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Abstract—The global demand for energy has increased 

exponentially over the years. To reduce the dominance of fossil 

fuels in energy production, there has been a shift towards energy 

production models based on renewable sources. In the design of 

hybrid energy systems, it is essential to keep investment costs 

low while ensuring the security of the energy supply by meeting 

the consumer’s energy demands without interruption. The 

success of a good energy production model can be directly 

associated with the results of load estimation. The primary 

objective of this research is to predict the electricity demand for 

the Göksun district until 2028, utilising a data set that 

encompasses electricity usage from 2019 through the first four 

months of 2024 for the Göksun district in Kahramanmaraş. This 

endeavour includes the application of various machine learning 

(ML) paradigms (long short-term memory (LSTM), gated 

recurrent unit (GRU), convolutional neural network (CNN)-

LSTM, support vector regression (SVR)) to produce load 

forecasting outcomes and to engineer an optimally performing 

hybrid system. On evaluation of the performance metrics 

derived from the experimental data, it has been established that 

the LSTM model outperforms other methodologies, yielding 

more favourable results. The simulation studies of the designed 

hybrid system were conducted using the hybrid optimisation 

model for electric renewables software (HOMER Pro), 

demonstrating improvements in both economic and 

environmental parameters. Our study is unique in that it is the 

first to utilise a data set specific to the Göksun region and to 

model predictions obtained from this data set using HOMER 

software. 

 
Index Terms—LSTM; CNN; GRU; HOMER; Hybrid 

system; COE; Emission. 

I. INTRODUCTION 

The demand for electrical energy is increasing worldwide. 

Excessive use of fossil resources in electricity production 

around the world causes serious threats such as global 

warming, the greenhouse effect, depletion of the ozone layer, 

and climate changes [1]–[3]. Moreover, the depletion of 

existing underground resources, deteriorating climate 

conditions, and negative economic impacts require a greater 

preference for renewable energy sources over these resources 

[4]. 

However, renewable energy sources exhibit variability 

according to seasonal conditions. It is not possible to obtain 

the same amount of energy from various renewable energy 

sources on every day of the year [5], [6]. On the contrary, it 

is possible to generate uninterrupted energy regardless of the 

seasons using energy sources produced using fossil fuels. 

There should be a balance between these two types of sources 

for the least expensive production of energy, and they should 

be integrated into the system accordingly. Power systems that 

rely solely on a single type of source have now been replaced 

by hybrid systems that incorporate multiple energy sources. 

The hybrid optimisation model for electric renewables 

(HOMER) [7] developed by the National Renewable Energy 

Laboratory (NREL) is the most used optimisation software 

for hybrid systems. It is able to optimise hybrid systems 

consisting of photovoltaic generator, batteries, wind turbines, 

hydraulic turbines, AC generators, fuel cells, electrolyzers, 

hydrogen tanks, AC-DC bidirectional converters, and boilers. 

The loads can be AC, DC, and/or hydrogen loads, as well as 

thermal loads. 

There are numerous studies in the literature regarding the 

optimisation of grid-connected or standalone hybrid systems. 

In most of these studies, the HOMER software has been 

preferred, as it allows for an easier and more precise 

evaluation of different combinations. Among the studies 

conducted using HOMER software, Kalamaras, Belekoukia, 

Lin, Xu, Wang, and Xuan [8] determined that the electricity 

and thermal needs can be met reliably with a hybrid system 

on the islands of Greece. Padrón, Avila, Marichal, and 

Rodríguez [9] examined the technical and economic aspects 

of hybrid energy system models created in the Canary Islands 

using the HOMER programme. Tabak [10] used an on-grid 

hybrid system in the HOMER programme, incorporating a 

solar power plant, batteries, and a diesel generator to meet the 

electricity needs of a factory in Konya province. Türkdoğan, 

Mercan, and Çatal [11] established a hybrid energy system 

using the HOMER programme to meet the electricity 

requirements of a farmhouse located in Yalova. The authors 

in [12] analysed a hybrid photo voltaic (PV)/wind turbine 

(WT) renewable energy system in Nigeria. They revealed that 

countries with similar economic and climatic conditions 
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could benefit from the designed hybrid renewable energy 

systems (HRES). Duman and Güler [13] utilised HOMER 

software to perform an economic analysis of grid-connected 

solar energy systems positioned on rooftops in Turkey. Kılıç 

and Adalı [14] designed a hybrid wind-solar-grid energy 

system for a supermarket using the HOMER Pro programme. 

