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Abstract—In this paper we research the possibility of 

automated combinational logic circuit (CLC) design using 

evolutionary computation. We propose and develop a genetic 

programming method which is able to construct a CLC based 

on the given truth tables, where the focus is to minimize the 

number of logic gates while accuracy is not compromised. We 

tested the proposed approach and compared the results both 

with MGA and NGA automatic methods as well as with the 

results obtained by human designers. Results show that our 

algorithm is superior to other methods as it can find correct 

circuits with fewer specified elements. The experiments 

performed on larger examples show good performance and 

scalability of the proposed evolutionary approach.  

 
Index Terms—Combinational circuits, design optimization, 

genetic programming. 

I. INTRODUCTION 

One common task in digital electronics consists of 

designing a combinational logic circuit (CLC) that performs 

a desired function, given a certain specified set of available 

logic gates [1]. In order to fulfil the ever-growing 

optimization requirements such a circuit should be 

composed of as few elements as possible. Namely, the 

increase of integration level and size of integral circuits 

during functionality modelling of such circuits represent a 

problem for circuit designers. During the years many rules 

and techniques for finding solutions to the problem of 

optimizing CLC design have emerged [2]. However, the task 

is still demanding for a human designer, especially when a 

complex circuit is in question. To support the designers in 

performing this task different automatic methods that tackle 

this problem have been developed, with evolutionary 

computation being the most successful one [3]. While most 

of the research, including the leading researcher in this field 

Coello [4], already showed how correct CLCs can be 

constructed using genetic algorithms (GA), our goal was to 

use genetic programming (GP) method. In contrast to other 

research done in this field, we expanded the objective of our 

research to the optimization of the number of gates in the 

final circuits, which has not been done before. Following 

this path, we developed a new genetic programming method 

that is aimed at designing 100% correct CLCs using the 

specified set of available logic gates while minimizing the 
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number of logic gates used. In this paper, we present this 

method and some results which show that our method is able 

to find solutions, that are comparable with both, human 

designers and other existing automatic approaches, in an 

efficient manner. 

II. RELATED WORKS 

The design process for CLC has evolved from its first 

notions to a standard element of undergraduate computing 

curricula [5]. Standard graphical design aids such as 

Karnaugh Maps [6] are widely used and tools suitable for 

computer implementation have evolved from the Quine–

McCluskey method to freely available tools and commercial 

products. Soon, the researchers started to develop 

approaches and methods for automated design of CLC. It 

has turned out that the use of evolutionary techniques is one 

of the most viable alternatives for performing this task [7]. 

Literature review reveals several attempts to use 

evolutionary techniques for designing electrical circuits [8], 

some of them address optimization of digital circuits with 

genetics based methods [9], but only a few researchers are 

working on the design of circuits at the gate-level. 

In some earlier researches genetic programming has been 

used for the design of CLCs by Louis [10], who combined 

GP with knowledge-based systems, and Koza [11], who 

focused on generating functional circuits rather than 

optimizing their size. Later Thompson et al. [4] focused on 

the configuration of a FPGA using GA, whose work 

influenced many other researchers working at the gate level, 

including Coello [4], [7], [12], who achieved good results by 

using GAs and multi objective design of CLC but without 

focusing on the number of the gates. 

More recent research in this field is from Brajer [13] 

where she used a Cartesian GP (CGP) paradigm to construct 

the CLC. Instead of the standard tree structure of genotype 

usually used with the GP, CGP uses the array of strings for 

the genotype, similar to the standard GA. Her method was 

efficient in the construction of the CLC but again, there was 

no focus to optimize the number of gates used and no testing 

instances were provided for comparison with other methods. 

Same CGP approach was used by Miller [14] but again no 

testing instances were provided and his research was more 

aimed at comparing CGP to regular GA and Probabilistic 

Hillclimbers as a method to solve Boolean functions. 
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Our objective here is to automatically construct a CLC 

that accurately performs the desired function (specified by a 

given truth table) but with the strong focus on minimizing 

the number of gates using the standard GP approach. 

III. GENETIC PROGRAMMING 

Genetic programming is a systematic method for getting 

computers to automatically solve a problem starting from a 

high-level statement of what needs to be done [15]. GP is a 

domain-independent method that genetically breeds a 

population of computer programs to solve a problem. 

Specifically, GP iteratively transforms a population of 

computer programs into a new generation of programs by 

applying analogs of naturally occurring genetic operations. 

This process is illustrated in Fig. 1. 

 
Fig. 1.  Main loop of genetic programming [15]. 

The genetic operations include crossover (recombination), 

mutation, reproduction, gene duplication, and gene deletion. 

GP is an extension of the genetic algorithm [6], in which the 

structures in the population are not fixed-length character 

strings that encode candidate solutions to a problem, but 

programs that, when executed, are the candidate solutions to 

the problem.  

