Fig. 7. The ADs in unsteady structure of ATACK.

Figure 7 shows the numbers of the whole ADs and the ADs
whose size is out of the range from 6 to 18 in an unsteady case.
In this experiment, we first got a steady multicast tree,
including 500 receivers. Then each existing receiver left the
group with probability of 0.05te . Additionally, another 100
receivers each joined the group at a random moment between

1th ms and 1000th ms. The time interval of sending
REFRESH_E messages was 3 ms. From the results shown in
the figure, we can see that only a small amount of ADs are out
of the excepted AD size (e.g., from 6 to 18), which shows that
ATACK's AD formation and related maintenance procedures
work well in the unsteady group.

V. CONCLUSIONS

This paper presented a tree-based ACK mechanism
ATACK for reliable application layer multicast. ATACK is
dependent of the underlying data recovery way and tree
building approach. ATACK employs a self-organized way to
group the members into a hierarchy of logical
acknowledgement domains, which each have an
acknowledgement processor. ATACK attempts to confine the
size of an acknowledgement domain into some expected
range, which promises the efficient acknowledgement and
avoids adjusting acknowledgement domains frequently.
ATACK employs the acknowledgement processors to
aggregate ACK messages from other nodes in the same
domain. In a designed domain, only the leaf nodes of the AMS
send ACKs to the corresponding acknowledgement processor,
because a leaf node receives a correct packet only if all its
upstream nodes in the AMS receive the same correct packet.
The analysis and experiments show that ATACK has
desirable acknowledgement performance.
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