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Abstract—The pupil, iris, vitreous, and retina are parts of the 

eye, where any defect due to physical damage or chronic diseases 

to these parts of the eye can lead to partial vision loss or complete 

blindness. Changes in retinal structure due to diabetes or high 

blood pressure lead to diabetic retinopathy (DR). The early 

diagnosis of DR using computer-aided automated tools is 

possible due to tremendous advancements in machine and deep 

learning models in the last decade. Devising and implementing 

innovative deep learning models for retinal structural analysis 

is crucial to the early diagnosis of DR and other eye diseases. In 

this work, we have developed a new approach, which involves 

the development of a lightweight convolutional neural network 

(CNN)-based model for segmentation of retinal vessels and a 

mobile application for DR grading. This paper covers the 

development process of an Android application that leverages 

the power of CNN-based deep learning model to detect DR 

regardless of its stage. To achieve this, two models have been 

created and compared, the best one having an accuracy of 

96.72 %. An Android application has then been developed, that 

makes calls to this model and then displays the results on screen 

with a simple-to-understand interface developed using the Kivy 

framework. 

Index Terms—Diabetic retinopathy; Deep neural networks; 

Machine learning; Retinal vessel segmentation. 

I. INTRODUCTION 

In recent years, medical experts have been assisted by 

emerging computer vision technologies. They have been 

using these ground-breaking tools to consolidate and validate 

their analysis, thus minimising human error. Massive 

progress has been made in the field of artificial intelligence 

(AI) over the last years, sometimes even outperforming 

experts in certain tasks. The popularity of AI comes from the 

ever-increasing performance in accurately providing 

solutions to various problems. With the emerging power of 

AI, people have taken massive steps towards automating the 

eye disease detection process by using deep learning (DL) 

technologies. Mobile devices have become one of the most 

common pieces of computing hardware, owned by the 

majority of the population. As such, it is possible to target a 

large audience using this platform. Moreover, most of them 

are permanently connected to a network, allowing 

information to be transferred with ease. Mobile phones have 

also been benefiting from advancements in hardware and 

more complex applications are becoming available for 

common use.  

The pupil, iris, vitreous, and retina are constituent parts of 

the human eye, where any flaw in any of these constituent 

parts of the eye may lead to partial vision loss or full 

blindness. Different chronic diseases such as glaucoma, 

diabetic retinopathy (DR), cataracts, etc. progress gradually 

and damage specific parts of the eye such as retinal vessels, 

optic cup, optic disks, etc. The composition of several parts 

of human organs varies from individual to individual. 

Similarly, the damage to human organs due to chronic 

diseases also varies from individual to individual due to 

various factors. This indicates that certain individuals may 

suffer from a particular chronic illness for a long time without 

any effect on their vision. For other individuals, the severity 

of chronic diseases in different human organs is severe due to 

weakness of the organ due to inheritance problems or the 

severity of the chronic disease. There is a need for regular and 

inexpensive monitoring of human eyes, and the development 

of advanced and automated AI-based tools and mobile 

applications for the analysis of retinal fundus images for 

timely diagnoses of the eye diseases is an enabler for this. 

Additionally, such automated diagnostic tools and 

applications could be used for country-level screening 

programmes. These large-scale screening programmes for 

any disease are highly important for the detection and 

prevention of specific chronic diseases in the population, who 

are mostly unaware of the development of these diseases. 

Using advanced AI-based automated tools can help detect 

diseases early and ensure timely treatment. This will enable 

humanity to prevent such diseases from advancing to critical 

stages, where it is almost impossible to reverse them.  

To enable affordable large-scale screening (population 

level) for diabetic retinopathy, this paper leverages the power 

of convolutional neural network (CNN) to develop a mobile 
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application that allows the classification of retinal scans as 

healthy or with DR. To reach a level of accuracy of 96.72 % 

while keeping the application lightweight, the classification 

models were trained on thousands of scans on a personal 

computer before deploying the trained model in the mobile 

application.  