Programs are expressed (genotype) in GP as syntax trees 

rather than as lines of code. For example, the simple 

expression  

 ((A OR B) AND C) XOR (A AND B)  (1) 

is represented as shown in Fig. 2. The tree includes nodes 

and links. The nodes indicate the instructions to execute. 

The links indicate the arguments for each instruction. In this 

manner, the internal nodes in a tree are operators (or 

functions), while the tree's leaves are operands (or 

terminals). 

 
Fig. 2.  An example of a syntax tree representing an expression within GP. 

Some researches by Fogel [16], [17] suggest that GP 

outperforms GA in the sense of premature convergence, 

which is one of the main reasons for using GP in the present 

study. Fogel showed that GA may prematurely stagnate by 

getting a result that is not even the local optimum, whereas 

GP has a significantly higher chance to find the global 

optimum, not get caught in the local optimum and thus get 

better results than its counterpart evolutionary method GA. 

In the case of automatic CLC design, a 100% correct circuit 

represents a local optimum. Any further evolution that would 

eventually lead to the reduction of used gates normally 

compromises the circuit’s accuracy which prevents GA from 

finding the global optimum. According to Fogel a properly 

implemented GP should outperform GA in this matter and 

that is why we decided to use GP approach. 

IV. IMPLEMENTATION OF THE GENETIC PROGRAMMING 

SYSTEM 

Any CLC can be represented in the form of an expression 

(a formula), consisting of a set of operators (logic gates, like 

AND, OR, etc.) and operands (logic inputs to a circuit). The 

result of the expression represents the logic output of the 

CLC. This makes the construction of CLC a viable case to 

be used with GP. An expression that defines a circuit 

represents a program in a form of a syntax tree, which is the 

basic representation of a genotype in GP. 

There are two conditions which each generated starting 

random solution must satisfy: 1) it should be unique to 

enforce the diversity of the population, and 2) all operands 

must be included in the starting solution, which eliminates 

the chances of too small trees in the beginning. 

The basis of GP is the process where generations of 

solutions (syntax trees representing logic expressions) 

evolve towards a global objective (Fig. 1). The evolutionary 

process consists of evaluating the fitness of each single 

solution within a generation and applying of genetic 

operators: selection, crossover and mutation. 

Standard operator used in our implementation were binary 

tournament selection method, automatic advancement of the 

elite (5% of the fittest solutions) in the new generation, 

crossover of two trees as shown on Fig. 3 and the mutation. 

Mutation operator selects a random node which undergoes 

one of three mutation processes based on the type of the 

node selected. If randomly selected node is a type of 

operator NOT, this node is removed from the tree. If the 

selected node is any other type of operator, it is either 

replaced by a randomly chosen different operator or deleted 

along with its children and a randomly selected operand 

comes in its place. If selected node is an operand, it is either 

replaced by a randomly chosen different operand or a new 

randomly generated sub-tree comes in its place. The 

mutation is depicted on Fig. 4. 

 
Fig. 3.  An example of crossover, where offspring tree is composed out of 

two parts of two parental trees. 
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Fig. 4.  An example of mutation, where a randomly chosen node of a tree is 

mutated) into another gate or input. 

Fitness function. New offspring trees are then evaluated – 

their fitness is calculated. Firstly the gates are counted and 

secondly Boolean formula is formed from the genotype tree. 

Its results are compared to correct values from the truth 

table. The fitness value is a weighted sum of the number of 

incorrect results and gates 

 FF = wr×errors + wg×gates, (2) 

where errors is the number of rows in truth table, where the 

solution makes a mistake, and gates is the number of used 

gates (i.e. number of internal nodes in a syntax tree). The 

sum is weighed in order to give preference to correct 

solutions in regard to short expressions. In this manner, the 

algorithm searches for a solution that gives a correct output 

for each given combination of inputs and is also small (i.e. 

using the lowest possible number of logic gates). 

V. EXPERIMENTS 

For the purposes of this paper, three examples were 

chosen to illustrate our approach and the results produced 

are presented. Two of them are rather simple, having four 

inputs and one output. The resulting circuits, obtained with 

our proposed system, have been compared to existing 

solutions. The third one is a more complex one, having 6 

inputs and one output; it has been used primarily for 

performance and scalability analysis, and also to show that 

the proposed system is capable to cope with more complex 

examples. In all three examples the allowed set of operators 

(gate types) was: AND, OR, XOR and NOT. Resulting 

circuits found by our system were compared to the MGA, 

the NGA, the results produced by the human designer (using 

Karnaugh Maps) and Sasao. Our resulting solutions are 

comparable in size to other solutions even when we convert 

all the circuits to NAND or NOR only solutions. Our GP 

algorithm can be adjusted to use only those two gate types, 

but the comparison would not be fair, as other researchers 

were not building circuits with only those two gates. To 

allow for direct comparison we used the same set of gate 

types as other researchers. 

