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1Abstract–The efficiency of realization of a new asymmetric
cipher in microprocessors is presented. The cipher is based on
the matrix power function and therefore to the contrary of
traditional asymmetric ciphers the computation with large
numbers is avoided. Since microprocessors are widely used in
embedded systems such as smart-cards and have restricted
computational resources the development of effectively
realizable cryptographic primitives is a very actual problem.
The efficiency investigation of proposed cipher showed that it
has a significant superiority with respect to the traditional
asymmetric ciphers such as El-Gamal and elliptic curves.

Index Terms–Microprocessors, asymmetric cipher,
embedded systems.

I. INTRODUCTION

As the technological possibilities expand, embedded
systems such as smartphones become common devices in
our everyday life. The security of data, sent across the
Internet, is very important for such devices. This requires
creating cryptographic protocols, which can be implemented
in computationally restricted electronic devices. However
many of known protocols based on commuting
cryptography, such as El-Gamal encryption, require a
significant amount of computation. In recent time non-
commuting cryptographic primitives such as McEliece PKC
[1] are considered as a perspective trend of post quantum
cryptography. One of the first sources declaring non-
commuting cryptography was [2]. In 2007 the state of the art
of this perspective field of investigation was presented in
seminal book by Myasnikov, Spilrain and Ushakov [3]. In
2007 authors published a new key agreement protocol (see
[4]) based on matrix conjugator search problem in
combination with matrix discrete logarithm function. This
key agreement protocol was named as STR (Sakalauskas,
Tvarijonas, Raulynaitis) and was studied in detail in several
sources available on web (see [5]–[7]). Continuing our
research in non-commuting cryptography we present here a
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new asymmetric cipher based on matrix power function
(MPF). MPF was previously used for key agreement
protocol in [8] and asymmetric cipher construction in [9]–
[11].

We expect that the proposed asymmetric cipher has an
effective realization in restricted computational
environments as it was shown by Ottaviani et al. in [5] for
STR key agreement protocol.

II. PRELIMINARIES

Let Zn = {0, 1…, n – 1} be a finite ring of integers where
the multiplication and addition are performed modulo n.
These operations are associative and commuting and we will
take it in mind below by default. It is well known that if n is
prime then Zn is a field. Conveniently, we denote a
multiplicative group in Zn consisting of integers relatively
prime to n by Zn*. We denote the order of Zn* by |Zn*|. The
value of |Zn*| is determined by the value of Euler’s totient
function ϕ(n).

Let Q and Y and all the other matrices defined below be
square matrices of order m. Let matrix Q = {qij} powered by
matrix Y = {yij} from the right be a matrix C = {cij}, i.e.

,YC Q (1)

where elements of C are computed by the formula
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In a similar way by powering matrix Q from the left by
matrix X = {xij} we obtain a matrix D = {dij}, i.e.

,XD Q (2)

where elements of D are computed by the formula
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Furthermore we can use a combination of both functions
to define a two-sided matrix power function or MPF by
powering matrix Q from the left and right by matrices X and
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Y respectively. Denoting the result matrix by E = {eij} we
have the following MPF definition

,X YE Q (3)

For more clarity let us assume that all matrices are square
of second order. The elements eij are then computed in a
following way:
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Consider (3) and assume, that matrices Q and E are given,
while matrices X and Y are unknown. We name the problem
of finding matrices X and Y, which satisfy (3), as MPF
problem.

If elements of matrix Q are from Zn*, then, referencing to
the Euler theorem, we can see, that the elements of matrices
Q, X and Y are not in the same algebraic structures. Let
matrix Q be from some matrix semigroup MS over some
abstract semigroup S. In this case matrices X and Y should
be chosen from some ring MR over some commuting
numerical ring R, since their elements are powers of
elements of matrix Q. It is clear that characterization of R
depends on the properties of semigroup S. We will name
matrix semigroup MS as a platform semigroup, and the
matrix ring MR as a power ring.  Hence according to (3) and
(4), matrices X, Y ∊MR and matrices Q, E MS.

Let us now present two lemmas, which indicate important
properties of MPF useful for cryptographic protocols
construction [9] (Sakalauskas, Luksys, 2007). We denote the
ordinary matrix multiplication by XY.

Lemma 1. If R is commuting numerical semiring and S is
commuting semigroup, then MPF satisfies the following
associative law

    .
Y XX Y X YQ Q Q  (5)

Lemma 2. If R is commuting numerical semiring and S is
commuting semigroup, then MPF defined by (4) is an action
of MR × MR in MS satisfying the following identity

  ( ) ( ) .
X YU V XU VYQ Q (6)

Now we can turn to asymmetric cipher construction.

III. ASYMMETRIC CIPHER

The construction of suggested asymmetric cipher is based
on the conjecture that MPF is a candidate one-way function
(OWF). This means that direct computation of MPF value
i.e. computation of matrix E for given instances Q, X and Y
in (3) is algorithmically effective while the computation of
the inverse value i.e. finding any matrices X and Y for
instances Q and E is infeasible.