We believe that the appropriate course of action for large-

scale eye disease diagnosis would be to utilise CNN-based 

trained models on an augmented dataset. The MobileNetV3 

model will be used for the early development stages as it 

allows flexibility in design decisions later on, due to the 

versatile nature of this architecture. When it comes to 

augmenting the dataset, we will attempt to implement 

FasterAugment using generative adversarial network (GAN) 

on a desktop computer. The improved dataset will then be 

used to create models in a mobile environment. This project 

finds its novelty in the combination of an augmented dataset 

with the MobileNetV3 model, in the context of DR detection, 

all packaged into an Android application. There appears to be 

no similar combination of procedures attempted in the 

literature. 

The contributions of the work are given below: 

− CNN-based models are used for segmentation of retinal 

images; 

− A suitable classification model is used to grade the 

retinal scans as healthy and diseased; 

− A mobile application is developed for Android-based 

platforms to enable the end users to visualise and see the 

results instantly; 

− A publicly available Diabetic Retinopathy Dataset with 

3662 images is used to evaluate the performance of the 

developed method; 

− The performance of the developed application and model 

is validated using two Android Studio emulators and two 

physical devices. 

The rest of the paper is divided as follows. Section II covers 

the related work. Section III covers the dataset and model 

implementation. Section IV discusses the development of the 

application. Section V includes the results and discussion, 

and Section VI covers the conclusions and future work. 

II. BACKGROUND AND RELATED WORK 

In this section, we discuss the literature that is relevant to 

eye disease classification, as well as existing deep learning 

models running on mobile devices. 

 Eye Disease Classification 

The work of Alyoubi, Shalash, and Abulkhair [1] features 

a list of publicly available datasets that can be used for this 

project. Given the fact that the datasets contain retinal fundus 

images, this means that the diseases that can be detected will 

be caused by retinal problems. As such, there is a limitation 

regarding the diseases that can be identified. Examples of 

such diseases are diabetic retinopathy (DR) or retinitis 

pigmentosa (RP). When it comes to detecting diabetic 

retinopathy, a novel method is to first extract the retinal 

vessels and save them in a separate binary (black-and-white) 

image [2]. Using this image, they can count the nonzero 

pixels and see if the number of vessels is higher than usual. 

In this case, they can infer “that abnormal vessels have started 

growing resulting into proliferative diabetic retinopathy” [3]. 

This approach allows classic machine learning (ML) 

techniques such as k-nearest neighbours (KNN) to be used 

with high accuracy (96.23 %). While research articles on this 

topic strongly suggest using CNNs for classification [3], there 

are some people who have tried some alternatives. One such 

experiment was carried out by Mo, Zhang, and Feng [4], 

where they applied the segmentation strategy to recognise 

diabetic macular edema, which is a complication of DR.  

Instead of using CNN, the DL method used was a deep 

residual network, the point being that the classic CNN was 

going to be more difficult to train. Deep residual learning 

might be a suitable approach for our lightweight model, 

considering that architecture has historically been known to 

be easier to optimise [5]. Like, the authors in [6] have used a 

lightweight residual connection-based model called 

“Colonsgnet” to accurately segment the retinal vessels and 

locate the true vessels for an efficient diagnosis of DR. 

Another residual connection-based deep neural network 

(DNN) was applied in [7] to efficiently detect the optic disk 

(OD) and optic cup (OC) that gives the correct estimation of 

the disk-to-cup ratio, which is the key parameter in the 

detection of glaucoma and DR.  

With the huge advancement in the field of DL, it is also 

possible to skip the segmentation step and automatically 

classify the image. The results also show an increase in 

accuracy (96.5 % to 99.7 %) [8]. The reason for this 

performance is also due to various data augmentation 

procedures. The dataset that was used was imbalanced, 

favouring diseased eyes. As such, some data augmentation 

techniques have been used such as flipping, rotating and 

resizing the images for the purpose of creating more images 

of healthy eyes, greatly improving the training data, and, by 

extension, the model. Another option would be to harness the 

power of a pretrained DL model and modify it to suit our 

needs. This approach was tested using two datasets which can 

be found on Kaggle. It yielded lower accuracy scores 

(72.33 % and 82.18 %) but skipped the segmentation step, 

which shows how important segmentation can be [9].  