A. Example #1 

Our first example has 4 inputs and one output. The 

comparison of the results produced by our system (Fig. 5), 

two other evolutionary based systems – the MGA [12] and 

the NGA [18], a human designer using Karnaugh Maps, and 

Sasao’s approach [3] are shown in Table I. Sasao has used 

this circuit to illustrate his circuit simplification technique 

based on the use of ANDs & XORs. His solution uses, 

however, more gates than the circuit automatically produced 

by the NGA, MGA or our system. It can be seen that our 

system achieves the lowest number of used gates. 

 
Fig. 5.  The combinational logic circuit, evolved with the proposed system 

for the example #1. 

TABLE I. BEST CIRCUITS FOR THE EXAMPLE #1. 

Design Size  Resulting Circuit 

Our system 7 Z=((BC)+(D⨁B))⨁(A+(D+C)') 

MGA 8 Z=(((B⨁BC)⨁((A+C+D)⨁A))' 

NGA 10 Z=(BDC'⨁((B+D))⨁A⨁(C'D'A)))' 

Human 1 11 Z=((A'C)⨁(D'B'))+((C'D)(A⨁B') 

Human 2 12 Z=C'⨁D'B'⨁CD'A'⨁C'D'B 

B. Example #2  

Our second example is again a standard benchmark and 

has 4 inputs and one output. The comparison of the results 

produced by our system (Fig. 6), the MGA, the NGA and 

two human designers (the first, using Karnaugh Maps and 

the second using the Quine-McCluskey Procedure) are 

shown in Table II. It can be seen that all three genetic 

approaches achieve the same (lowest) number of gates. 

 
Fig. 6.  The combinational logic circuit evolved with the proposed system 

for the example #2. 

TABLE II. BEST CIRCUITS FOR THE EXAMPLE #2. 

design size  resulting circuit 

our system 7 Z=(C+(D⨁A))'+(B⨁(AD')) 

MGA 7 Z=((A⨁B)⨁AD)+(C+(A⨁D))' 

NGA 7 Z=((B⨁A)⨁AD)+(C+(D⨁A))' 

human 1 9 Z=((A⨁B)⨁((AD)(B+C)))+((A+C)+D)' 

human 2 10 Z=A'B+A(B'D'+C'D) 

C. Example #3  

The third example is a more complex one, with 6 inputs 

and one output. We primarily generated this example for the 

purpose of the performance and scalability analysis. Our 

system was able to find a correct circuit that consisted of 46 

logic gates within 300 generations, where the population size 

was 1.000 trees. 

Let us take a look at the evolution of the accuracy (Fig. 7) 

and number of elements (Fig. 8) and compare them. As 

expected, the accuracy of the best individual rises rather fast 

to the point near the 150
th

 generation, where it slows down 

but continues to improve, to the point where it reaches the 

100% accuracy mark near 300
th

 generation. 
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Fig. 7.  Accuracy of circuits through the evolution for the example #3. 

Reaching the perfect accuracy sometimes means that the 

number of elements must rise, as is seen in Fig. 8, where in 

the 292
th

 generation the number of elements dramatically 

rises when the perfect accuracy is achieved. This is because 

fitness function prefers the accuracy over the number of 

elements, as mentioned earlier. For a short period, the 

number of elements in the best solution is even greater than 

the average number of elements, again due to the complex 

fitness function, which favors accuracy. 

 
Fig. 8.  Number of elements in the circuits through the evolution for the 

example #3. 

Process does not stop here, even after the accurate 

solution is found, algorithm improves the size of the circuit 

by shortening it from 129 elements, all to the 832
th

 

generation, where it reaches the optimum with 46 elements. 

The test took about 5 minutes on an average desktop PC, 

160 seconds in the best case and 10 minutes in the worst 

case scenario – it depends on the starting randomly 

generated generation. Because no benchmark exists, we 

cannot conclude if the solution is the global optimum or just 

a local one, but as far as our algorithm goes, this was the 

best solution it found. 

VI. CONCLUSIONS 

In this paper we presented a new GP method for 

automatic construction of CLCs. Our main goal was the 

development of a method that provides perfectly accurate 

circuits with the lowest possible number of specified logic 

gates. The obtained results show that our method was able to 

find such solutions – all the circuits were perfectly accurate 

and composed of lower or at least the same number of gates 

compared to the best known existing solutions. The use of 

GP and the representation of CLCs in a form of syntax trees 

within GP have enabled evolutionary search to escape local 

optima by maintaining the needed diversity and thus 

avoiding premature convergence.  

At this point the genetic parameters and weights in fitness 

function have been determined experimentally. In the future 

we plan to perform exhaustive analysis of the presented 

method in regard to different parameter settings. 

Additionally, we will test our algorithm with regard to 

scalability and performance on large circuits. 
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