Shahzad, Zahid, Rashid, Rehan, Ali, and Ahmad [15] 

performed a sensitivity analysis of biomass potential and cost, 

amount of solar radiation, and different loads in a rural area 

of Pakistan. The authors in [16] performed a feasibility 

analysis of a standalone HRES to find the optimal solution 

considering the lowest cost of energy (LCOE) and net present 

cost (NPC). It was observed that the PV/DG/BESS 

configuration was preferred for microgrid rollout. They have 

also conducted an analysis of the economic and 

environmental impacts of renewable energy sources in 

Ardabil province in Iran [17]. Khan, Yadav, and Mathew [18] 

demonstrated that the PV-wind-diesel-battery hybrid system 

is superior to other hybrid systems considered in terms of the 

unit cost of electrical energy [18]. In addition to these studies, 

researchers have conducted numerous studies using HOMER 

software to simultaneously operate energy sources such as 

solar, wind, and biogas in conjunction with the grid [19]–

[25]. 

With the increasing areas of application of hybrid systems, 

it is also important how these systems are designed and used. 

As electricity cannot be stored, it must be generated in the 

same amount as it will be consumed. Furthermore, due to 

stochastic and uncertainty characteristics, accurately 

predicting the future load demand for electrical services has 

become a challenging problem. Therefore, a good energy 

production model should offer a solution that aims to 

maintain the balance between supply and demand, reduce 

production costs, and manage capacity planning while 

utilising different sources. The success of a good energy 

production model can be directly associated with the results 

of load estimation. When the short- and long-term load 

demand is accurately estimated, the optimal sizing and 

effective operation of the hybrid system to be designed are 

ensured. Load estimation has been an area of great interest for 

researchers since the past. Apart from the traditional load 

estimation methods previously used, the use of machine 

learning and deep learning algorithms has become quite 

widespread today. 

Deep learning technologies continue to play a significant 

role in forecasting electricity consumption, especially with 

the increase in studies during the pandemic period. The 

impact of COVID-19 on electricity consumption was 

analysed in five states in Germany and the United States using 

a combination of long short-term memory (LSTM) and 

autoregressive distributed lag (ARDL) models, revealing a 

reduction in energy consumption due to the pandemic [26]. 

In Qatar, econometric time series models and machine 

learning techniques, including LSTM, were used to predict 

electricity consumption in various stages of the COVID-19 

pandemic, econometric models demonstrating superior 

performance during the pandemic, while LSTM showed 

competitive performance in the initial stages [27]. Using a 

newly collected data set that includes  pre  and  post  COVID-

19 data, the performance of various machine learning 

(ML)/deep learning (DL) models (including convolutional 

neural network (CNN)-gated recurrent unit (GRU)) was 

evaluated, and the impact of COVID-19 on electricity 

consumption (EC) models was analysed. The merging 

customer data and the development of a CNN-GRU model 

with self-attention features was observed to result in higher 

prediction accuracy [28]. The newly proposed hybrid support 

vector regression (SVR) model, tested with American 

residential electricity consumption data, exhibited superior 

forecasting accuracy compared to other models such as 

recurrent neural networks (RNN), generalised regression 

neural networks (GRNN), and particle swarm optimisation-

support vector machine (PSO-SVM), according to 

experimental results [29]. 

In this study, load forecasting for the Göksun district was 

performed using LSTM, GRU, CNN-LSTM, and SVR 

models with a data set of electricity consumption from 2019 

to the first four months of 2024 for the Göksun district in 

Kahramanmaraş [30]. The LSTM model, which exhibited the 

best performance (mean absolute error (MAE): 109.70, root 

mean square error (RMSE): 167.36, mean absolute 

percentage error (MAPE): 6.01, R-squared (R²): 0.46), was 

proposed for a feasible energy production model. Moreover, 

using the forecast results obtained from the HOMER 

software, simulation studies of the designed hybrid system 

aim to reduce economic and environmental parameters while 

proposing a feasible energy production model intended to 

meet the demand for electricity in the coming years. 

II. MODEL DESIGN OF USING HOMER 

A. Modelling of the Photovoltaic System 

HOMER software performs calculations using specific 

formulas to determine the energy production from solar 

energy, which is one of the renewable energy sources utilised 

in the programme. In the modelling of solar energy panels, 

the mathematical model that calculates the output power of 

PV panel arrays is presented as follows 

 ( )T

PV PV PV p c c,STC

T,STC

G
P Y f 1 T - T ,

G

 
 = +    

 

 (1) 

where YPV is the nominal capacity of the PV array in kW, fPV 

is the derating factor that accounts for losses due to the 

deviation from the rated power value specified on the DC 

nameplate, GT is the solar irradiance (kW/m2), GT,STC is the 

irradiance at standard test conditions (1 kW/m2), αp is the 

temperature coefficient of power ( %/℃), Tc is the PV cell 

temperature ( ℃), and Tc,STC is the cell temperature under 

standard test conditions ( ℃). 