 Data Augmentation 

Modifying the data that are used can be a decisive factor in 

the generalisability of the CNN algorithms. To enhance the 

performance of the model, it is important to apply different 

data augmentation strategies, such as horizontal and vertical 

flipping, rotation from 0 to 180 or 0 to 360 degrees, rescaling 

factor, and normalisation as applied in [10] for efficient 

segmentation of retinal vessels. It is possible to automate the 

process of augmenting the data, having the best augmentation 

policies for a certain dataset identified and applied.  

Cubuk, Zoph, Mane, Vasudevan, and Le [11] have 

proposed the AutoAugment algorithm that has enhanced the 

performance of many image classification tasks by improving 

the datasets [11]. This search algorithm tries all possible 

combinations of data augmentation policies to find the best 

one. The problem with this algorithm is clearly highlighted 

by [12]: it requires “thousands of GPU hours” to converge to 

an optimal. However, they do propose an improved version 

(Fast AutoAugment), which can greatly speed up the search 

time by skipping some of the possible combinations. This 

raises the risk of getting stuck in a suboptimal configuration, 

which is something that must be taken into account.  
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Another concept worth exploring is the generative 

adversarial network (GAN) framework. Here, we try to create 

two models. The first one is a generative model that is trying 

to create additional images given the training data, while the 

second one tries to predict whether a given image originated 

from the training data or the generative model. The objective 

is to maximise the probability that the predictor model makes 

a mistake [13]. This concept has been applied for the 

detection of diabetic retinopathy by Zhou, Wang, He, Cui, 

and Shao [14]. The evaluation of the experiment involved 

asking ophthalmologists to independently evaluate the 

synthesised images. The results show that the experts could 

correctly tell a real image from a synthesised image only 

65 % of the time. This means that the generated images are 

similar to the originals, proving the validity of the method.  

Lastly, there is the option of combining automatic data 

augmentation algorithms with GAN. This idea was pitched in 

[15], as the Faster AutoAugment algorithm. The results of 

this experiment have shown great performance in low-

resource scenarios, which is something we are actively 

looking for. 

 Mobile Deep Learning Models 

The integration of AI and embedded systems makes it 

possible to implement systems that run in real time without 

having to transfer all data to central servers. Although the low 

capacity of the embedded systems greatly hinders this 

integration, the ability to integrate them into a wide range of 

microcontrollers is a huge advantage. The integration of AI 

with embedded systems has attracted the attention of industry 

giants, including Google, which launched the TensorFlow 

Lite platform, which provides a set of tools that enable the 

user to convert neural network (NN) models into simplified 

and reduced versions. 

Despite their high accuracy, DNNs are more 

computationally and memory-demanding than other ML 

algorithms. On the other hand, embedded systems have the 

least computing and memory resources, where the integration 

of DL and embedded systems faces many challenges. 

Training DL models is the most difficult challenge, as 

training DL models consist of dense parameters that form a 

heavy weight to achieve high accuracy. It is computationally 

expensive and consumes many resources, energy, memory, 

and time. However, embedded systems have not yet become 

efficient enough to train DL models due to limited resources. 

Thus, the performance of DL models will be significantly 

affected compared to high performance computing (HPC). 

Therefore, straightforward integration would create 

inefficient solutions. 

So, first, the selection of appropriate DNN model is needed 

that must be followed by optimisation for developing 

embedded system-based AI solutions for eye disease 

diagnosis.  

Looking at the mobile deep learning landscape, Zhang et 

al. present multiple possible models that can be used for 

mobile DL, including MobilenetV1-V3, DenseNet, and 

AlexNet [16]. Depending on the use case, certain models can 

be more appropriate; in fact, performance is variable 

depending on the hardware as well. Despite being categorized 

as an image classification model, the MobileNet model series 

can also be deployed as a semantic segmentation model. 

