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Abstract—Speech recognition systems are commonly 

modelled by hidden Markov models with Gaussian mixture 

models as observation density functions. These models have a 

significant number of parameters, which usually leads to the 

problem of data sparsity, especially for under-resourced 

languages such as Serbian. One of the ways to overcome the 

problem of data sparsity is the reduction of the number of 

features. Linear discriminant analysis (LDA) and 

heteroscedastic LDA (HLDA) are two common ways to reduce 

the dimensionality in an automatic speech recognition task. The 

paper compares the properties of speech recognition systems 

for Serbian in which both techniques are applied with variable 

types of input features as well as the number of output features 

of (H)LDA. The best results are obtained in the case of HLDA 

with input vectors consisting of concatenations of feature 

vectors across 7 successive frames, where each feature vector 

contains 12 mel frequency cepstral coefficients (MFCCs) and 

normalized energy, and the number of output features is 32 or 

35. 

 
Index Terms—Speech recognition, linear discriminant 

analysis.  

I. INTRODUCTION 

One of the issues in automatic speech recognition as well 
as in pattern recognition is the dimensionality of the feature 
space. High dimensionality results in high computational and 
memory complexity as well as a loss of model generality. 
Although no subspace can contain more discriminative 
information than any larger space which includes it, since 
the training set does not contain the whole population the 
model captures only discriminative information on training 
data. The larger the deviation of the statistics of training 
samples from those of the whole population, the more severe 
this problem becomes. Dimensionality reduction techniques 
remove the dimensions which are unreliable for 
classification tasks [1]. 

Many methods have been proposed for dimensionality 
reduction, including principal component analysis (PCA) 
[2], linear discriminant analysis (LDA) [2], heteroscedastic 
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LDA (HLDA) [3], multiple LDA (MLDA) [4], locality 
preserving projections [5] and marginal Fisher analysis [6]. 
In speech recognition the common approaches are LDA and 
HLDA [3], [7], [8]. A study which covers theoretical aspects 
of LDA and HLDA can be found in [9]. It evaluates the 
performance of these methods on synthetic Gaussian data 
under a variety of conditions such as the amount of training 
data and the degree of overlap between classes. It was 
observed that HLDA outperforms LDA if class-conditional 
distributions have unequal covariance matrices.  

This paper presents a comparison of a range of LDA and 
HLDA methods proposed in literature, which differ in the 
type of input features and projected space dimensionality. 
All evaluations are made using software tools described in 
[10], on a Serbian telephone speech database, which 
includes various types of utterances such as digits, dates, 
proper names, commands and other common phrases [11]. 

The rest of the paper is organized as follows. Section II 
presents the mathematical foundations of LDA and HLDA 
methods. Experimental setup is described in Section III. 
Finally, Section IV details experimental results on a variety 
of input features and algorithm modifications, and is 
followed by conclusions given in Section V.  

II. MATHEMATICAL FOUNDATIONS 

The goal of LDA is to find a transformation (projection) 
matrix Θ such that it maximizes the ratio of between-class 
scatter to the within-class scatter, defined by the following 
expression 

 ||||)( TT
WΘΘTΘΘ=ΘJ , (1) 

where T is the total scatter matrix, W is the average within-
class scatter matrix, and |·| denotes the determinant. Scatter 
matrices are defined by: 

 ∑ −−=
i

ii
N

T))((
1

µxµxT , (2) 

 ∑ ∑
∈

−−=
c ci

cici
N

T))((
1

µxµxW , (3) 

where xi is the i-th (d-dimensional) observation, µ is the 
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mean value of all observations, µc is the mean value of 
observations belonging to the class c, and N is the total 
number of observations.  