B. Modelling of the Battery System 

The maximum battery charging power considered in the 

battery charge and discharge power calculations performed 

by the HOMER software is the minimum of three separate 

limitations on the maximum charging power of the battery 

bank. In the following equations, 

58



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 5, 2024 

 

 

( )

( )
( )

( )( )

batt ,cmax,kbm batt ,cmax,mcr batt ,cmax,mcc

batt ,cmax

batt ,c

k t k t

1

batt ,cmax,kbm k t k t

batt ,cmax,mcr

Batt max max

batt ,cmax,mcc

batt ,c batt ,

MIN P ,P ,P
P ,

n

kQ e Qkc 1 e
P ,

1 e c k t 1 e

1
P ,

N I V
P ,

1000

n n

c t

maxe Q Q

t



−  − 

−  − 

− 

=

+ −
=

− +  − +

− −
=



=

=

( )
( )

rt

k t k t

max 1

batt ,dmax,kbm k t k t

batt.d batt.c

,

kQ kQ e Qkc 1 e
P ,

1 e c k t 1 e

n n ,

−  − 

−  − 

















 − + + −
 =

− +  − +


=



 (2) 

where Q1 is the available energy in the battery at the 

beginning of the time step (kWh), Q is the total amount of 

energy in the battery at the beginning of the time step(kWh), 

Qmax is the total storage capacity of the battery (kWh), 

c, k (h−1) is the storage capacity ratio, αc (A/Ah) is the 

storage rate constant, which is the maximum storage charge 

rate, ∆t is the length of the time step (h), 𝑛batt is the number 

of batteries to be used for storage, Imax is the maximum 

charge current of the batteries (A), Vnom is the nominal 

voltage of the battery (V), nbatt,c is the charging efficiency of 

the battery (%), nbatt,rt is the round-trip efficiency, 𝐧𝐛𝐚𝐭𝐭,𝐝 is 

the maximum discharge power of the battery bank. 

C. Inverter 

The inverter converts the DC electricity from the PV panels 

into AC electricity with an efficiency of n_inv, as follows 

 
inv,Out inv PVP n P .=  (3) 

D. Examination of the Economic and Environmental 

Outputs of the Homer Software 

One of the most crucial outputs that the HOMER software 

will ultimately provide among its solutions is the economic 

analysis. The software presents the most feasible and 

applicable result to the user for the studied region based on 

the economic outcomes it generates. The calculation methods 

used in these results will be explained in this section. 

Information about the economic terms and calculation 

methods seen as software results is provided below. 

1. Initial Capital Cost (ICC) 

ICC is the total cost required for the initial installation of 

the project with all its components. 

2. Net Present Cost (NPC) 

NPC provides information about the profitability of a 

project. The NPC of a project is the value obtained by 

discounting all future cash flows at the real interest rate. In 

the NPC method, the present value of all revenues is 

compared with the present value of all expenses. These cash 

flow differences provide general information on whether the 

project is a suitable investment. 

Total NPC is the most important economic indicator in 

HOMER. HOMER ranks systems according to their NPC 

values. The NPC is calculated using the following formula: 
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where Cyıl,top is the annualised system cost ($/ year), CRF is 

the capital recovery factor, Rprj is the project lifetime, i is the 

real interest rate, and N is the number of years. 

3. Levelized Cost of Energy (COE) 

Levelized COE is the ratio of the total cost of a system over 

its lifetime to the total energy it produces over the same 

period. To calculate COE, HOMER divides the annualised 

production cost by the total useful electrical energy 

production. The expressing COE is as follows 

 
y l,top
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ı
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E E E
=
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 (5) 

where Cyıl,top is the total annualised system cost ($/year), EAC 

is the amount of AC load served (kWh/year), EDC is the 

amount of DC load served (kWh/year), Eşeb,s is the amount 

of electricity sold to the grid (kWh/year), Cyıl,top is the total 

annualised cost. Cyıl,top is the sum of the annualised costs of 

all the components of the system and other annualised costs. 

HOMER uses this value to determine the levelized COE and 

the total NPC. 

4. Calculation of Environmental Impact Using Emission 

Values 

HOMER calculations similarly involve simulation studies 

where, if a generator is connected to the system, the emissions 

of environmentally harmful substances such as carbon 

dioxide in a hybrid system are calculated using the following 

 
2 f f f ctCO 3.667 m HV CEF X ,=      (6) 

where tCO2 is the amount of carbon dioxide emissions, mf is 

the fuel quantity in liters, HVf is the fuel heating value (MJ/L), 

CEFf is the carbon emission factor (tons of carbon per TJ), 

and Xc is the oxidized carbon factor. 

III. ELECTRICAL LOAD AND LOAD ESTIMATION 

The objective of this study is to create models with high 

accuracy to forecast the electricity consumption of future 

years from existing data and to develop a feasible energy 

production model using the forecast results obtained from the 

HOMER software.  