These models follow the NN architecture, but are designed 

for low-resource devices [17]. It is recommended to use the 

highest version available, given its tendency to improve as the 

versions increase [17]. 

Another possible architecture that can be used is called 

“ShuffleNet”. Zhang, Zhou, Lin, and Sun [18] claimed that it 

would be 13 times more efficient than AlexNet in terms of 

complexity, yielding similar accuracy. The problem with this 

statement is that AlexNet was developed in 2012, and was 

already outclassed by various models such as Clarifia, VGG-

16, GoogleNet, and ResNet [19]. Although the model 

evaluation benchmark was flawed to improve the model, the 

contribution of Nagda, Momaya, Pandey, Khanna, and 

Verma has shown that the model is still relevant, considering 

that its performance metrics have only been beaten by 

MobileNet, which has always been a top competitor in the 

market [20]. The third place in this evaluation was UNet, 

which is a specially designed biomedical image segmentation 

model [21]. 

The authors in [22] developed a mobile application for the 

detection and grading of DR using Google AI technologies, 

specifically TensorFlow and Google Cloud ML. The model 

is trained on 12062 fundus images using Google TensorFlow 

and Cloud ML. After high accuracy was achieved, this model 

was implemented into a mobile application.  

Sheikh and Qidwai [23] used a lightweight MobileNetV2 

model to inspect the severity of the DR. They used bio-

inspired retinal filters and tuned the hyper parameters for the 

enhancement of retinal features and achieved high accuracy 

and area under the curve (AUC) score of 91.6 % and 0.9, 

respectively. Looking further, a both mobile and web 

application was developed in [24] for the screening of DR 

with the objective of providing screening facilities in rural 

areas as the application can work both online and offline. 

MobileNet and ResNet 50 architectures were used for the 

development of mobile applications and web application, 

respectively.  

Another MobileNet-based lightweight model is presented 

to facilitate people living in rural areas of Nepal to detect DR 

[25]. An extensive dataset that contains distinctive DR 

images was utilised to fine-tune the MobileNet architecture 

for the accurate classification of retinopathy. In [26], transfer 

learning is applied using a lightweight model called 

“NasnetMobile” along with the configuration of multilayer 

perceptron for DR classification. A cross-validation process 

is performed and high evaluation metrics are achieved. The 

whole system is then developed into a mobile application 

with a execution time of less than a second. The mobile 

application developed for the real-time screening of DR is 

presented by Shorav, Druzgalski, and Gautam in [27]; the 

application is based on the MobileNet architecture powered 

by Google TensorFlow.  

III. DATASET AND MODEL IMPLEMENTATION 

In this section, we will describe the implementation setup, 

outline the datasets and data preparation steps, and discuss the 

implementation of our models. 

 Experimental Setup 

When it comes to the hardware used, Table I shows the 

specifications of the computer used to create the model. 
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TABLE I. COMPUTER HARDWARE. 

CPU Intel Core i7-9750H 2.60 GHz 

RAM 32 GB 

GPU NVIDIA GeForce RTX 2070 8 GB 

 

The software used for this project can be seen in the list 

below: 

− Visual Studio Code for writing the Python code; 

− Android Studio for Android emulators; 

− Oracle VM VirtualBox for creating a Linux Virtual 

Machine to package the application into an APK file. 

The project will consist of three stages: Data Preparation, 

Model Implementation, and Application Development. 

 Data Preparation 

In this paper, we have used the Diabetic Retinopathy 

Dataset (https://www.kaggle.com/c/diabetic-retinopathy-

detection/data). This is due to the large number of scans that 

the dataset includes for scans of healthy and unhealthy 

retinas, and this is needed for the classification models to 

learn the patterns needed for the classification. 

Diabetic Retinopathy Dataset. The Diabetic Retinopathy 

Dataset was a dataset provided for a 2015 competition to 

generate a classification model that could detect diabetic 

retinopathy. There were five classes representing different 

stages of the disease, as well as healthy eyes. An interesting 

property of this dataset is that it combines the images of four 

diseased classes into one class and healthy images into 

another class; the number of images in both classes are the 

same (1831 images for each class, for a total of 3662 images). 