The solution of the maximization of J(Θ) with the 
assumption that projected features (ΘT

xi) are uncorrelated is 
the matrix whose columns are the eigenvectors of the matrix 
W

−1
T [2]. In order to reduce the dimensionality, only p 

eigenvectors corresponding to the highest eigenvalues are 
used. Generally, since the matrix W−1

T is not symmetric, its 
eigenvalues can be complex. This problem can be overcome 
by finding the eigenvectors vk of the matrix L

−1
T(L

−1)T, 
where L is the lower triangular matrix of W obtained by 
Cholesky decomposition (W = LL

T), so the columns of 
matrix Θ are θk = (L−1)T

vk. 
In case of a Gaussian mixture model (GMM), the 

assumption about the lack of classification information for 
some features is equivalent to the assumption that the means 
and variances of the class distributions for these features are 
the same for all classes [3]. For notational convenience, the 
feature space of the means and variances is partitioned as 
follows: 

 TT
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where µcp is the mean value of the p discriminative features 
of class c, µ0 is the mean value of d − p non-discriminative 
features, Σc is the d × d covariance matrix of class c, Σcp is 
the p × p covariance matrix of the discriminative features of 
class c, and Σ0 is the covariance matrix of non-
discriminative features. It should be noted that µ0 and Σ0 are 
common for all classes. The goal of HLDA is to find the 
matrix Θ which maximizes the likelihood function 
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which can be simplified into 
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where Nc is the number of instances in class c, Wc is the 
scatter matrix for class c and Θ = [Θp Θn−p]. However, since 
there is no closed form of a solution of (7), the steepest 
descent algorithm is needed for its computation [3]. If it is 
assumed that the projected features are non-correlated, 
transformed matrices are diagonal and the problem can be 
further simplified into 
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(8)

 

For this variant of HLDA, a very efficient algorithm for 
the maximization of (8) is presented in [13]. It can be shown 
that when Gaussian distributions are constrained so as to 
have equal covariance matrices, the maximization of (8) is 
equivalent to the maximization of (1). 

Since non-discriminative features are not used for GMM 
modelling, the assumption of correlation between non-
discriminative features will not increase model complexity 
compared to the diagonal covariance model. This is the 
reason why in this paper an additional variation of HLDA is 
analysed. In this case the problem is 
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III. EXPERIMENTAL SETUP 

All analysed systems are speaker-independent continuous 
speech recognizers based on hidden Markov models 
(HMMs) and GMMs. The number of states per model varies 
depending on the average model duration in the training set. 
The acoustic model consists of 4156 states obtained by tree-
based clustering. The number of states as well as model 
structure are the same in all examined variants. The number 
of mixture components per state is set heuristically, i.e. the 
number of mixtures gradually rises until the average 
likelihood on a validation set starts to fall. As a result of this 
procedure the number of mixtures per state usually differs in 
the examined systems. For the estimation of system 
parameters the maximum likelihood criterion is used. More 
details about the applied procedure can be found in [10]. 

LDA and HLDA are methods which take into account the 
information about observation classes. The most common 
approach is to use triphone HMM states as (H)LDA classes, 
which was confirmed to outperform other approaches in 
[12]. The (H)LDA input vectors include standard 12 mel 
frequency cepstral coefficients (MFCCs) with normalized 
energy as well as their first and second derivatives [3], and 
vectors formed by concatenation of successive frames 
containing 12 MFCCs and normalized energy (the number of 
successive frames ranges from 3 to 11). The frames are 
30 ms long and they are extracted every 10 ms. 

The original LDA algorithm [2] calculates the columns of 
the transformation matrix as eigenvectors of matrix W−1

T. In 
the rest of the paper, such an LDA transformation matrix 
will be referred to as unnormalized. In the iterative algo-
rithm for HLDA proposed in [3], the initial transformation 
matrix is normalized so as to set its determinant to 1. In 
order to compare the results of LDA and HLDA, experi-
ments with the normalized variant of the transformation 
matrix are conducted as well. It should be noted that such a 
normalization does not change the LDA objective function. 

The results presented in [3] suggest that there is no 
significant improvement of the system performance if LDA 
with GMMs with full covariance matrices are used, thus all 
the experiments in this paper are restricted to GMMs with 
diagonal approximations of covariance matrices. This is 
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equivalent to the assumption that features in the projected 
space are uncorrelated. To avoid any differences in the 
estimation of the transformation matrix based on (8) and (9) 
which would be due to the differences in the algorithm, the 
iterative algorithm proposed in [3] is used in both cases. In 
Tables III and V the performances of the systems which used 
original HLDA, defined by (8), are given in the column 
“All”, and the performances of the relaxed variants, defined 
by (9), are given in the column “Discriminative”. 