A. Methodology 

The data were first subjected to preprocessing, which 

included date indexing, handling missing values, adding 

month information, data normalisation, and preparing time 

series data. Subsequently, four different ML models were 

applied: LSTM, SVM, CNN-LSTM, and GRU. For each 

model, training was conducted using the training data, after 

which the model forecasting capacity was evaluated (Fig. 1).  

For the optimisation and analysis of the microgrid, 
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forecasts for the Göksun region are collected. The cost price 

for each component is entered into HOMER as an input. A 

grid search algorithm and a proprietary derivative-free 

algorithm are used to determine the least costly model. 

Resources are optimised to maximise usage and keep the cost 

of electricity production low. The most optimised system 

architecture is taken as the optimised result. Different costs 

associated with various components are analysed. Time series 

data for the entire year are also considered to analyse how the 

energy balance is achieved by each system component.

  
Fig. 1.  The overall design of our study.

 

B. Research Region (Göksun) and Meteorological Data 

Figure 2 shows the geographical position of Göksun (Lat.: 

2 440 N, Long.: 101 420 E, Lat.: 38° 1' 13.3752'' North, and 

Long.: 36° 29' 41.5284'' East). The average annual rainfall in 

the region is 550 ml to 650 ml. The altitude is 1350 meters 

above sea level. There is an Afşin-Elbistan Thermal central, 

40 km from the region, which has an installed capacity of 3.5 

MegaWatt (MW). Figure 2 illustrates the location of the 

Göksun district, its satellite imagery, and the distance 

between Göksun and the Göksun district that predominantly 

exhibits a snowy and arid climate throughout most of the 

year. Winters are characterised by cold temperatures with 

snowfall, whereas summers experience limited precipitation. 

Renewable energy resources that can be harnessed in this 

region include solar, wind, and water sources. Solar radiation 

data and the corresponding clearness index for the Göksun 

location, obtained from NASA databases, are illustrated in 

Fig. 3.  

C. Load Profile and Electrification 

The real load profiles of the Göksun transformer station, 

obtained from the TEİAŞ Göksun Substation, are provided in 

Fig. 4 for each month of the year 2023. The decrease in 

consumption observed in February and March 2023 can be 

attributed to the earthquake that occurred on February 6, 

2023. In this study, the simulation of the system in the 

HOMER software is performed for 365 days of the year, 

encompassing a total of 8760 hours. 

HOMER synthesises the load profile randomly using the 

data input for a single day, incorporating stochastic factors. 

When generating load profiles with the HOMER software, 
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random variability factors are applied. In Fig. 5, an annual 

load profile is provided, which is created with a 5 % daily 

stochasticity and a 5 % stochasticity between time intervals. 

 
(a) 

 
(b)

 
(c) 

Fig. 2.  The research region is Göksun district, specified with (a) its location in Homer and (b) a satellite image from Google Maps (c) its location between 

Afşin-Elbistan Thermal power plant and Göksun.  

 
Fig. 3.  Graph of solar radiation data and the clearness index, depicting the fluctuations of both variables over time and their influence on the availability of 

solar energy. 

 
Fig. 4.  Monthly average load data for the year (HOMER). 

 
Fig. 5.  Annual load profile generated by HOMER showing the change in electrical energy demand. 
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D. Time Series Models 

A time series is a sequence of data points observed over 

specific time intervals. The LSTM algorithm, which aims to 

address the gradient issues encountered in RNN methods 

through the use of forget and output gates, is a prevalent deep 

learning model in time series analysis [31]. 

The fundamental components of LSTM consist of the input 

gate (it), forget gate (ft), and output gate (ot). The forget gate 

ascertains the information that ought to be forgotten in the 

memory by examining the current input (xt) and the previous 

state information (ht-1). The input, forget, and output gates 

serve as components that regulate the updating status of the 

hidden state information (ht) and memory cells (ct) (Fig. 6). 

 
Fig. 6.  Architecture of the LSTM algorithm showing the basic components 

such as input layer, forget gate, input gate, cell state, output gate, and output 

layer [32]. 

In Fig. 6, the candidate memory cell, denoted as (ct
' ), is 

being designed. Since the actions of the various gates have 

not yet been determined, the candidate memory cell ct
' is 

introduced for the first time. To compute the value of the 

candidate memory cell ct
' , a tanh activation function is used, 

similar to those employed by the three gates presented above. 

The equation corresponding to time step t for ct
'  is calculated 

as shown in the formulas table, where wfrepresents the 

memory cell weight value, and c is the bias parameter. 

