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1 Abstract—The determination of power system voltage
collapse boundary is very important to study voltage stability.
The explicit expressions of power system voltage high and low
voltage curves are obtained by solving the equations which are
formed by the hybrid network equations and then get the
characteristic equations of the voltage collapse boundary. For
analyzing the closest boundary by the characteristic equations
we define the one-node voltage collapse boundary and all-node
voltage collapse boundary. The closest stability boundary of the
power system has been found out by comparing the active power
index. Because the Jacobian matrix is singular near the voltage
collapse boundary the dimensionality reduced algorithm is
proposed. This method can get the value of voltage collapse
boundary effectively. The simulations show that the concepts
and methods presented in this paper are correct.

Index Terms—Power system analysis computing, power
system faults, power system reliability, power system stability.

I. INTRODUCTION

A typical case that the power system loses its voltage
stability is that the stable equilibrium point and the unstable
equilibrium point overlap as the parameters change. The
voltage collapse boundary (VCB) appears because the
Jacobian matrix of power network equations is singular.

Many methods are available to determine the VCB. One of
them is PU curve. The solutions of load voltages are often
presented as a PU curve. But the PU curve can not be obtained
near the VCB because the Jacobian matrix tends to be
singular, and the conventional power flow algorithm is
failure. Therefore, the calculation of the VCB often combines
with morbid flow algorithm. Continuous power flow methods
[1]–[5] track the trend of balanced solution by forecasting or
correcting the power flow equations to improve the
pathological phenomena and convergence. But, this method
fails to give the accurate result if the step length is more.
Though Interior Point method is efficient to solve the
maximum loading problem [6], [7], this method has the
limitation of starting and terminating conditions [8]. The
Sequential Quadratic Programming algorithm includes the
differentiation of the constraints, and converts collapse point
conditions to optimized load, and solves it with Kuhn –
Tucker optimality conditions [9]. This method is very slow as
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it involves many matrices during the iteration process. Fuzzy
logic has been used to find the loadability limit in [10], this
algorithm does not give the global optimal solution.
Evolutionary algorithms have been applied to solve this
problem. Particle swarm optimization is a computational
intelligence-based technique that is not affected largely by the
size and nonlinearity of the problem and can converge to the
optimal solution in many problems [11]–[13].

Traditional power system analysis is based on node voltage
equations in which the node voltage and power injection are
as variables. This method is widely used because of its simple,
practical, and intuitive physical meaning. The explicit
expression of high and low voltage solution curve is difficult
to obtain due to the interconnectedness among the nodes
voltage, and numerical calculation or simulation can not show
the characteristics of the VCB comprehensively. Because of
the problems as described above the study of VCB can not
carry out deeply and further reveal the nature.

The current study of VCB mainly focuses on the changes of
single parameter (or two-dimensional parameter [14], [15])
and the directions of node injection power are fixed.
However, when the power injection changes in different
directions the VCB is likely to reach, which means that the
VCBs are different from each other. From another
perspective, the zero eigenvalue which leads Jacobian matrix
to singular is not unique. If the number and the location of
zero eigenvalue appear different the VCB should be different.
The mechanism of VCB has not been deeply identified.

When the voltage collapse occurs, if there are two smooth
solution curve through the collapse boundary is called
one-node voltage collapse boundary (ONVCB), if there are
more than two smooth solution curve through the collapse
boundary is multi-node voltage collapse boundary. Compared
to the ONVCB, multi-dimensional bifurcation point needs
more stringent generation conditions, but also contains deeper
meanings, especially when all nodes are VCBs (also called
all-node voltage collapse boundary, ANVCB), ANVCB is
also more practical significance.

In this context, we proceed from the state variables of
power network equations represented by the branch-current
and node-voltage and form the explicit expression of voltage
high and low solution curves, then describe the characteristics
of VCB. On this basis we analyze the feature of VCB and
propose dimensionality reduced algorithm to calculate it.
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II. THE EXPLICIT EXPRESSION OF EQUILIBRIUM SOLUTION
CURVE

The line (or transformer) of electric power system can be
simulated by the  equivalent circuit model, as shown in
Fig. 1, called loop. The loop is composed of three branches:
an impedance branch and two grounded branch.

Fig. 1. The  equivalent circuit.