IV. RESULTS 

The word error rates (WER) of the referent systems are 
shown in Table I. The first system with 39 features (12 
MFCCs, normalized energy and their first and second 
derivatives) is standard in a speech recognition task. In the 
further text it will be referred to as REF1. On the other side, 
the system with 26 features (12 MFCCs, normalized energy 
and their first derivatives) shows better performance on the 
Serbian telephone speech corpus (it will be referred to as 
REF2). This is probably a consequence of data sparsity in a 
39-dimensional feature space, because the training corpus is 
relatively small, containing only 12 hours of speech [10]. 

In Table II, the performances of the systems based on 
LDA with concatenated input features for different numbers 
of input frames and output dimensionalities are shown. By 
comparing them with the WERs of the referent systems, it 
can be seen that the input vector should consist of at least 7 
frames. This is surprising because for the calculation of the 
first derivative only 5 successive frames are used, which is 
sufficient for REF2. The high values of WER for the systems 
with 39 output features confirm the assumption of data 
sparsity in a 39-dimensional feature space. In many cases, 
the normalization of the LDA transformation matrix results 
in a lower WER compared to the unnormalized one, but the 
difference is not significant. The performances of the 
systems with the input vector consisting of 9 and 11 frames 
are similar. This means that the additional 2 frames do not 
contain new discriminative information. 

Experiments with HLDA are conducted only for the 2 
variants of input vectors which show the best performance in 
LDA tests, and their results are presented in Table III. The 
worst performance for both variants of input features is 
obtained for 39 output features, although in the version 
where input vectors contain 9 frames and HLDA assumes 
correlation of non-discriminative projected features WER is 
surprisingly low. These high WERs as well as their high 
deviation can be explained by data sparsity in the training 
set. The best performances are obtained when the output 
vector has 32 or 35 dimensions. In these cases the relaxation 
of the constriction related to the correlation in the projected 
space leads to a slight improvement of the performances, 
which unfortunately is not observed in all cases. 

In Fig. 1 the values of WERs for the systems based on the 
LDA and corresponding HLDA are compared. In some cases 
the HLDA procedure results in a higher WER than the one 
obtained by the corresponding LDA procedure, which is 
unexpected since the initial value of transformation matrix 
for HLDA is the one obtained by LDA. This is probably due 
to poor estimation of within-class scatter matrices for high- 

TABLE I. WORD ERROR RATES (WER) FOR THE REFERENT 
SYSTEMS 

Features WER[%] 

12 MFCCs, normalized energy and 1st and 2nd derivatives  4.73 
12 MFCCs, normalized energy and 1st derivatives 4.04 

TABLE II. WORD ERROR RATES (WER) FOR THE SYSTEMS BASED 
ON LDA TRANSFORMED FEATURES WITH NORMALIZED AND 

UNNORMALIZED TRANSFORMATION MATRIX.  
Number of 

successive 

frames 

Dimension of 

reduced feature 

space 

WER[%] 

Normalized Unnormalized 

3 

39 7.25 7.17 
35 6.14 6.24 
32 5.57 5.55 
26 5.72 5.11 

5 

39 5.32 5.12 
35 4.75 4.39 
32 4.32 4.22 
26 4.30 4.35 

7 

39 4.38 4.41 
35 3.91 3.76 
32 3.90 3.78 
26 3.93 4.14 

9 

39 4.45 4.62 
35 3.83 3.88 
32 3.83 4.10 
26 4.10 4.15 

11 

39 4.87 5.23 
35 3.80 3.97 
32 3.83 3.98 
26 4.20 4.25 

Note: input LDA vectors are concatenated across successive frames, 

where each frame contains 12 MFCCs and normalized energy. 

TABLE III. WORD ERROR RATES (WER) FOR THE SYSTEMS 
BASED ON HLDA TRANSFORMED FEATURES. 