In an LSTM model, there are two special gates that manage 

the inputs and forgetting. The amount of new data added, 

denoted as (ct
' ), is controlled by (it). The second gate, which 

is the forget gate, ft, indicates how much of the previous 

content of the memory cell, (ct-1), still remains. Consequently, 

the update equation for (ct) is determined as follows: 
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where wi is the input gate weight value, wf is the forget gate 

weight value, wo is the output gate weight value, wc is the 

memory cell weight value, 𝜎 is the sigmoid activation 

function, b is the bias value, ot is the node output value at time 

t, 𝑐𝑡
′  is the candidate cell state at time t, calculated using the 

hyperbolic tangent activation function to create a new 

memory content based on the previous hidden state and the 

current input, 𝑐𝑡 is the current cell state at time t, which is 

updated by combining the previous cell state 𝑐𝑡−1 with the 

input gate 𝑖𝑡 and the forget gate 𝑓𝑡, ℎ𝑡 is the hidden state 

output at time t, which is derived from the current cell state 

𝑐𝑡 and the output gate 𝑜𝑡 using the hyperbolic tangent 

activation function. 

GRU is also a variant of RNN and is designed to capture 

long-term dependencies. GRU cells regulate the flow of 

information using memory cells and gate mechanisms. In 

sequence prediction tasks, GRU cells are connected in 

succession, and at each step, a prediction is generated. Each 

GRU cell receives the previous hidden state (ht-1) and the 

current input (xt), computes the update and reset gates, forms 

the candidate hidden state, and updates the final hidden state. 

The last hidden state (ht) is then fed into an output layer to 

produce the prediction value. During training, the GRU 

network optimises its parameters (weights and biases) using 

a loss function that minimises the discrepancy between the 

actual values and the predicted values. 

CNN, renowned for its superior performance in visual data 

analysis, can also yield impressive results in the prediction of 

time series data. CNN employ filters to learn patterns from 

time series data. These filters analyse specific segments of the 

time series data and extract features. 

In our study, the used CNN-LSTM model initially extracts 

local features from time series data using a Conv1D layer. 

Subsequently, the LSTM layer learns long-term dependencies 

using these features. Finally, a dense layer generates the 

prediction using the hidden state of the LSTM layer. 

To facilitate comparison, four popular algorithms have 

been implemented: SVR [33], GRU [34], a CNN-LSTM 

hybrid model, and the LSTM model [35]. 

Parameters for the prediction models were optimised using 

a trial-and-error approach and were configured as follows: 1) 

SVR, a variant of SVM was used with the “rbf” kernel 

function. The penalty parameter C and epsilon were set to 10 

and 0.1, respectively. 2) The CNN-LSTM model used 

includes a Conv1D layer to capture local features in time 

series data and an LSTM layer to capture long-term 

dependencies. The first layer is a Conv1D layer with 64 filters 

and a kernel size of 2, while the second layer is an LSTM 

layer with 50 units. The model incorporates a dropout (0.2) 

layer to avoid overfitting. 3) The GRU model consists of two 

GRU layers to capture dependencies in time series data, along 

with Dropout layers and an L2 regulariser to mitigate 

overfitting. The first GRU layer has 200 units with 

return_sequences=True, while the second GRU layer has 100 

units and returns the final cell state. (4) The proposed LSTM 

model comprises three LSTM layers to capture long-term 

dependencies in time series data. The first two layers are 

configured with return_sequences=True, allowing the outputs 

to be returned as sequences, while the third layer, with 

return_sequences=False, returns the final cell state. The 

LSTM model layers utilise 512, 512 and 256 units with a 

“relu” activation function, in addition to dropout layers and 

an L2 regulariser. 

62



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 5, 2024 

 

E. Evaluation Criterion 

The following MAE, RMSE, MAPE, and R2 metrics were 

used to evaluate the prediction performance of the ML 

models: 
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where n is for the sample size, 𝑦̂𝑖 is for the prediction, 𝑦̅𝑖 is 

for the average value, and 𝑦𝑖 is for the observation. 

IV. FORECASTING AND SIMULATION 

A. Forecasting Comparisons 

In this section, the prediction results of seven prediction 

models have been compared with the comparison metrics, 

and the graph of these comparison results has been provided. 

Figure 7 shows the real data of electricity consumption 

along with various predictions of the ML model from 2019 to 

2024. The metric mean squared error (MSE) has been used to 

measure the accuracy performance of the predictions. MSE 

evaluates the prediction accuracy of the model by taking the 

average of the squares of the differences between the 

predicted values and the actual values. A lower MSE value 

indicates that prediction of the model is closer to the actual 

data. The LSTM model has performed well in accurately 

predicting high-consumption periods in 2020 and 2021. The 

GRU model, on the other hand, was more successful in 

predicting low-consumption periods in 2022 and 2023. The 

CNN-LSTM model has generally performed well to follow 

the actual data. The SVR model was the most successful 

model in predicting high-consumption periods in 2021 and 

2022. However, there were deviations in some periods. The 

February 2023 period is where the difference between the 

predictions of the models and the actual consumption value is 

the highest. This significant deviation is due to the earthquake 

that occurred in Turkey on 6 February 2024. Extraordinary 

circumstances, such as earthquakes, can cause sudden drops 

in electricity consumption.

