
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

A Mobile Deep Learning Classification Model for

Diabetic Retinopathy

Daniel Rimaru1, Antonio Nehme1, Musaed Alhussein2, Khaled Mahbub1, Khusheed Aurangzeb2, Anas Khan3,*

1Birmingham City University, College of Computing,

Birmingham, UK
2Department of Computer Engineering, College of Computer and Information Sciences, King Saud University,

Riyadh, 11543, Saudi Arabia
3Department of Electrical Engineering, University of Wah,

Quaid Avenue, Wah, Rawalpindi, Punjab 47040, India

daniel.rimaru@mail.bcu.ac.uk; antonio.nehme@bcu.ac.uk; musaed@ccis.ksu.edu.sa; khaled.mahbub@bcu.ac.uk;

kaurangzeb@ksu.edu.sa; anask8726@gmail.com

Abstract—The pupil, iris, vitreous, and retina are parts of the

eye, where any defect due to physical damage or chronic diseases

to these parts of the eye can lead to partial vision loss or complete

blindness. Changes in retinal structure due to diabetes or high

blood pressure lead to diabetic retinopathy (DR). The early

diagnosis of DR using computer-aided automated tools is

possible due to tremendous advancements in machine and deep

learning models in the last decade. Devising and implementing

innovative deep learning models for retinal structural analysis

is crucial to the early diagnosis of DR and other eye diseases. In

this work, we have developed a new approach, which involves

the development of a lightweight convolutional neural network

(CNN)-based model for segmentation of retinal vessels and a

mobile application for DR grading. This paper covers the

development process of an Android application that leverages

the power of CNN-based deep learning model to detect DR

regardless of its stage. To achieve this, two models have been

created and compared, the best one having an accuracy of

96.72 %. An Android application has then been developed, that

makes calls to this model and then displays the results on screen

with a simple-to-understand interface developed using the Kivy

framework.

Index Terms—Diabetic retinopathy; Deep neural networks;

Machine learning; Retinal vessel segmentation.

I. INTRODUCTION

In recent years, medical experts have been assisted by

emerging computer vision technologies. They have been

using these ground-breaking tools to consolidate and validate

their analysis, thus minimising human error. Massive

progress has been made in the field of artificial intelligence

(AI) over the last years, sometimes even outperforming

experts in certain tasks. The popularity of AI comes from the

ever-increasing performance in accurately providing

solutions to various problems. With the emerging power of

AI, people have taken massive steps towards automating the

eye disease detection process by using deep learning (DL)

technologies. Mobile devices have become one of the most

common pieces of computing hardware, owned by the

majority of the population. As such, it is possible to target a

large audience using this platform. Moreover, most of them

are permanently connected to a network, allowing

information to be transferred with ease. Mobile phones have

also been benefiting from advancements in hardware and

more complex applications are becoming available for

common use.

The pupil, iris, vitreous, and retina are constituent parts of

the human eye, where any flaw in any of these constituent

parts of the eye may lead to partial vision loss or full

blindness. Different chronic diseases such as glaucoma,

diabetic retinopathy (DR), cataracts, etc. progress gradually

and damage specific parts of the eye such as retinal vessels,

optic cup, optic disks, etc. The composition of several parts

of human organs varies from individual to individual.

Similarly, the damage to human organs due to chronic

diseases also varies from individual to individual due to

various factors. This indicates that certain individuals may

suffer from a particular chronic illness for a long time without

any effect on their vision. For other individuals, the severity

of chronic diseases in different human organs is severe due to

weakness of the organ due to inheritance problems or the

severity of the chronic disease. There is a need for regular and

inexpensive monitoring of human eyes, and the development

of advanced and automated AI-based tools and mobile

applications for the analysis of retinal fundus images for

timely diagnoses of the eye diseases is an enabler for this.

Additionally, such automated diagnostic tools and

applications could be used for country-level screening

programmes. These large-scale screening programmes for

any disease are highly important for the detection and

prevention of specific chronic diseases in the population, who

are mostly unaware of the development of these diseases.

Using advanced AI-based automated tools can help detect

diseases early and ensure timely treatment. This will enable

humanity to prevent such diseases from advancing to critical

stages, where it is almost impossible to reverse them.

To enable affordable large-scale screening (population

level) for diabetic retinopathy, this paper leverages the power

of convolutional neural network (CNN) to develop a mobile

https://doi.org/10.5755/j02.eie.38674

Manuscript received 27 June, 2024; accepted 30 October, 2024.
This research is funded by Researchers Supporting Project No.