In Fig. 1: i , j are two nodes on both sides of branch l ,

ji i is p q

  , jj j js p q


  are node power injections of i

and j , node voltages are as follows: iii feu j


,

jj j ju e f

  , branch l current is ja r

l l li i i

  , jl lR X is
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susceptance of node i and j . The grounded conductivity is
ignored for simple calculation in this paper.

For a grounded branch, the current trend is in two ways
including grounded capacitor branch and load branch. The
current flows in the load branch are not only the current of the
circuit itself but also the adjacent loop current. The analytical
method of load branch is the same principle with node
voltage. Node i , for example, the voltage of equivalent
voltage source of the load branch is
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At the same time in the Cartesian coordinate system, the
electric power network can be described as a mixed equation
of branch currents and node voltage:
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Obtain the explicit expressions of node voltage in which the
branch current is as parameter. From (4)
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Derive (5)
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Only if meet ‘ ' in (6) the power network equations have
solutions existing. The physical meaning of (6) is that the
power network equations have solutions existing if the
amplitude square of the node injection current distributes out

of the circle of which the 02 i iB q is center and 2 2
02 i i iB q p

is radius. If it distributes on this circle (only '=' meet) two
solutions coincide, the system is in the critical state of the
VCB. The conditions of solution existing have been found.

In (4), the ‘±(  )’ symbols indicate that the electricity
network equations exist two solution curves in per node, one
is high voltage solution, the other is low.

But when 0 0iB  happens, the node is called degraded
node. If there is a degraded node the (2) becomes the
following form:
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In this case, the node voltage does not have two solutions,
but only a single solution, so we need not to face the problem
of saddle-node bifurcation.

III. VCB CHARACTERISTIC EQUATION AND THE DEFINITION
OF ONVCB AND ANVCB

If the equality of (6) is met the two solutions curves
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intersect, that is ONVCB. Suppose the quantity of PQ node is
LN in power system. The VCB generating condition can be

derived as

2 2
0( ) 2 ,i i i ix y B   (9)

where Li N , 2 2
i i i iq p q    .

The PU node has the similar equation, but we do not
discuss that of the PU node in this paper.

The node voltage changes to:
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where .Li N The (9) is called node characteristic
equations of VCB. So can deduce that the establishment of (9)
on any node will cause voltage collapse, that is the occurrence
of VCB is corresponding to the critical conditions of the
power network equation solution existing.

The Jacobian matrix is singular and there is zero eigenvalue
on the VCB. If the characteristic (9) only meets on one node,
and only one pair solution curve intersects, the VCB is called
ONVCB, it is called the ANVCB if (9) meets on all nodes at
the same time.

IV. THE CLOSEST POWER SYSTEM VOLTAGE STABILITY
BOUNDARY

VCB represents the power system voltage stability
boundary. From ONVCB to ANVCB the voltage stability
boundary is different. ONVCB is the power system voltage
stability boundary of single node. Because ONVCB achieves
the stability critical conditions on just one of nodes, it can not
represent the static voltage stability boundary of the whole
system, and only ANVCB represents the whole system
voltage stability boundary.

Assume that the PQ node i , for example, in the same
generator power increasing scheme, the node power

injections are (1)
iS and ( )LN

iS while calculating the ONVCB
and ANVCB respectively. It must be

( ) (1) .LN
i iS S (11)

In conclusion: if regard the space distance of node injection
power as a measure, the voltage stability boundary of
ANVCB is the most adjacent to the normal state in the whole
system, and the ONVCB is the farthest.

Get ,i ip according to the calculation results:
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where 2 2
i i iS p q  , sin /i i iq S  , i is power factor

angle. The iS or iP represents the establishing conditions of
VCB, and also is the voltage stability judgmental index of
node i .

V. SOLVING STEPS OF DIMENSIONALITY REDUCED
ALGORITHM

The power flow calculation based on Newton method can't
be convergence because the jacobian matrix is singular near
the VCB. From the analysis in this paper the main reason that
jacobian matrix appears zero eigenvalue is that node
characteristic (9) is met. In order to calculate VCB the
dimension reduced algorithm is used to solve the network
equations.

Solving steps:
1) Set the initial value of node voltage U and branch

current I ;
2) Suppose node m is voltage collapse point. Remove

node m 's equation out of node voltage equations when we
form jacobin matrix by (2) and (3). The node voltage
equations become one-dimension reduced equations and the
voltage variable of m is replaced by (10) in (3). So Newton
iteration method can be used to calculate the equations
simultaneously with (9);

3) Repeat steps 1 and 2 to calculate the ONVCB of each
node;

4) Calculate node voltage collapse index with (12);
5) Similarly, calculate the ANVCB with (3), (10) and (9)

in all nodes simultaneously and voltage collapse index;
6) Judge the node stability margin according to each node
iP of ONVCB and ANVCB.