 
Fig. 7.  Actual electricity consumption data and model predictions over the years 2019–2024.

According to the data obtained in Table I, when predicting 

the original demand series, the SVR model has an MAE of 

115.01, an RMSE of 170.24, an MAPE of 6.52 %, and an R2 

value of 0.44. The GRU model has an MAE of 112.61, an 

RMSE of 172.94, a MAPE of 6.19 %, and an R2 value of 0.42. 

The CNN-LSTM model has an MAE of 127.11, an RMSE of 

179.56, an MAPE of 6.75 %, and an R2 value of 0.37. The 

LSTM model, on the other hand, has an MAE of 109.70, an 

RMSE of 167.36, a MAPE of 6.01 %, and an R2 value of 0.46. 

These results indicate that the LSTM model performs 

better than other models in predicting the original demand 

series, while the SVR and GRU models show similar 

performance, and the CNN-LSTM model shows a lower 

performance compared to other models. Particularly, the 

LSTM model has the lowest MAE, RMSE, and MAPE 

values, and also has the highest R2 value. This demonstrates 

that the LSTM model makes the most accurate predictions 

when estimating the original demand series. 

In all the prediction model graphs obtained in Fig. 8, it is 

observed that the electricity demand increases as the years 

progress (from 2023 to 2028). This indicates that energy 

demand will continue to increase in the future. Additionally, 

seasonal fluctuations are observed in all models in Fig. 8. 

Particularly, the electricity demand is higher during the 

summer months (June, July, August). This is likely related to 

the increased cooling requirements. 

TABLE I. THE FORECASTING PERFORMANCE OF ALL 

BENCHMARK MODELS. 

M
o

d
el

 

Forecasting original demand 

MAE RMSE MAPE (%) R2 

SVR 115.01 170.24 6.52 0.44 

GRU 112.61 172.94 6.19 0.42 

CNN-LSTM 127.11 179.56 6.75 0.37 

LSTM 109.70 167.36 6.01 0.46 
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                                                                              (a)                                                                                      (b)                           

 
                                                                              (c)                                                                                      (d)                           

Fig. 8.  (a) Monthly LSTM estimates; (b) Monthly GRU estimates; (c) Monthly CNN-LSTM estimates; (d) Monthly SVR estimates.

Furthermore, when examining the energy consumption 

forecasts for future years in Fig. 8 on a model basis, the 

predictions of the LSTM model appear more stable compared 

to other models and show significantly higher estimates for 

2028. The predictions of the GRU model follow a trend 

similar to that of LSTM, but forecast higher values in some 

months, particularly during the summer. Pronounced 

fluctuations are observed especially in the summer and winter 

months. The energy consumption predictions of the CNN-

LSTM model for future years exhibit a higher variance 

compared to the LSTM and GRU models. It has particularly 

made higher predictions than other models during the month 

of August. The predictions of the SVR model demonstrate 

more pronounced seasonal fluctuations, and it has made 

relatively lower predictions for some months, especially 

during the winter months. 

B. Configuration of the Model System and Component 

Data 

Turkey aims to increase its solar energy capacity by around 

500 % to reach 52.9 gigawatts by 2035, making solar energy 

the source with the highest installed capacity [36]. This study 

focusses on the techno-economic and environmental analysis 

of the region, using the LSTM model and the load forecast 

values for 2026 and 2028. The current photovoltaic 

production of Göksun district is projected to increase from 

4.82 MW to 8000 MW in 2026 and 10000 MW in 2028. This 

study focusses on the optimal hybrid design for 2026 and 

2028 using the load predictions obtained through the LSTM 

model, as it gives better results in predictive modelling. 

Throughout the simulation, assuming inflation expectations 

of 0 %, 4 %, and 8 %, potential price increases have been 

uniformly applied to all components of the system except the 

PV modules. Anticipating that PV production technology will 

advance rapidly and production costs will decrease over the 

years, a 10 % reduction has been applied to the capital and 

replacement costs of the PV system. Changes in inflation 

rates have been similarly reflected in grid power prices and 

sellback values. 

In this section, an evaluation of the technical, economic, 

and environmental performance of a PV hybrid system is 

carried out in the Göksun district based on the current 

situation and the results of the load forecast for 2026 and 

2028. Various scenarios have been proposed for the analysis 

of optimal system performance, and the results are presented 

in comparative tables. 

Figure 9 illustrates a simplified schematic diagram of the 

grid-connected (hybrid) system. Detailed information on the 

PV panels, converter, and battery used in the designed system 

is provided below. 

 
Fig. 9.  General configuration of a hybrid electricity generation system 

including a photovoltaic system, battery storage, and grid connection. 

1. PV Modul 

The standard test conditions (STC) for the PV panel to be 

used in simulations in the HOMER programme are 

considered to be irradiance of 1000 W/m2, cell temperature 

of 25 °C, and measurement tolerance of ±3 %. 

