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Abstract—This paper presents a comprehensive study on the 

application of deep learning techniques to accurately detect 

sleep apnea. The study leverages a dataset obtained from the 

Sleep Laboratory of the Department of Chest Diseases of Yozgat 

Bozok University, with the aim of developing an effective 

decision support system capable of identifying cases of sleep 

disorders with high accuracy. The proposed methodology 

focusses on the use of deep neural networks (DNNs) to enhance 

the accuracy and reliability of sleep apnea detection. By 

employing meticulous data collection, preprocessing, and 

analysis, the study demonstrates the potential of DNNs to 

capture intricate and high-dimensional features within complex 

sleep data, allowing precise and reliable diagnosis. The 

experimental results showcase the effectiveness of the proposed 

DNN-based classifier design, achieving an accuracy of 96.48 %. 

The study’s contributions lie in the enhancement of sleep 

disorder diagnosis through the integration of deep learning 

techniques, offering promising implications for clinical practice. 

Early detection of sleep disorders has the potential to 

significantly improve patient outcomes and overall quality of life 

and lays the foundation for further advancements in the field of 

sleep medicine. 

 
Index Terms—Apnea; DNN; Classification; Preprocessing; 

Sleep disorder. 

I. INTRODUCTION 

Obstructive sleep apnea (OSA) is one of the most 

important sleep-disordered breathing syndromes seen in the 

upper airways during sleep [1]. This syndrome is 

characterised by snoring and increased respiratory efforts to 

overcome resistance to the upper airways [2]. According to 

previous related works, more than one billion people are 

affected by OSA [3]. OSA patients are at risk for heart-related 

diseases that can lead to death [4]. Therefore, early diagnosis 

and treatment are essential for public health [5]. The 

guidelines of the American Academy of Sleep Medicine 

(AASM) are the gold standard method for OSA detection 

applied in sleep clinics [6]. Electrocardiogram (ECG), 

electroencephalogram (EEG), oxygen saturation, respiratory 

effort, and airflow sensors are connected to polysomnography 

(PSG), and the whole night’s sleep data of a patient are 

recorded for analysis and sleep scoring [7]. Since every 

patient’s data are composed of around 800 epochs (30 

seconds each), analysing sleep and calculating the apnea-

hypopnea index (AHI) is a time-consuming process that must 

be performed by a sleep doctor or sleep expert [8]. The apnea-

hypopnea index can be calculated by 60 × (apneas + 

hypopneas)/total sleep in minutes. In recent years, the use of 

artificial intelligence in biomedical applications has grown 

extensively [9]–[11]. Over the last decade, computer 

engineers have engaged in productive collaborations with 

sleep doctors to advance sleep stage scoring, the 

identification of obstructive sleep apnea, and the accurate 

calculation of the AHI [12]–[16]. In pursuit of this goal, 

certain researchers adopted machine learning techniques, 

such as the hidden Markov model, for the purpose of feature 

extraction and classification [17]. Machine learning 

techniques such as supervised, unsupervised, and 

reinforcement learning can be employed in OSA detection 

[18]. Most studies are based on supervised learning. Deep 

learning approaches are considered subtypes of machine 

learning [19]. They can be categorised into several types, 

including deep neural networks (DNNs), convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), 

and long short-term memory (LSTM) networks. With the 

proliferation of methods, deep learning-based models are 

being increasingly used for OSA detection [20], [21]. 

Although deep learning approaches have shown 

improvements in detecting OSA, they still have some 

limitations, including the use of a single channel for 

detection, achieving only limited levels of accuracy, and 

relying on publicly available datasets [22]. In this study, we 
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have employed a feedforward neural network with multiple 

hidden layers as a typical example [23] to detect OSA events 

in PSG data. Deep learning enables the model to learn 

relevant features directly from raw data through neurons, 

convolution, and pooling layers. Several works have been 

done to detect sleep apnea using deep learning. Morillo and 

Gross [24] used neural networks as a classifier to analyse 

OSA using pulse oximetry. Khondoker, Gubbi, and M. 