RSPD2024R553, King Saud University, Riyadh, Saudi Arabia.

45

mailto:kaurangzeb@ksu.edu.sa
mailto:anask8726@gmail.com

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

application that allows the classification of retinal scans as

healthy or with DR. To reach a level of accuracy of 96.72 %

while keeping the application lightweight, the classification

models were trained on thousands of scans on a personal

computer before deploying the trained model in the mobile

application.

We believe that the appropriate course of action for large-

scale eye disease diagnosis would be to utilise CNN-based

trained models on an augmented dataset. The MobileNetV3

model will be used for the early development stages as it

allows flexibility in design decisions later on, due to the

versatile nature of this architecture. When it comes to

augmenting the dataset, we will attempt to implement

FasterAugment using generative adversarial network (GAN)

on a desktop computer. The improved dataset will then be

used to create models in a mobile environment. This project

finds its novelty in the combination of an augmented dataset

with the MobileNetV3 model, in the context of DR detection,

all packaged into an Android application. There appears to be

no similar combination of procedures attempted in the

literature.

The contributions of the work are given below:

− CNN-based models are used for segmentation of retinal

images;

− A suitable classification model is used to grade the

retinal scans as healthy and diseased;

− A mobile application is developed for Android-based

platforms to enable the end users to visualise and see the

results instantly;

− A publicly available Diabetic Retinopathy Dataset with

3662 images is used to evaluate the performance of the

developed method;

− The performance of the developed application and model

is validated using two Android Studio emulators and two

physical devices.

The rest of the paper is divided as follows. Section II covers

the related work. Section III covers the dataset and model

implementation. Section IV discusses the development of the

application. Section V includes the results and discussion,

and Section VI covers the conclusions and future work.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the literature that is relevant to

eye disease classification, as well as existing deep learning

models running on mobile devices.

 Eye Disease Classification

The work of Alyoubi, Shalash, and Abulkhair [1] features

a list of publicly available datasets that can be used for this

project. Given the fact that the datasets contain retinal fundus

images, this means that the diseases that can be detected will

be caused by retinal problems. As such, there is a limitation

regarding the diseases that can be identified. Examples of

such diseases are diabetic retinopathy (DR) or retinitis

pigmentosa (RP). When it comes to detecting diabetic

retinopathy, a novel method is to first extract the retinal

vessels and save them in a separate binary (black-and-white)

image [2]. Using this image, they can count the nonzero

pixels and see if the number of vessels is higher than usual.

In this case, they can infer “that abnormal vessels have started

growing resulting into proliferative diabetic retinopathy” [3].

This approach allows classic machine learning (ML)

techniques such as k-nearest neighbours (KNN) to be used

with high accuracy (96.23 %). While research articles on this

topic strongly suggest using CNNs for classification [3], there

are some people who have tried some alternatives. One such

experiment was carried out by Mo, Zhang, and Feng [4],

where they applied the segmentation strategy to recognise

diabetic macular edema, which is a complication of DR.

Instead of using CNN, the DL method used was a deep

residual network, the point being that the classic CNN was

going to be more difficult to train. Deep residual learning

might be a suitable approach for our lightweight model,

considering that architecture has historically been known to

be easier to optimise [5]. Like, the authors in [6] have used a

lightweight residual connection-based model called

“Colonsgnet” to accurately segment the retinal vessels and

locate the true vessels for an efficient diagnosis of DR.

Another residual connection-based deep neural network

(DNN) was applied in [7] to efficiently detect the optic disk

(OD) and optic cup (OC) that gives the correct estimation of

the disk-to-cup ratio, which is the key parameter in the

detection of glaucoma and DR.

With the huge advancement in the field of DL, it is also

possible to skip the segmentation step and automatically

classify the image. The results also show an increase in

accuracy (96.5 % to 99.7 %) [8]. The reason for this

performance is also due to various data augmentation

procedures. The dataset that was used was imbalanced,

favouring diseased eyes. As such, some data augmentation

techniques have been used such as flipping, rotating and

resizing the images for the purpose of creating more images

of healthy eyes, greatly improving the training data, and, by

extension, the model. Another option would be to harness the

power of a pretrained DL model and modify it to suit our

needs. This approach was tested using two datasets which can

be found on Kaggle. It yielded lower accuracy scores

(72.33 % and 82.18 %) but skipped the segmentation step,

which shows how important segmentation can be [9].