Number of 

successive 

frames 

Number of 

discriminative 

features 

WER[%] 

Discriminative All 

7  

39 4.88 4.93 
35 3.35 3.52 
32 3.25 3.72 
26 4.33 4.16 

9 

39 3.85 4.79 
35 3.63 4.09 
32 3.89 4.16 
26 4.28 4.41 

Note: transformation matrices are estimated with assumptions that only 

discriminative features are non-correlated (column “Discriminative”) and 

all transformed features are non-correlated (column “All”). Input LDA 

vectors are concatenated across successive frames, where each frame 

contains 12 MFCCs and normalized energy. 

 
Fig. 1.  Word error rates for the systems based on LDA and HLDA features 
obtained for different dimensionalities of the input and output vectors. The 
number of successive frames which compose the input (H)LDA vector are 
given in brackets, and “disc.” and “all” indicate the HLDA variant (“disc”: 
only discriminative features are uncorrelated, “all”: all features in projected 
space are uncorrelated). 
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TABLE IV. WORD ERROR RATES (WER) FOR THE SYSTEMS 
BASED ON LDA TRANSFORMED FEATURES WITH NORMALIZED 

AND UNNORMALIZED TRANSFORMATION MATRIX.  
Dimension of reduced 

feature space 

WER[%] 

Normalized Unnormalized 

39 4.03 4.26 
35 3.81 3.95 
32 4.04 3.63 
26 4.11 4.22 

Note: Input LDA vectors contain 12 MFCCs, normalized energy, and their 

first and second derivatives. 

TABLE V. WORD ERROR RATES (WER) FOR THE SYSTEMS 
BASED ON HLDA TRANSFORMED FEATURES  

Number of discriminative 

features 

WER[%] 

Discriminative All 

39 3.95 
35 3.67 3.39 
32 3.41 3.63 
26 3.85 3.95 

Note: transformation matrices are estimated with assumptions that only 

discriminative features are non-correlated (column “Discriminative”) and 

all transformed features are non-correlated (column “All”). Input LDA 

vectors contain 12 MFCCs, normalized energy, and their first and second 

derivatives. In the case of 39-dimensional output vector all features are 

discriminative. 

 
Fig. 2.  Word error rates for the systems based on LDA and HLDA features 
obtained for different dimensionality of output vectors in case the input 
vector contains 12 MFCCs, normalized energy and their first and second 
derivatives. The labels “disc.” and “all” indicate the HLDA variant (“disc”: 
only discriminative features are uncorrelated, “all”: all features in projected 
space are uncorrelated. 

The performances of the systems based on LDA with the 
input vector containing 12 MFCCs and normalized energy 
and their derivatives for different output dimensions are 
shown in Table IV, and it can be seen that the WER for all 
systems is lower than for REF1. It is also interesting to note 
that the systems with 26 projected features show inferior 
performance in comparison with REF2, which also has 26 
features. Since most other systems based on LDA have 
lower WERs than REF2, it can be concluded that projected 
features have more discriminative properties but that the first 
26 with highest eigenvalues are not sufficient for 
discrimination. As in the case of input features concatenated 
over successive frames, the use of the normalized 
transformation matrix usually decreases the WER.  

Unlike the systems based on HLDA with input features 
concatenated over successive frames, all systems based on 
HLDA with features which include derivatives show an 
improvement compared to the corresponding systems based 
on LDA (see Fig. 2 and Table V). On the other hand, there is 
no significant difference between systems based on HLDA 
with or without the assumption of correlation between non-

discriminative projected features, and the best results are 
obtained when the dimensions of the output features are 32 
and 35. 

V. CONCLUSIONS 

The paper presents the results of a comparison of a range 
of LDA and HLDA methods proposed in literature applied 
to speech recognition in Serbian. It has been found that in 
case of a relatively small training set, which is common for 
under-resourced languages, the best results are obtained if 
the input vectors are concatenated across 7 frames, with each 
of them containing 12 MFCCs and normalized energy. 
However, more consistent results are obtained in case where 
input features are the standard ones, because of poor 
estimation of within-class scatter matrices for high-
dimensional input features. The lowest WER is obtained if 
32 output features are used. The introduction of the 
assumption of correlation between non-discriminative 
projected features for HLDA can slightly improve system 
performance if the input features are high-dimensional.  