2. Converter 

In the study, the Huawei-45KTL model inverter, which is 

capable of producing a pure sine wave, has been selected. 

3. Battery 

The designed hybrid system will use a BAE brand 210 Ah 

maximum capacity battery. BAE PVS Block solar batteries 

require minimal maintenance and are used to store electrical 

energy in solar power plants. The BAE PVS 210 Ah 12 V 
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model has a dry weight of 51 kilogrammes. Its dimensions 

are 380 mm in length, 205 mm in width, and 385 mm in 

height. More detailed technical specifications for the PV 

module converter and battery, as well as investment cost 

information, are provided in Appendix A, Table A-I. 

− Case 1. Base System. 

In the first case, the Göksun district was examined 

according to the available resources. The schematic 

representation of the hybrid system designed in the HOMER 

programme to reflect the current situation is shown in Fig. 9. 

The cost of electricity sold by the grid is set at $0.099 kWh, 

with an annual inflation rate of 4 % and a project lifespan of 

25 years. The load demand has been met by both renewable 

sources and the grid. For this case, the optimal values of all 

system components were determined, resulting in the lowest 

COE of $0.0792 and the lowest NPC of $85.9 million, with 

an operating cost of $1.92 million. The optimal number of 

batteries is 166, and the optimal converter capacity is 

4007 kW. Figure 10, which shows the average monthly 

electricity generation, indicates that the annual PV production 

is 7149.013 kWh. Figure 11 clearly demonstrates that as PV 

production and converter utilisation capacity increase, the 

amount of CO2 emissions decreases from 15458.85 kg/year 

to 11387.46 kg/year.

 
Fig. 10.  Monthly actual consumption data for 2023. 

 
Fig. 11.  Correlation between annual electricity production and CO2 emissions.

− Case 2. The Hybrid System Designed for the Year 2026. 

Figure 9 presents the schematic representation of the 

hybrid system for the year 2026. The forecasted load demand 

for the year 2026 has been calculated as 82037.06 kWh/d. 

This section examines the three scenarios. In the first 

scenario, the installed PV capacity in the region remains 

constant at the power level of 2023 until 2026. In the second 

and third scenarios, it increases to 6 MW and 8 MW, 

respectively. In these scenarios, the economic and 

environmental impacts, considering the effect of inflation, 

will be discussed. In this case study, the design of an 8 MW 

solar power plant is the most favourable scenario in terms of 

economic and environmental parameters. In this scenario, as 

the PV production and converter usage capacity increases, the 

amount of CO₂ emissions decreases from 11545.576 kg/year 

to 10178.873 kg/year. This amount has been obtained in the 

black-coloured region where the excess electricity is the 

lowest. It is evident that the increase in inflation negatively 

affects the economic parameters. Other system data for all 

three scenarios for the year 2026 are provided in Table II. 

− Case 3. The Hybrid System Designed for the Year 2028.  

Figure 12 shows the schematic representation of the hybrid 

system for the year 2028. The load forecast for this year, 

estimated using the LSTM model, has been calculated as 

87068.93 kWh/d. This case study presents PV production 

forecasts for the year 2028 under three different scenarios. In 

the first scenario, the level of PV production is assumed to 

remain constant at 4.82 MW, the same as in 2023. 

In the second scenario, PV production is projected to reach 

the highest expected level of 8 MW by 2026. For the final 

scenario, PV production is expected to increase to 10 MW by 

2028. Table II presents the results obtained for this case study. 

The increase in PV production has had positive impacts, 

resulting in reductions in both economic and environmental 

parameters.  

The increase in the number of batteries and converter 

capacity has also contributed to the reduction of these 

parameters. Figure 13 illustrates the reduction in CO2 

emissions from 20082.0 kg/year to 13416.83 kg/year, 

demonstrating the impact of increased PV production and 

converter usage capacity. Examining the scale values of the 

surface colours in the figure clearly shows that the amount of 

excess electricity increases as PV production increases. 

Figure 14 is plotted to show how COE is affected for the 

years 2026 and 2028 in the planned hybrid system under 

inflation expectations of 0 %, 4 %, and 8 %. This graph 

demonstrates that increasing PV production yields positive 

results in environments with low inflation.
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TABLE II. ECONOMIC AND ENVIRONMENTAL PARAMETERS OF THE HYBRID SYSTEM DESIGNED FOR THE YEARS 2023, 2026, AND 

2028. 