 Data Augmentation

Modifying the data that are used can be a decisive factor in

the generalisability of the CNN algorithms. To enhance the

performance of the model, it is important to apply different

data augmentation strategies, such as horizontal and vertical

flipping, rotation from 0 to 180 or 0 to 360 degrees, rescaling

factor, and normalisation as applied in [10] for efficient

segmentation of retinal vessels. It is possible to automate the

process of augmenting the data, having the best augmentation

policies for a certain dataset identified and applied.

Cubuk, Zoph, Mane, Vasudevan, and Le [11] have

proposed the AutoAugment algorithm that has enhanced the

performance of many image classification tasks by improving

the datasets [11]. This search algorithm tries all possible

combinations of data augmentation policies to find the best

one. The problem with this algorithm is clearly highlighted

by [12]: it requires “thousands of GPU hours” to converge to

an optimal. However, they do propose an improved version

(Fast AutoAugment), which can greatly speed up the search

time by skipping some of the possible combinations. This

raises the risk of getting stuck in a suboptimal configuration,

which is something that must be taken into account.

46

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

Another concept worth exploring is the generative

adversarial network (GAN) framework. Here, we try to create

two models. The first one is a generative model that is trying

to create additional images given the training data, while the

second one tries to predict whether a given image originated

from the training data or the generative model. The objective

is to maximise the probability that the predictor model makes

a mistake [13]. This concept has been applied for the

detection of diabetic retinopathy by Zhou, Wang, He, Cui,

and Shao [14]. The evaluation of the experiment involved

asking ophthalmologists to independently evaluate the

synthesised images. The results show that the experts could

correctly tell a real image from a synthesised image only

65 % of the time. This means that the generated images are

similar to the originals, proving the validity of the method.

Lastly, there is the option of combining automatic data

augmentation algorithms with GAN. This idea was pitched in

[15], as the Faster AutoAugment algorithm. The results of

this experiment have shown great performance in low-

resource scenarios, which is something we are actively

looking for.

 Mobile Deep Learning Models

The integration of AI and embedded systems makes it

possible to implement systems that run in real time without

having to transfer all data to central servers. Although the low

capacity of the embedded systems greatly hinders this

integration, the ability to integrate them into a wide range of

microcontrollers is a huge advantage. The integration of AI

with embedded systems has attracted the attention of industry

giants, including Google, which launched the TensorFlow

Lite platform, which provides a set of tools that enable the

user to convert neural network (NN) models into simplified

and reduced versions.

Despite their high accuracy, DNNs are more

computationally and memory-demanding than other ML

algorithms. On the other hand, embedded systems have the

least computing and memory resources, where the integration

of DL and embedded systems faces many challenges.

Training DL models is the most difficult challenge, as

training DL models consist of dense parameters that form a

heavy weight to achieve high accuracy. It is computationally

expensive and consumes many resources, energy, memory,

and time. However, embedded systems have not yet become

efficient enough to train DL models due to limited resources.

Thus, the performance of DL models will be significantly

affected compared to high performance computing (HPC).

Therefore, straightforward integration would create

inefficient solutions.

So, first, the selection of appropriate DNN model is needed

that must be followed by optimisation for developing

embedded system-based AI solutions for eye disease

diagnosis.

Looking at the mobile deep learning landscape, Zhang et

al. present multiple possible models that can be used for

mobile DL, including MobilenetV1-V3, DenseNet, and

AlexNet [16]. Depending on the use case, certain models can

be more appropriate; in fact, performance is variable

depending on the hardware as well. Despite being categorized

as an image classification model, the MobileNet model series

can also be deployed as a semantic segmentation model.

These models follow the NN architecture, but are designed

for low-resource devices [17]. It is recommended to use the

highest version available, given its tendency to improve as the

versions increase [17].

Another possible architecture that can be used is called

“ShuffleNet”. Zhang, Zhou, Lin, and Sun [18] claimed that it

would be 13 times more efficient than AlexNet in terms of

complexity, yielding similar accuracy. The problem with this

statement is that AlexNet was developed in 2012, and was

already outclassed by various models such as Clarifia, VGG-

16, GoogleNet, and ResNet [19]. Although the model

evaluation benchmark was flawed to improve the model, the

contribution of Nagda, Momaya, Pandey, Khanna, and

Verma has shown that the model is still relevant, considering

that its performance metrics have only been beaten by

MobileNet, which has always been a top competitor in the

market [20]. The third place in this evaluation was UNet,

which is a specially designed biomedical image segmentation

model [21].