Let Bob be the sender and let Alice be the receiver. Bob is
willing to encrypt a message M using Alice’s public key.

The message M can be decrypted by Alice’s private key.
Alice and Bob agree on the following public matrices:

matrix Q, selected from platform semigroup MS and matrix
A selected from power ring MR. Alice randomly selects non-
singular secret matrix X in MR and computes a secret matrix
U as a polynomial of A i.e. U = PU(A), when polynomial
PU( ) is secret and chosen at random. Alice’s private key
PrKA is a pair of matrices (X, U), i.e. PrKA = (X, U). Her
public key is a pair of matrices B and E, i.e. PuKA = (XAX–1

= B, XQU = E).
Bob takes Alice’s public key PuKA and performs a

following encryption protocol:
1) Bob randomly chooses a secret non-singular matrix Y in
the power ring MR;
2) He selects a random secret polynomial PV( ) and
computes a secret matrix V = PU(A). Then he takes matrix
B and computes PV(B) = XVX–1;
3) He raises matrix XQU to the obtained matrix power
XVX–1 on the left and obtains XVQU;
4) He raises the result matrix to the power matrix Y on the
right and obtains XVQUY = K. The obtained matrix K is
used as a key to encrypt a message M and compute a
ciphertext C.
5) Bob computes the ciphertext C = K ⊕ M, where ⊕ is
bitwise sum modulo 2 of entries of matrices K and M.
6) Bob computes matrices Y–1AY and VQY which we denote
by ε i.e. ε = (Y–1AY, VQY).
7) He sends the enctyptor ε to Alice together with C.
To decrypt Bob’s message Alice does the following:
1) Using Y–1AY Alice computes PU(Y–1AY) = Y–1UY, since
U = PU(A).
2) Alice raises matrix VQY to the power Y–1UY on the right
and then raises the result matrix to the power X on the left
and hence obtains a matrix XVQUY which is the encryption
key K.
3) Alice can now decrypt a ciphertext C using encryption
key K and relation

.M K C K K M     (7)

Note that only matrices U and V are commuting. This is
the main advantage of the suggested protocol as compared
with the protocols based on CSP. Note also, that, since Alice
and Bob compute their matrices U and V as polynomials of
A, only the coefficients of polynomials must be stored. This
shortens private key lengths.

IV. SECURITY PARAMETERS DEFINITION AND THEIR SECURE
VALUES DETERMINATION

The suggested protocol has two main security parameters:
parameter n, defining group Zn*, and the matrix order m. The
choice of these parameters is based on a fact, that no
information about a private key could be recovered from a
public key. The recovery implies the solution of the
following system of equations with respect to unknown
matrices X and U:

,X UQ E (8)
1 ,XAX B  (9)
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,UAAU  (10)

where matrices Q, E, A and B are given.
We are making a conjecture that solution of this system of

equations is infeasible.
We consider a simplest case of (8), when elements qij ∊

Zn*. Then the discrete logarithm of both sides of (8) can be
taken and (8) is transformed to matrix MQ problem. This
problem is defined as solving an equation with respect to
unknown matrices X and U

,XPU D (11)

where P and D are discrete logarithms of matrices Q and E
respectively.

It was shown in [12], that if matrix A is similar to a Jordan
matrix
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then all solutions of (10) can be expressed as polynomials of
matrix A. Hence (10) has nm solutions. Equation (9) can be
considered in a similar way since it is equivalent to (10) if
we consider only invertible matrices. Hence it can be shown,
that this equation has n(m – 1)φ(n) solutions.

Since we obtain commutating matrices using polynomials,
while non-singular matrix X can be chosen freely, to
determine main security parameters we are referring to the
following facts:

1. The number of matrices, commuting with a public
matrix A, defined over a power ring, should be at least 280.
Every commuting matrix should be obtained using
polynomials of matrix A;
2. The number of matrices, conjugating with a public
matrix A, defined over a power ring, should be at least 280.
If these requirements are satisfied, then total scan of

matrices X and U is infeasible. Keeping this in mind the
choice of parameters is as follows:

1. For the platform group definition we seek to minimize
the group order and to maximize the maximal orders of
group elements. In this case the optimal solution is to
choose n = 3p with a prime number p = 2q + 1, where s is
also prime. This yields r = 2q.
2. Since we consider (9) and (10) defined in Zλ(n) = Z2q the

number    1)( 1  qn m must be greater than or equal
to 280. Since 1 ( 9) 6q n   and ( ) ( 3) 3n n   we
get

1
803 9 2 .