This means that there is no need for balancing. The problem 

this dataset had was that the resolution of the images was 

1920×1080 pixels and as a result the dataset as a whole 

occupied 90 GB of storage. Therefore, all images were 

resized to 224×224 pixels dramatically reducing the size of 

the dataset and making it easier to work with. Lastly, the four 

stages of diabetic retinopathy were merged into one class 

called “diseased”. 

 Model Implementation 

To compare various approaches, we have created four 

models, which will later be compared. We are going to create 

the models using the two aforementioned datasets, using two 

different architectures. As such, creating four pairs of dataset 

architecture. 

MobilenetV3. This model uses MobilenetV3 as the base. 

The model is initialised using the pretrained weights from the 

ImageNet classifier to reduce the training time. On top of that, 

we have added additional layers to customise the model for 

the eye disease detection task. The following layers have been 

added. 

− BatchNormalisation: This layer normalises the data at 

the mini-batch level, which allows us to use a high learning 

rate. It is known to improve ImageNet classification [28]. 

− Dense layer with ReLU activation, regularisation of L1 

and L2, and dropout: This layer ensures that we avoid 

overfitting by adding a penalty term to the loss function. 

This results in the model having smaller weights [29]. 

− Output dense layer with softmax activation for 

classification: This layer is for prediction. It has two 

neurons because we have two classes that can be predicted. 

This layer takes the raw output values and transforms them 

into a probability distribution. Each neuron in the output 

layer represents the probability that the input belongs to a 

particular class. 

Going into the hyperparameter tuning stage, we ended up 

setting the following parameters. 

− Trainable - whether the base MobileNet model weights 

are trainable from the outset or not. If set to false, they 

become trainable after a set number of epochs. We set it to 

true because it can converge faster. 

− Epochs - the number of training epochs, which 

determines how many times the whole dataset will be used 

to update the weights of the model. This is set to 100 so 

that there is enough time for the model to converge. 

− Batch size - the number of images that are being taken 

for each iteration of training. This is set to 32 because it 

seems to yield the best results when compared to 16 and 8. 

− Dropout rate - the number of neurons that are dropped 

out during each training step in the dropout layer. We set 

this to 0.1. 

− Kernel regulariser: L2 regularisation applied to the 

weights of the dense layer. This is set to 0.16. 

− Activity regulariser: L1 regularisation applied to the 

activation of the dense layer. This is set to 0.1. 

− Bias regulariser: L1 regularisation applied to the bias 

terms of the dense layer. This is set to 0.1. 

Custom Model. We have created a convolutional neural 

network (CNN) model from scratch where we extract features 

and look for important details, similar to how a real doctor 

would look at a scan and would look for certain anomalies. 

We will then try to find relationships between them using a 

neural network. The model has the following structure. 

− Input layer: This is where the model receives the input 

data; in our case, the input data consist of images. Here we 

specify that we are expecting images of the 224×224 size. 

− Convolutional layer 1: This layer scans the images 

received from the input and looks for patterns. It acts as a 

filter, learning to recognise shapes and edges. Here, we 

also transform all values into positive values using the 

“ReLU” activation. 

− Max pooling layer 1: The output from the convolutional 

layers is usually too big; as such, it is common to reduce 

their sizes by taking the maximum value from a small 

region from the image. The point of this stage is to reduce 

the amount of computational power used. 

− Convolutional layer 2: Similar to the first convolutional 

layer. The point of repeating this step is that each time we 

add another combination of convolutional layer + max 

pooling, we are looking for patterns using the simple 

patterns that were found in the previous layer. This allows 

the model to look at more complex patterns, since the 

features found by the layers become more complex the 

deeper we go. 

− Max pooling layer 2: The pooling layers also have a 

generalising role, allowing us to see patterns, even though 

each image is different. 