The authors in [22] developed a mobile application for the

detection and grading of DR using Google AI technologies,

specifically TensorFlow and Google Cloud ML. The model

is trained on 12062 fundus images using Google TensorFlow

and Cloud ML. After high accuracy was achieved, this model

was implemented into a mobile application.

Sheikh and Qidwai [23] used a lightweight MobileNetV2

model to inspect the severity of the DR. They used bio-

inspired retinal filters and tuned the hyper parameters for the

enhancement of retinal features and achieved high accuracy

and area under the curve (AUC) score of 91.6 % and 0.9,

respectively. Looking further, a both mobile and web

application was developed in [24] for the screening of DR

with the objective of providing screening facilities in rural

areas as the application can work both online and offline.

MobileNet and ResNet 50 architectures were used for the

development of mobile applications and web application,

respectively.

Another MobileNet-based lightweight model is presented

to facilitate people living in rural areas of Nepal to detect DR

[25]. An extensive dataset that contains distinctive DR

images was utilised to fine-tune the MobileNet architecture

for the accurate classification of retinopathy. In [26], transfer

learning is applied using a lightweight model called

“NasnetMobile” along with the configuration of multilayer

perceptron for DR classification. A cross-validation process

is performed and high evaluation metrics are achieved. The

whole system is then developed into a mobile application

with a execution time of less than a second. The mobile

application developed for the real-time screening of DR is

presented by Shorav, Druzgalski, and Gautam in [27]; the

application is based on the MobileNet architecture powered

by Google TensorFlow.

III. DATASET AND MODEL IMPLEMENTATION

In this section, we will describe the implementation setup,

outline the datasets and data preparation steps, and discuss the

implementation of our models.

 Experimental Setup

When it comes to the hardware used, Table I shows the

specifications of the computer used to create the model.

47

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

TABLE I. COMPUTER HARDWARE.

CPU Intel Core i7-9750H 2.60 GHz

RAM 32 GB

GPU NVIDIA GeForce RTX 2070 8 GB

The software used for this project can be seen in the list

below:

− Visual Studio Code for writing the Python code;

− Android Studio for Android emulators;

− Oracle VM VirtualBox for creating a Linux Virtual

Machine to package the application into an APK file.

The project will consist of three stages: Data Preparation,

Model Implementation, and Application Development.

 Data Preparation

In this paper, we have used the Diabetic Retinopathy

Dataset (https://www.kaggle.com/c/diabetic-retinopathy-

detection/data). This is due to the large number of scans that

the dataset includes for scans of healthy and unhealthy

retinas, and this is needed for the classification models to

learn the patterns needed for the classification.

Diabetic Retinopathy Dataset. The Diabetic Retinopathy

Dataset was a dataset provided for a 2015 competition to

generate a classification model that could detect diabetic

retinopathy. There were five classes representing different

stages of the disease, as well as healthy eyes. An interesting

property of this dataset is that it combines the images of four

diseased classes into one class and healthy images into

another class; the number of images in both classes are the

same (1831 images for each class, for a total of 3662 images).

This means that there is no need for balancing. The problem

this dataset had was that the resolution of the images was

1920×1080 pixels and as a result the dataset as a whole

occupied 90 GB of storage. Therefore, all images were

resized to 224×224 pixels dramatically reducing the size of

the dataset and making it easier to work with. Lastly, the four

stages of diabetic retinopathy were merged into one class

called “diseased”.

 Model Implementation

To compare various approaches, we have created four

models, which will later be compared. We are going to create

the models using the two aforementioned datasets, using two

different architectures. As such, creating four pairs of dataset

architecture.

MobilenetV3. This model uses MobilenetV3 as the base.

The model is initialised using the pretrained weights from the

ImageNet classifier to reduce the training time. On top of that,

we have added additional layers to customise the model for

the eye disease detection task. The following layers have been

added.

− BatchNormalisation: This layer normalises the data at

the mini-batch level, which allows us to use a high learning

rate. It is known to improve ImageNet classification [28].

− Dense layer with ReLU activation, regularisation of L1

and L2, and dropout: This layer ensures that we avoid

overfitting by adding a penalty term to the loss function.

This results in the model having smaller weights [29].

− Output dense layer with softmax activation for

classification: This layer is for prediction. It has two

neurons because we have two classes that can be predicted.

This layer takes the raw output values and transforms them

into a probability distribution. Each neuron in the output

layer represents the probability that the input belongs to a

particular class.