3 6

mn n        
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(13)

We can now apply a natural logarithm to both sides of
(13) to obtain

81ln 2 ln( 3) ln( 9) ,
ln( 3) ln 3

n nm
n

    
    

(14)

where   is the ceiling function.
3. Since we want to make this ciphering algorithm usable
in systems with limited resources we must choose
parameters values reducing memory and computation
resources. In the proposed algorithm the following
information should be stored:
a) Multiplication and exponential tables to perform
actions with matrices in MS;
b) Addition and multiplication tables to perform actions
with matrices in MR;
c) Public matrix Q ∊MS;
d) Public matrix A ∊MR;
e) Private matrix X ∊ MR and a set of coefficients defined
in R (private key);
f) Public matrices XQU ∊ MS and XAX–1 ∊ MR (public
key);
Since addition and multiplication of two matrix elements

are commuting it is not necessary to store all elements of
these tables. Hence we can store  ( ) ( ) 1 2n n  

elements for multiplication in a platform semigroup and
 ( ) ( ) 1 2n n   elements for actions over a power ring.

The exponential table consists of φ(n) ∙ λ(n) elements. Each
matrix consists of m2 elements and each element consists of

2log n   or 2log ( )n   bits depending on an algebraic
structure considered. Let us consider the first five suitable
values of n: 15, 21, 33, 69 and 141. A presentation of the
influence of parameter n on keys lengths and memory
requirements is available in Table I.

TABLE I. INFLUENCE OF PARAMETER N ON KEYS LENGTHS AND
MEMORY REQUIREMENTS.

n m λ(n)
Key length of bits Memory

requirementsPrivate
key

Public
key

15 41 4 3444 10086 23928 bits
21 32 6 3168 8192 20428 bits
33 25 10 2600 6520 18000 bits
69 19 22 1900 4332 26800 bits

141 15 46 1440 3150 88792 bits

Since introduced protocol has two security parameters,
which have to satisfy the inequality (14), one of them must
be chosen for other reasons. Therefore we advice that
parameter n must be chosen taking the compromise between
the available memory and required computation time.

Based on data of Table I we can see that the total amount
of bits to store information is the smallest if n = 33. This
yields m = 25 and λ(n) = 10. However the length of keys is
the smallest if n = 141, which yields m = 15 and λ(n) = 46.

V. COMPARISON WITH OTHER ASYMMETRIC CIPHERS

We consider the implementation of the suggested protocol
on 32 bit microprocessor. Since all arithmetic operations are
performed using pre-calculated look-up tables, we can
consider them as elementary operations. We estimated the
upper bound of number of elementary operations to perform
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the asymmetric ciphering which is no more than 8.0 × 105 if
n = 33 and 1.04 × 105 if n = 141. As we can see amount of
elementary operations is reduced 8 times in case of n = 141
as compared to the case of n = 33.

To compare the efficiency of our algorithm with other
known algorithms we introduce a term of computational cost
defined by the number of elementary operations executed in
the custom microprocessor. Since our algorithm uses less
elementary operations in the case of n = 141 as compared to
the case of n = 33, we compare its computation cost to a
classical El-Gamal-2048 bits asymmetric encryption scheme
and elliptic curve ECC-521 asymmetric encryption scheme
on 32 bit microprocessor.

In average multiplication of 2048 bit integer requires
8191 elementary operations. The same is true for squaring.
Total average amount of elementary operations for Alice to
perform asymmetric encryption is about 23.5 × 106. As we
can see the minimum average number of operations
performed in case of El-Gamal encryption is at least 235
times greater than in our case.

Point addition in ECC-521 can be performed with 9
multiplication and 5 squaring operations [13]. Total amount
of elementary operations in average is 8078. Point doubling
requires 4 multiplications and 4 squaring operations, which
can be computed using 4616 elementary operations. Total
amount of elementary operations to perform asymmetric
encryption for Alice in average is about 6.9 × 106. This
means that this algorithm uses at least 69 times more
elementary operations than our algorithm.

The objective results of obtained comparison are
presented in Table II.

TABLE II. COMPARISON OF COMPUTATIONAL COSTS OF
ASYMMETRIC ENCRYPTION SCHEMES.

Algorithm Computational cost
El-Gamal-2048 23.5 × 106

ECC-521 6.9 × 106

Our algorithm, n = 33 8.0 × 105

Our algorithm, n = 141 1.04 × 105

The explanation of the obtained results can be based on
the fact that the realization of both El-Gamal-2048 and ECC-
521 relies on the usage of arithmetic operations with large
integers. Despite the fact that integers in ECC-521 are 4
times shorter than in El-Gamal-2048, the cost of each
operation of ECC-521 is longer since these operations
themselves are more complicated.

VI. CONCLUSIONS

1. We expect that compromisation of the suggested
asymmetric cipher is more complex than of other
compared and widely distributed ciphers since its security

relies on the solution of matrix MQ problem which is
related with an NP-complete MQ problem.
2. As we see from computation efficiency estimation
results, the proposed cipher has a more effective
realization as compared with El-Gamal and especially
with widely distributed ECC-521 cipher.
3. If the parameter n increases the computational cost of
the proposed algorithm reduces, but memory requirements
increase. This means that parameter n must be chosen
taking into consideration also memory requirements.
4. On this base an even more secure cipher can be
constructed by avoiding the cryptanalysis equation
transformation to matrix MQ problem, but with
approximately same efficiency of computations.
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