VI. CASE STUDY

Define:
6Q : The reactive power of node 6 in Ward & Hale 6 bus

system;
6 hU : The high voltage amplitude of node 6;

6 lU : The low voltage amplitude of node 6;

6U : 6 hU - 6 lU ;

sP : Node load active power initial value;

gP : ONVCB node load active power calculation value.

gP : ONVCB node load active power critical closer

degree. It is the degree that sP divided by gP , it can

represent the stability redundance;
aP : ANVCB node load active power calculation value.

aP : ANVCB node load active power critical closer
degree. It is the degree that sP divided by aP :

1) Calculate the multiple solutions with the method
proposed for the Ward & Hale 6 bus system used in [16].

Change the Q value of node 6, and calculate the voltage
amplitude with (4). The calculation results in Table I show
that it is very close to that of in [16]. It proves that the method
in this paper is available to track balanced solutions curve,
and the explicit expressions of voltage make it easier to be
observed.
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TABLE I. CALCULATION RESULTS OF WARD & HALE 6 BUS
SYSTEM.

No. 6Q 6 hU 6 lU 6U
1 -1.3 1.2505 0.4918 0.7587
2 -1.4 1.2411 0.5127 0.7284
3 -1.5 1.1207 0.5894 0.5313
4 -1.6 1.0882 0.6198 0.4684
5 -1.7 0.9745 0.8086 0.1659

2) We carry on the calculation in IEEE-14 system. The
number of node 1 and node 14 exchanges, node 14 is balance
node, power factor is 0.9. Calculate the VCB in two ways:
ONVCB (calculate node each to each) and ANVCB (assume
all nodes achieve VCB at the same time). Table II shows some
typical results.

TABLE II. THE COMPARISION OF NODE LOAD ACTIVE POWER
CRITICAL CLOSER DEGREE BETWEEN ONVCB AND ANVCB.
Node sP gP  %gP aP  %aP

1 0.1490 1.1881 87.46 0.2373 37.21
4 0.4780 1.9984 76.08 0.6093 21.55
5 0.0760 2.1133 96.40 0.2212 65.64
7 0 1.0626 100 0.1254 100
9 0.2950 1.1850 75.11 0.4012 26.47

10 0.0900 0.8425 89.32 0.1184 23.99
11 0.0350 0.7553 95.37 0.0511 31.51
12 0.0610 0.6552 90.69 0.0887 31.23
13 0.1350 0.7877 82.86 0.1574 14.23

In Table II, gP , aP represent the distance between the

node load active power initial value and ONVCB, ANVCB
respectively, illustrate the stability margin size of each node.
The initial load active power of node 7 is zero, so the load
power margin is 100 %.

From Table II, the power critical closer degree of ONVCB
is much larger than that of ANVCB, proves that ANVCB is
the closest stability margin. This is mainly because only the
node load of ONVCB grows largely and the load of other
nodes is constant when calculate ONVCB. But, the load of all
nodes is increasing when calculate ANVCB and the load
stability margin of each node becomes small.

The ANVCB can observe the stability margin of each node
from the global point of view, and can analyze the stability of
all nodes comparatively in the same level. The ONVCB can
represent the local situation, but sometimes can not truly
reflect the whole stability conditions. For example, the
stability margin of node 13 is the smallest in ANVCB, but not
in ONVCB. If adjust the node power injection to improve the
system stability, should be based on the calculation results of
ANVCB. In this system, for example, should first adjust node
like 13.

VII. CONCLUSIONS

In this paper, power system network equations have been
established by introducing branch current as a variable based
on the traditional node voltage equations. The existing
conditions of solution have been found by analyzing voltage
high and low solution curve, and have proposed the
characteristic equations of VCB. We define the ONVCB and
ANVCB, and prove ANVCB is the closest stable margin of
the power system. The conclusions of simulations are: 1) the

method proposed can be applied to calculate VCB and
analyze voltage stability; 2) comparing ONVCB and
ANVCB, the calculating results of ANVCB can reflect the
system stability information more richly and can embody
more approaching to the reality; 3) the ANVCB can obtain
system closest stability margin and observe system stability
overall and provide the basis for the voltage stability
adjustment.
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