Going into the hyperparameter tuning stage, we ended up

setting the following parameters.

− Trainable - whether the base MobileNet model weights

are trainable from the outset or not. If set to false, they

become trainable after a set number of epochs. We set it to

true because it can converge faster.

− Epochs - the number of training epochs, which

determines how many times the whole dataset will be used

to update the weights of the model. This is set to 100 so

that there is enough time for the model to converge.

− Batch size - the number of images that are being taken

for each iteration of training. This is set to 32 because it

seems to yield the best results when compared to 16 and 8.

− Dropout rate - the number of neurons that are dropped

out during each training step in the dropout layer. We set

this to 0.1.

− Kernel regulariser: L2 regularisation applied to the

weights of the dense layer. This is set to 0.16.

− Activity regulariser: L1 regularisation applied to the

activation of the dense layer. This is set to 0.1.

− Bias regulariser: L1 regularisation applied to the bias

terms of the dense layer. This is set to 0.1.

Custom Model. We have created a convolutional neural

network (CNN) model from scratch where we extract features

and look for important details, similar to how a real doctor

would look at a scan and would look for certain anomalies.

We will then try to find relationships between them using a

neural network. The model has the following structure.

− Input layer: This is where the model receives the input

data; in our case, the input data consist of images. Here we

specify that we are expecting images of the 224×224 size.

− Convolutional layer 1: This layer scans the images

received from the input and looks for patterns. It acts as a

filter, learning to recognise shapes and edges. Here, we

also transform all values into positive values using the

“ReLU” activation.

− Max pooling layer 1: The output from the convolutional

layers is usually too big; as such, it is common to reduce

their sizes by taking the maximum value from a small

region from the image. The point of this stage is to reduce

the amount of computational power used.

− Convolutional layer 2: Similar to the first convolutional

layer. The point of repeating this step is that each time we

add another combination of convolutional layer + max

pooling, we are looking for patterns using the simple

patterns that were found in the previous layer. This allows

the model to look at more complex patterns, since the

features found by the layers become more complex the

deeper we go.

− Max pooling layer 2: The pooling layers also have a

generalising role, allowing us to see patterns, even though

each image is different.

− Flatten layer: We take the output and transform it into a

vector. This is a necessary step because the next layer takes

a Vector as input, not a 2D grid.

− Dense layer 1: We feed the vector into a traditional

48

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

neural network layer. Here, we try to learn complex

relationships between features. The network has 16

neurons.

− ReLU activation: We turn the output into positive

numbers again.

− Dense layer 2: This layer is the prediction layer. It has

two neurons matching the number of predicted classes. The

output of this layer is a probability score for each class.

− Softmax activation: This layer ensures that our

probabilities add up to 1 (100 %).

Once the training is done, we save a snapshot of the model

so that it can be loaded into the mobile application and used

as is. This is advantageous because it means that we are not

limited by the hardware of mobile devices as we are not doing

any training on the mobile device. We are using the model

that is trained on the computer and deploying it on a mobile

device.

IV. APPLICATION DEVELOPMENT

This section discusses the technology stack that was used

to build the mobile application, as well as the testing strategy

that was followed.

 Technology Stack

The application development stage had two important

considerations that needed to be considered. The first one is

to create an interface that allowed selecting a retina scan from

their system, and the second is to package the application as

an Android app. The Kivy framework was used to create the

interface of the mobile application, including buttons and

charts. TensorFlow Lite was used to deploy and run the

machine learning models on the mobile device, and Buildozer

was used to convert the Python code from the Kivy

framework to Java for being deployable using Android

Studio.

The mobile app was packaged as an Android Application

Kit (APK) file, and this file can be used to install the mobile

app on both physical devices and emulators, with a minimum

Android API version of 24 and a maximum of 31.

 Testing

The app was tested on two Android Studio emulators and

two physical devices. We list the emulators and mobile

phones that we used, respectively:

− An emulated Nexus One phone with Android Pie (API

28);

− An emulated Google Pixel with Android R (API 30);

− A Samsung Galaxy J5(2016) with Android Nougat (API

25);

− A Xiaomi Redmi 9T with Android Q (API 29).

The testing stage consisted of installing the application

using the generated APK file, and then running the

predictions back-to-back, using two eye scans available in the

phone storage. The two images featured a healthy eye (Fig. 1)

and a diseased eye (Fig. 2), respectively. Getting the correct

results for both images using the application is considered a

successful test. The screenshots below show the interface of

the applications classifying healthy and diseased scans on two

Android emulators.