− Flatten layer: We take the output and transform it into a 

vector. This is a necessary step because the next layer takes 

a Vector as input, not a 2D grid.  

− Dense layer 1: We feed the vector into a traditional 
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neural network layer. Here, we try to learn complex 

relationships between features. The network has 16 

neurons. 

− ReLU activation: We turn the output into positive 

numbers again. 

− Dense layer 2: This layer is the prediction layer. It has 

two neurons matching the number of predicted classes. The 

output of this layer is a probability score for each class. 

− Softmax activation: This layer ensures that our 

probabilities add up to 1 (100 %). 

Once the training is done, we save a snapshot of the model 

so that it can be loaded into the mobile application and used 

as is. This is advantageous because it means that we are not 

limited by the hardware of mobile devices as we are not doing 

any training on the mobile device. We are using the model 

that is trained on the computer and deploying it on a mobile 

device. 

IV. APPLICATION DEVELOPMENT 

This section discusses the technology stack that was used 

to build the mobile application, as well as the testing strategy 

that was followed. 

 Technology Stack 

The application development stage had two important 

considerations that needed to be considered. The first one is 

to create an interface that allowed selecting a retina scan from 

their system, and the second is to package the application as 

an Android app. The Kivy framework was used to create the 

interface of the mobile application, including buttons and 

charts. TensorFlow Lite was used to deploy and run the 

machine learning models on the mobile device, and Buildozer 

was used to convert the Python code from the Kivy 

framework to Java for being deployable using Android 

Studio. 

The mobile app was packaged as an Android Application 

Kit (APK) file, and this file can be used to install the mobile 

app on both physical devices and emulators, with a minimum 

Android API version of 24 and a maximum of 31. 

 Testing 

The app was tested on two Android Studio emulators and 

two physical devices. We list the emulators and mobile 

phones that we used, respectively: 

− An emulated Nexus One phone with Android Pie (API 

28); 

− An emulated Google Pixel with Android R (API 30); 

− A Samsung Galaxy J5(2016) with Android Nougat (API 

25); 

− A Xiaomi Redmi 9T with Android Q (API 29). 

The testing stage consisted of installing the application 

using the generated APK file, and then running the 

predictions back-to-back, using two eye scans available in the 

phone storage. The two images featured a healthy eye (Fig. 1) 

and a diseased eye (Fig.  2), respectively. Getting the correct 

results for both images using the application is considered a 

successful test. The screenshots below show the interface of 

the applications classifying healthy and diseased scans on two 

Android emulators. 

 
Fig. 1.  Screenshot of healthy eye scan on Nexus One emulator.  

  
Fig. 2.  Screenshot of the application identifying a scan with DR on Google 

Pixel emulator.Results and Discussion 

 Results 

When looking at the models, there are various performance 

metrics that we have taken into account: 

− Accuracy - measures how many predictions the model 

got right compared to the total number of predictions; 

− Loss - a value that quantifies how far off the model 

predictions are from the actual correct values. Lower loss 

is better; 

− F1 score - a metric that balances precision and recall. In 

our case, precision would tell us how often the model 

correctly identifies the disease when it says that it is 

positive. Recall would tell us how often the model 

correctly identifies the disease among all actual cases. The 

F1 score gives us a single number that considers both 

aspects. 

These metrics have been tracked over the epochs to show 

how the model improved over time and where its 

performance plateaued. 

Additionally, a confusion matrix has been created to look 

for model habits (e.g., a tendency to send many false 

positives). 

Lastly, the models have been validated using K-fold cross-

validation using five folds. These models have been trained 

on low batch sizes - 8 and epochs - 10 due to hardware 

limitations. 
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MobileNetV3. This model had a final accuracy value of 

96.72 %. As shown in Fig. 3, it took around 20 epochs for the 

model to reach a 90 %+ accuracy. Figure 4 shows that the F1 

score plateaus around epoch 25, which suggests that we could 

finish training early. Figure 5 shows that the model is 

relatively fast in learning, given the steep change in loss. 