Palaniswami [25] decomposed the ECG signal into eight 

levels of detailed coefficients. Then, a feedforward neural 

network structure with a hidden layer of 30 neurons was fed 

into the event detection stage. Ozdemir et al. proposed a 

support vector machine and deep learning classifier that uses 

respiratory signals for OSA detection. According to previous 

works, our proposal differs from similar studies in having its 

own dataset, higher accuracy values, and using all channels 

instead of a single one [8]. OSA datasets are generally 

composed of extremely large data, sometimes with tens of 

millions of lines for each patient. Since our model is based on 

supervised learning and the supervisor plays an important 

role in classification and marking OSA and non-OSA events, 

we prepared our dataset from Yozgat Bozok University Sleep 

Clinics, which is composed of data from 50 patients. To 

compare the proposed model with similar works, Section II is 

prepared. The training and testing phases are the two main 

phases for generalisation capability. To validate our model, 

some of the patients’ data have been used for testing. 

Therefore, data preprocessing must be performed accordingly 

to automatically discriminate episodes of night apnea from 

normal sleep periods. Data preparation, model creation, and 

testing methods are explained in Section III. The results 

obtained are presented in Section IV, and the conclusions and 

discussion phase are given in Section V. 

The primary contributions of this study are as follows. 

− One of the key contributions of this study is the 

acquisition of an original and diverse dataset from the 

Sleep Laboratory of the Yozgat Bozok University 

Department of Chest Diseases. This dataset includes sleep 

data from 50 patients, captured through 19 distinct sensors, 

offering a comprehensive overview of sleep patterns and 

disorders. The uniqueness of this dataset adds value to the 

study by presenting real-world scenarios and allowing for 

more accurate and relevant model training and testing. 

− Addressing the challenge of class imbalance, this study 

contributes by employing undersampling techniques based 

on the “majority” class. This strategy effectively balances 

the dataset, ensuring that the model is trained and tested on 

representative instances of each class. 

− This study contributes by showcasing the successful 

application of deep learning techniques, specifically deep 

neural networks (DNNs), in the field of detection of sleep 

apnea. The use of DNN offers a novel approach to 

accurately classify cases of sleep disorders, enriching the 

landscape of diagnostic tools available to healthcare 

professionals. 

− By achieving an impressive accuracy rate of 96.48 % in 

the detection of sleep apnea, this study contributes to 

improving the diagnostic accuracy of sleep disorders. The 

proposed model’s ability to consistently deliver accurate 

results in diverse patient profiles reflects its potential to 

enhance clinical decision making and patient care. 

− The results and insights presented in this study contribute 

by guiding future research directions in the detection of 

sleep disorders.  

II. METHODOLOGY 

A. Dataset 

The sleep dataset was provided by the Sleep Laboratory at 

the Department of Chest Diseases of Yozgat Bozok 

University. The ethical permissions required for data 

collection were duly obtained. The sleep data collected comes 

from patients of different ages and genders. Their general 

distribution has been determined to occur depending on the 

number of patients coming to the hospital and the prevalence 

of the disease in the community. No patient selection was 

made with respect to a certain age and gender in the creation 

of the dataset, and it includes the data of all patients admitted 

to the hospital within a certain period. In the training and 

testing stages of this study, data from 50 patients were used. 

In a nutshell, as shown in Table I, there are 761,000 Apnea 

records, approximately 1.8 million Hypopnea records, and 

around 226 million normal records for 50 patients. However, 

a substantial number of normal records were omitted. Even if 

an individual has severe apnea, instances of displaying apnea 

or hypopnea symptoms during an eight-hour sleep session are 

comparatively scarce compared to the normal state. This 

circumstance negatively impacts both the learning and 

classification phases of the model’s training, leading the 

trained model to exhibit a tendency to label all cases as 

normal during testing. To resolve this issue and rectify the 

considerable class imbalance, undersampling was carried out 

based on the “majority” class, resulting in a reduction in the 

number of normal instances for each patient. As a result, the 

average number of normal instances per patient, initially 

around 4.5 million, was reduced to 12,000 instances. This 

strategy effectively rectified the sample imbalance across 

classes. 

TABLE I. DATASET DETAILS. 

Before Undersampling Data Size 

Patient ID Apnea Hypopnea Normal Total 

Total Data 761000 1843200 226651000 229255200 

Average 15220 36864 4533020 4585104 

After Undersampling Data Size 

Patient ID Apnea Hypopnea Normal Total 

Total Data 761000 1843200 617000 3221200 

Average 15220 36864 12340 64424 

 
Even if humans have severe apnea during sleep due to their 

nature, the number of epochs in which they show signs of 

apnea in an eight-hour sleep period is quite low and this is 

reflected in the collected data. When the average values were 

examined, it was observed that the number of apnea and 

hypopnea samples was very low compared to the normal 

period. This will result in the following. 