Fig. 1. Screenshot of healthy eye scan on Nexus One emulator.

Fig. 2. Screenshot of the application identifying a scan with DR on Google

Pixel emulator.Results and Discussion

 Results

When looking at the models, there are various performance

metrics that we have taken into account:

− Accuracy - measures how many predictions the model

got right compared to the total number of predictions;

− Loss - a value that quantifies how far off the model

predictions are from the actual correct values. Lower loss

is better;

− F1 score - a metric that balances precision and recall. In

our case, precision would tell us how often the model

correctly identifies the disease when it says that it is

positive. Recall would tell us how often the model

correctly identifies the disease among all actual cases. The

F1 score gives us a single number that considers both

aspects.

These metrics have been tracked over the epochs to show

how the model improved over time and where its

performance plateaued.

Additionally, a confusion matrix has been created to look

for model habits (e.g., a tendency to send many false

positives).

Lastly, the models have been validated using K-fold cross-

validation using five folds. These models have been trained

on low batch sizes - 8 and epochs - 10 due to hardware

limitations.

49

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

MobileNetV3. This model had a final accuracy value of

96.72 %. As shown in Fig. 3, it took around 20 epochs for the

model to reach a 90 %+ accuracy. Figure 4 shows that the F1

score plateaus around epoch 25, which suggests that we could

finish training early. Figure 5 shows that the model is

relatively fast in learning, given the steep change in loss.

Figure 6 shows the confusion matrix of the MobileNetV3

model on an unseen test dataset. This shows that the model is

consistently accurate and can converge fast. The K-fold

cross-validation is presented in Table II.

Fig. 3. MobileNetV3 - Accuracy over 100 epochs.

Fig. 4. MobileNetV3 - Loss metric over 100 epochs.

Fig. 5. MobileNetV3 - F1 metric over 100 epochs.

Fig. 6. MobileNetV3 - Confusion matrix.

TABLE II. THE K-FOLD CROSS-VALIDATION.

No. MobileNetV3 Custom Model

1 0.97 0.48

2 0.95 0.91

3 0.93 0.94

4 0.95 0.48

5 0.97 0.95

Custom Model. This model had a final accuracy value of

93.45 %. Figure 7 shows a worrisome phenomenon: the

model sometimes finds relationships between features when

there are none.

Fig. 7. Custom model - Accuracy over 100 epochs.

Fig. 8. Custom model - Model loss metric over 100 epochs.

50

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

This takes a long time to unlearn, and if this happens at the

end of the training process, we might end up with a low

quality model. The loss stray value in Fig. 8 presents this

situation the best. The model took around 25 epochs to train

according to Fig. 9, and Fig. 10 shows the confusion matrix

of the custom model on an unseen test dataset.

Fig. 9. F1 metric over 100 epochs of the custom model.

Fig. 10. Confusion matrix of the custom model.

The K-fold cross-validation results for the custom model

are presented in the third column of Table II.

These values show that while the model usually has an

accuracy above 90 %, sometimes its accuracy plummets to

50 %, which is a risk that must be taken into consideration.

This translates to the fact that the model is inconsistent.

 Discussion

Most of the literature on eye disease diagnosis that

obtained improved performance applied deep neural network

(DNN)-based approaches. These approaches are suitable for

high performance computing that does not have any resource

limitation. They do not reflect the constraint of the application

based on embedded systems where lightweight models are

needed for the implementation. So, we studied the best

models, but emphasised that lightweight deep learning

models should be used for segmentation as a back bone. The

main reason is that shifting from HPC to an embedded

platform does not allow us to compromise on the

segmentation performance of the DNN model.

When comparing the models, it becomes clear why

MobileNetV3 is such a staple when it comes to deep learning.

Overall, the best model among the two produced was the one

that used MobilenetV3. The use of K-fold cross-validation on

a relatively large dataset (3662 images) suggests that the

results that we obtained are likely to be representative.

Further improvements can be obtained by training the models

on a larger dataset. Continuous improvement of the models

can be done after the application is deployed, by retraining

the models and pushing the snapshots of the new models

through updates of the application.