Figure 6 shows the confusion matrix of the MobileNetV3 

model on an unseen test dataset. This shows that the model is 

consistently accurate and can converge fast. The K-fold 

cross-validation is presented in Table II.  

 
Fig. 3.  MobileNetV3 - Accuracy over 100 epochs. 

 
Fig. 4.  MobileNetV3 - Loss metric over 100 epochs. 

 
Fig. 5.  MobileNetV3 - F1 metric over 100 epochs. 

 
Fig. 6.  MobileNetV3 - Confusion matrix. 

TABLE II. THE K-FOLD CROSS-VALIDATION. 

No. MobileNetV3 Custom Model 

1 0.97 0.48 

2 0.95  0.91 

3 0.93 0.94 

4 0.95 0.48 

5 0.97 0.95 

 

Custom Model. This model had a final accuracy value of 

93.45 %. Figure 7 shows a worrisome phenomenon: the 

model sometimes finds relationships between features when 

there are none.  

 
Fig. 7.  Custom model - Accuracy over 100 epochs. 

 
Fig. 8.  Custom model - Model loss metric over 100 epochs. 
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This takes a long time to unlearn, and if this happens at the 

end of the training process, we might end up with a low 

quality model. The loss stray value in Fig. 8 presents this 

situation the best. The model took around 25 epochs to train 

according to Fig. 9, and Fig. 10 shows the confusion matrix 

of the custom model on an unseen test dataset. 

 
Fig. 9.  F1 metric over 100 epochs of the custom model. 

 
Fig. 10.  Confusion matrix of the custom model. 

The K-fold cross-validation results for the custom model 

are presented in the third column of Table II.  

These values show that while the model usually has an 

accuracy above 90 %, sometimes its accuracy plummets to 

50 %, which is a risk that must be taken into consideration. 

This translates to the fact that the model is inconsistent. 

 Discussion 

Most of the literature on eye disease diagnosis that 

obtained improved performance applied deep neural network 

(DNN)-based approaches. These approaches are suitable for 

high performance computing that does not have any resource 

limitation. They do not reflect the constraint of the application 

based on embedded systems where lightweight models are 

needed for the implementation. So, we studied the best 

models, but emphasised that lightweight deep learning 

models should be used for segmentation as a back bone. The 

main reason is that shifting from HPC to an embedded 

platform does not allow us to compromise on the 

segmentation performance of the DNN model.  

When comparing the models, it becomes clear why 

MobileNetV3 is such a staple when it comes to deep learning. 

Overall, the best model among the two produced was the one 

that used MobilenetV3. The use of K-fold cross-validation on 

a relatively large dataset (3662 images) suggests that the 

results that we obtained are likely to be representative. 

Further improvements can be obtained by training the models 

on a larger dataset. Continuous improvement of the models 

can be done after the application is deployed, by retraining 

the models and pushing the snapshots of the new models 

through updates of the application. 

Based on our obtained classification results, we can say 

that MobileNetV3 is a suitable model that can be trained on 

HPC and used as a backbone in the mobile application. This 

is used to demonstrate the proof-of-concept. For the 

implementation of real applications, the authors suggest 

evaluating different DNN models and selecting a suitable one 

based on evaluation metrics. Then, such a model can be 

optimised for the mobile application development so that it is 

more specialised and lightweight at the same time.  

V. CONCLUSIONS AND FUTURE WORK 

In conclusion, this paper discussed the development of a 

lightweight convolutional neural network (CNN)-based 

model for retinal vessel segmentation and presented the 

development of an Android mobile application that uses the 

CNN model and is capable of loading an image from the 

user’s phone and grade diabetic retinopathy. This paper 

showcases that mobile deep learning is indeed possible and 

can be used for the benefit of the end user. This work opens 

multiple avenues that can be explored to improve the 

developed model and the mobile app, e.g., 1) combining 

multiple datasets to create a larger one that can be used to 

generate more accurate results, 2) performing usability 

testing of the mobile app and thereby developing a more user-

friendly interface. 
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