REFERENCES 

[1] X. Jiang, “Linear Subspace Learning-Based Dimensionality 
Reduction”, IEEE Signal Process. Mag., vol. 28, no. 2, pp. 16–26, 
Mar. 2011. [Online]. Available: http://dx.doi.org/10.1109/ 
MSP.2010.939041 

[2] C. M. Bishop, Pattern Recognition and Machine Learning. New 
York NY: Springer, ch. 4, 2006. 

[3] N. Kumar, A. G. Andreou, “Heteroscedastic discriminant analysis 
and reduced rand HMMs for improved speech recognition”, Speech 

Communication, vol. 26, pp. 283–297, 1998. [Online]. Available: 
http://dx.doi.org/10.1016/S0167-6393(98)00061-2 

[4] M. Gales, “Maximum likelihood multiple subspace projections for 
hidden Markov models”, IEEE Trans. on Speech and Audio Process, 

vol. 10, no. 2, pp. 37–47, Feb. 2002. [Online]. Available: 
http://dx.doi.org/10.1109/89.985541 

[5] M. Belkin, P. Niyogi, “Towards a theoretical foundation for 
Laplacian-based manifold methods”, J. Comput. Syst. Sci., vol. 74, 
no. 3, pp. 328–340, Mar. 2005. 

[6] S. Yan. D. Xu, B. Zhang, Q. Yang, H. Zhang, S. Lin, “Graph 
embedding and extensions: A general framework for dimensionality 
reduction”, IEEE Trans. Pattern Anal. Machine Intell., vol. 29, no. 1, 
pp. 40–51, Jan. 2007. [Online]. Available: http://dx.doi.org/10.1109/ 
TPAMI.2007.250598 

[7] R. Haeb-Umbach, H. Ney, “Linear discriminant analysis for 
improved large vocabulary continuous speech recognition”, in Proc. 

of Inter. Conf. Acoustic Speech and Signal Process., San Francisco, 
1992, pp. 13–16. 

[8] M. Westphal, “TC-Star Recognition baseline results”, TC-STAR Proj. 

Report, 2004, [Online]. Available: http://www.tcstar.org/documents/ 
deliverable/deliverable_updated14april05/D6.pdf 

[9] H. Zhou, D. Karakos, S. Khundapur, A. Andreou, C. Priebe, “On 
projections of Gaussian distributions using maximum likelihood 
criteria”, in Proc. of Information Theory and Applications Workshop 
2009, pp. 431–438. 

[10] V. Delić, M. Sečujski, N. Jakovljević, M. Janev, R. Obradović, D. 
Pekar, “Speech technologies for Serbian and kindred South Slavic 
languages”, Advances in Speech Recognition.. Rijeka, Croatia: 
InTech, ch. 9, 2010. [Online]. Available: http://www.intechopen.com 
/books/advances-in-speech-recognition/speech-technologies-for-
serbian-and-kindred-south-slavic-languages 

[11] N. Đurić, D. Pekar, Lj. Jovanov, “Struktura srpske SpeechDat(E) 
govorne baze snimljene preko fiksne telefonske mreže”, in Proc. of 
Digit. obrada govora i slike, Bečej, 2002, pp. 57–60. 

[12] N. Jakovljević, D. Mišković, M. Janev, D. Knežević, T. Grbić, 
“Primena linearne diskriminativne analize u prepoznavanju govora”, 
in Proc. of Digit. obrada govora i slike, Kovačica, 2012, pp. 40–43. 

[13] M. Gales, “Semi-Tied Covariance Matrices for Hidden Markov 
Models”, IEEE Trans. Speech Audio Process., vol. 7, no. 3, pp. 272–
279, May 1999. [Online]. Available:  http://dx.doi.org/10.1109/ 
89.759034 

79