Based on our obtained classification results, we can say

that MobileNetV3 is a suitable model that can be trained on

HPC and used as a backbone in the mobile application. This

is used to demonstrate the proof-of-concept. For the

implementation of real applications, the authors suggest

evaluating different DNN models and selecting a suitable one

based on evaluation metrics. Then, such a model can be

optimised for the mobile application development so that it is

more specialised and lightweight at the same time.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, this paper discussed the development of a

lightweight convolutional neural network (CNN)-based

model for retinal vessel segmentation and presented the

development of an Android mobile application that uses the

CNN model and is capable of loading an image from the

user’s phone and grade diabetic retinopathy. This paper

showcases that mobile deep learning is indeed possible and

can be used for the benefit of the end user. This work opens

multiple avenues that can be explored to improve the

developed model and the mobile app, e.g., 1) combining

multiple datasets to create a larger one that can be used to

generate more accurate results, 2) performing usability

testing of the mobile app and thereby developing a more user-

friendly interface.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] W. L. Alyoubi, W. M. Shalash, and M. F. Abulkhair, “Diabetic
retinopathy detection through deep learning techniques: A review”,

Informatics in Medicine Unlocked, vol. 20, art. 100377, 2020. DOI:

10.1016/j.imu.2020.100377.
[2] A. Roy, D. Dutta, P. Bhattacharya, and S. Choudhury, “Filter and fuzzy

c means based feature extraction and classification of diabetic

retinopathy using support vector machines”, in Proc. of 2017
International Conference on Communication and Signal Processing

(ICCSP), 2017, pp. 1844–1848. DOI: 10.1109/ICCSP.2017.8286715.

[3] D. J. Hemanth, O. Deperlioglu, and U. Kose, “An enhanced diabetic
retinopathy detection and classification approach using deep

convolutional neural network”, Neural Computing and Applications,
vol. 32, no. 3, pp. 707–721, 2020. DOI: 10.1007/s00521-018-03974-0.

[4] J. Mo, L. Zhang, and Y. Feng, “Exudate-based diabetic macular edema

recognitionin retinal images using cascaded deep residual networks”,
Neurocomputing, vol. 290, pp. 161–171, 2018. DOI:

10.1016/j.neucom.2018.02.035.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, 2015. DOI: 10.1109/CVPR.2016.90.

[6] K. Aurangzeb, R. S. Alharthi, S. I. Haider, and M. Alhussein,

“Systematic development of AI-enabled diagnostic systems for
glaucoma and diabetic retinopathy”, IEEE Access, vol. 11, pp. 105069–

105081, 2023. DOI: 10.1109/ACCESS.2023.3317348.

[7] K. Aurangzeb, “A residual connection enabled deep neural network

model for optic disk and optic cup segmentation for glaucoma

diagnosis”, Science Progress, vol. 106, no. 3, 2023. DOI:

10.1177/00368504231201329.
[8] L. Jain, H. V. S. Murthy, C. Patel, and D. Bansal, “Retinal eye disease

51

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

detection using deep learning”, in Proc. of 2018 Fourteenth

International Conference on Information Processing (ICINPRO),
2018, pp. 1–6. DOI: 10.1109/ICINPRO43533.2018.9096838.

[9] A. K. Gangwar and V. Ravi, “Diabetic retinopathy detection using

transfer learning and deep learning”, in Evolution in Computational
Intelligence. Advances in Intelligent Systems and Computing, vol.

1176. Springer, Singapore, 2021, pp. 679–689. DOI: 10.1007/978-981-

15-5788-0_64.
[10] K. Aurangzeb, R. S. Alharthi, S. I. Haider, and M. Alhussein, “An

efficient and light weight deep learning model for accurate retinal

vessels segmentation”, IEEE Access, vol. 11, pp. 23107–23118, 2022.
DOI: 10.1109/ACCESS.2022.3217782.

[11] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,

“AutoAugment: Learning augmentation strategies from data”, in Proc.
of 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019, pp. 113–123. DOI:

10.1109/CVPR.2019.00020.

[12] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast AutoAugment”, in

Proc. of 33rd Conference on Neural Information Processing Systems

(NeurIPS 2019), 2019, art. no. 598, pp. 6665–6675. DOI: DOI:

10.48550/arXiv.1905.00397.

[13] I. Goodfellow et al., “Generative adversarial networks”,
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2014. DOI:

10.1145/3422622.

[14] Y. Zhou, B. Wang, X. He, S. Cui, and L. Shao, “DR-GAN: Conditional
generative adversarial network for fine-grained lesion synthesis on

diabetic retinopathy images”, IEEE Journal of Biomedical and Health

Informatics, vol. 26, no. 1, pp. 56–66, 2022. DOI:
10.1109/JBHI.2020.3045475.