Parameters Case I Case II Case III 

 Base system Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

COE ($) 0.0791 0.0887 0.08129 0.0689 0.0949 0.08568 0.07522 

NPC ($) *106 8.586 9.585 9.075 8.300 10.29 12.55 11.66 

Battery 116 200 11 268 69 55 150 

Ren. Fraction (%) 28.1 28.2 33.9 42 28.1 34.5 40.7 

Excess electricity (%) 0.064 0.062 0.065 0.025 0.0317 0.0289 0.0708 

Converter (kW) 4007 4019 5039 7088 4160 6574 8449 

CO2 [kg/year] 11388.324 11329.156 10760.846 10178.873 11377.427 14000.293 13416.829 

SO2 [kg/year] 49374 49117.0 46.653 44.130 49.326 60.697 58.168 

NOx [kg/year] 24146 24021.0 22.816 21.582 24.123 29.684 28.447 

 
Fig. 12.  Correlation between annual electricity production and CO2 emissions. 

 
Fig. 13.  Correlation between annual electricity production and CO2 emissions. 

 
(a) 
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(b) 

Fig. 14.  Impact of inflation on the COE: (a) 2026 year; (b) 2028 year.

V. DISCUSSIONS 

The increase in energy demand and the inability to store 

electricity make forecasting the future load requirements of a 

region a challenging problem. A well-designed load 

forecasting model should not only reduce the cost of the 

system being designed but also maintain the balance between 

supply and demand.  

In this study, several ML models, namely LSTM, GRU, 

CNN-LSTM, and SVR were used to forecast electricity 

consumption in the Göksun district of the Kahramanmaraş 

province for the period 2019–2024. The LSTM model 

excelled in accuracy compared to other models and 

successfully captured the high-consumption periods in 2020 

and 2021. The SVR model also achieved close results to 

LSTM, accurately predicting elevated consumption levels in 

2021–2022. Meanwhile, the GRU model performed well 

during low-consumption periods, while the CNN-LSTM 

model generally followed the trend but was less successful 

than the other models. The earthquake that occurred in 

Turkey in February 2023 created the largest discrepancy 

between the prediction of the model and the actual 

consumption, highlighting the impact of such unforeseen 

events on electricity use and the need for models to account 

for them. 

In this study, the LSTM model performed the best, but the 

optimal model may vary depending on different data sets and 

applications. Therefore, it is essential to compare the 

performance of various models to determine the most suitable 

one. The data set used in this research is relatively small; 

larger data sets spanning longer time frames could enhance 

the accuracy of the models. Electricity consumption is 

impacted by a multitude of external factors, including 

economic expansion, population growth, climatic conditions, 

and unforeseen events. Enhancing the accuracy of the models 

could be achieved by integrating these factors. The prediction 

results obtained from this study can serve as a valuable input 

in designing a hybrid energy system that is tailored to the 

needs of the Göksun district. Demand forecasts generated 

using the LSTM model can help optimising the integration of 

renewable energy sources such as solar and wind power and 

determining the appropriate dimensions of energy storage 

systems. In conclusion, among the compared models, the 

LSTM model has been observed to be effective in capturing 

the underlying trends and variations in load data, making 

significant contributions to the design of hybrid systems. 

However, the impact of extraordinary situations and the need 

to consider additional variables stand out as crucial research 

areas for future studies. In this context, the design of hybrid 

models and continuous updates will play a critical role in 

improving the accuracy of electricity consumption forecasts. 

VI. CONCLUSIONS 

The results have shown that increasing the current 

photovoltaic energy production of 4.82 MW in the Göksun 

district would yield positive results in terms of economic and 

environmental parameters. Despite the projected increase in 

load demand for the years 2026 and 2028, the designed 

system scenarios have reduced the current COE from $0.079 

to $0.0689, and $0.075, respectively. Furthermore, the 

amount of CO2 emissions released into the environment has 

decreased from 20082.0 kg/year to 13416.83 kg/year in 

response to the increasing load demand. 

APPENDIX A 

TABLE A-I. TECHNICAL SPECIFICATIONS AND ECONOMIC PARAMETERS OF SYSTEM COMPONENTS. 

Component  Specification  Value  Capital Cost ($)  Replacement ($)  O&M ($/year) 

  Maximum Power (Wp)  500       

  Voltage at Maximum Power (V)  38,46       

  Current at Maximum Power (A)  13,01       

PV (1 kW)  
Open-Circuit Voltage (V) 

Short Circuit Current (A) 
 

45,52 

13,80 
 125  125  10 

  Efficiency  %20,9       

  Max. voltage (DC V)  1500       

  Cell Operating Temperature (°C)  45 ±2       

  Maximum Input Voltage (V)  1500       

  Maximum Input Current (A)  22       

  Maximum Short-Circuit Current (A)  30       

Converter (45 kW)  Output Power (W)  45000  3500  3500  100 
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Component  Specification  Value  Capital Cost ($)  Replacement ($)  O&M ($/year) 

  Maximum Apparent Power (VA)  50000       

  Maximum Capacity (Ah)  210       

1 Battery  Operating Voltage (V)  12  315  300  - 

  Weight (kg)  51       
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