[15] R. Hataya, J. Zdenek, K. Yoshizoe, and H. Nakayama, “Faster

AutoAugment: Learning augmentation strategies using
backpropagation”, Computer Vision – ECCV 2020. ECCV 2020.

Lecture Notes in Computer Science(), vol. 12370. Springer, Cham,

2020, pp. 1–16. DOI: 10.1007/978-3-030-58595-2_1.
[16] Q. Zhang et al., “Benchmarking of DL libraries and models on mobile

devices”, 2022. DOI: 10.48550/arXiv.2202.06512.

[17] M. Prajapati, S. K. Baliarsingh, J. Hota, P. P. Dev, and S. Das, “Retinal
and semantic segmentation of diabetic retinopathy images using

MobileNetV3”, in Proc. of 2023 International Conference on

Computer, Electrical Communication Engineering (ICCECE), 2023,
pp. 1–6. DOI: 10.1109/ICCECE51049.2023.10085191.

[18] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely

efficient convolutional neural network for mobile devices”, in Proc. of
2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2018, pp. 6848–6856. DOI:

10.1109/CVPR.2018.00716.
[19] M. Z. Alom et al., “The history began from AlexNet: A comprehensive

survey on deep learning approaches”, 2018. DOI:

10.48550/arXiv.1803.01164.
[20] P. Nagda, M. Momaya, A. Pandey, A. Khanna, P. Verma,

“Performance evaluation of various CNN network architectures for

classification of diabetic retinopathy and normal retinal images”, in Soft
Computing and Signal Processing. Advances in Intelligent Systems and

Computing, vol. 1325. Springer, Singapore, 2021, pp. 69–78. DOI:

10.1007/978-981-33-6912-2_7.
[21] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional

networks for biomedical image segmentation”, 2015. DOI:

10.1007/978-3-319-24574-4_28.
[22] K. Kipli et al., “Development of mobile application for detection and

grading of diabetic retinopathy”, in Proceedings of Trends in

Electronics and Health Informatics. Lecture Notes in Networks and
Systems, vol. 376. Springer, Singapore, 2022, pp. 339–349. DOI:

10.1007/978-981-16-8826-3_29.

[23] S. Sheikh and U. Qidwai, “Using MobileNetV2 to classify the severity
of diabetic retinopathy”, International Journal of Simulation: Systems,

Science & Technology, vol. 21, no. 2, pp. 16.1–16.6, 2020. DOI:

10.5013/IJSSST.a.21.02.16.
[24] I. Bidari, S. Chickerur, A. Kulkarni, A. Mahajan, A. Nikkam, and

Abhishek THM, “Deploying machine learning inference on diabetic

retinopathy in binary and multi-class classification”, in Proc. of 2021
International Conference on Industrial Electronics Research and

Applications (ICIERA), 2021, pp. 1–6. DOI:

10.1109/ICIERA53202.2021.9726533.
[25] S. Bhatta, “Empowering rural healthcare: MobileNet-driven deep

learning for early diabetic retinopathy detection in Nepal”, Journal of

Electronics, Electromedical Engineering, and Medical Informatics,
vol. 5, no. 4, pp. 290–302, 2023. DOI: 10.35882/jeeemi.v5i4.326.

[26] Y. Elloumi, N. Abroug, and M. H. Bedoui, “End-to-end mobile system

for diabetic retinopathy screening based on lightweight deep neural
network”, Advances in Intelligent Data Analysis XX. IDA 2022. Lecture

Notes in Computer Science, vol. 13205. Springer, Cham, 2022, pp. 66–

67. DOI: 10.1007/978-3-031-01333-1_6.
[27] S. Suriyal, C. Druzgalski, and K. Gautam, “Mobile assisted diabetic

retinopathy detection using deep neural network”, in Proc. of 2018

Global Medical Engineering Physics Exchanges/Pan American Health
Care Exchanges (GMEPE/PAHCE), 2018, pp. 1–4. DOI:

10.1109/GMEPE-PAHCE.2018.8400760.
[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift”, in Proc. of the

32nd International Conference on Machine Learning, 2015, pp. 448–
456.

[29] M. Yang, M. K. Lim, Y. Qu, X. Li, and D. Ni, “Deep neural networks

with L1 and L2 regularization for high dimensional corporate credit
risk prediction”, Expert Systems with Applications, vol. 213, part A, art.

118873, 2023. DOI: 10.1016/j.eswa.2022.118873.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

52

https://doi.org/10.1109/ICINPRO43533.2018.9096838
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/ICCECE51049.2023.10085191