1. Biased learning situation. In other words, while it will 

not have difficulty recognising the common class because 

it creates a bias against the majority class, it will have 

difficulty recognising the less common class. This situation 

will have a positive impact on the classification 

performance in terms of our problem, but it will cause 

difficulty in recognising the disease, as it will have 
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difficulty in determining the critical apnea and hypopnea 

situations. 

2. Misleading accuracy situation will occur. In other 

words, the overall performance of the model will be high 

because it recognises the class well with a large number of 

samples, but it will fail to evaluate the disease states that 

need to be determined. For these reasons, it is necessary to 

solve the problem of sleeping sickness with a serious data 

imbalance. Various methods such as oversampling, 

undersampling, ensemble learning, and error-correction 

mechanism can be applied to solve this problem. In terms 

of this problem, if oversampling is performed, synthetic 

data must be generated 30 times for each minority class 

example, and this causes a serious overfitting problem. In 

ensemble learning models, approximately two-thirds of the 

data are reserved for training, but this is not enough to 

balance the data for the sleep apnea problem, where there 

is an approximately 30-fold difference between classes. 

With error-correction mechanisms, erroneous situations 

caused by convergence can be corrected. However, this did 

not make it possible to avoid overfitting for this problem 

with serious data imbalance. For these reasons, the 

undersampling method was used in this study, considering 

data loss. 

B. Data Preprocessing 

The initial and most extensive phase of the project involved 

collecting sleep data and having it evaluated by a specialised 

sleep doctor. For this research, sleep information was 

collected from 50 patients who visited the Yozgat Bozok 

University Sleep Centre. Data were captured using 19 distinct 

sensors, including seven EEG, three EMG, one ECG, two eye 

movement, one SpO2, two chest effort, one thermistor, one 

pressure sensor, and one body position sensor. These sensors 

were used to comprehensively assess each patient’s sleep 

patterns and conditions. Subsequently, the manual evaluation 

of the obtained data constitutes the subsequent stage in the 

data preparation process. The involvement of sleep specialist 

doctors in this step is essential, given its utilisation in the 

learning model. The responsibility for conducting this phase 

was undertaken by the doctor involved in the study. The 

evaluation encompassed five distinct stages (WK, N1, N2, 

N3, and REM) according to the AASM guidelines. As 

stipulated in the standard protocol, a sleep duration of 30 

seconds was defined as one epoch, and an average sleep span 

of 6 to 6.5 hours was marked as 800 epochs. Several 

preprocessing procedures were required to prepare this 

dataset for use in network-based modelling frameworks 

aimed with automated scoring. This necessity arises due to 

variations in sampling frequencies across diverse sleep 

sensors. A comprehensive explanation of this aspect can be 

found in the publication in [16], and analogous techniques are 

implemented in the current study. 

C. DNN 

Deep neural networks (DNNs), especially convolutional 

neural networks (CNNs), have been widely used in various 

image classification tasks, showing significant performance 

improvements since 2012 [26], [27]. Traditional neural 

networks, with only one hidden layer, are considered 

“shallow” models. Although they can effectively solve 

simple problems, they often struggle with complex and high-

dimensional data because of their limited capacity to learn 

from the data. In contrast, DNNs consist of multiple hidden 

layers, which enhances their ability to learn higher-level and 

abstract features. This makes them capable of extracting more 

meaningful and abstract features from complex data 

structures. Consequently, DNNs are better suited for large 

and intricate datasets, achieving superior results. 

DNNs have proven to be effective in detecting sleep apnea 

using wearable technologies. Various types of DNN, 

including deep transfer learning models, have been used to 

classify sleep stages and detect SA using wrist-worn 

consumer sleep technologies (CST) [28]. These models 

process accelerometer and photoplethysmography (PPG) 

signals, training on clinical datasets and validating on both 

clinical and wrist-worn device data. Although the results 

showed significant performance improvements when trained 

on clinical data, the models performed slightly less well on 

wearable device data compared to clinical data. 

Another study in this field presents an algorithm to detect 

sleep apnea using deep learning models on single-lead ECG 

signals. The proposed LSTM-CNN model combines CNN 

and long short-term memory (LSTM) networks to extract 

spatial and temporal features from ECG signals, 

automatically distinguishing apnea events from normal 

segments. Tested on the Apnea-ECG and UCDDB datasets, 

the model achieved high accuracy, sensitivity, and 

specificity, with average accuracies of 97.21 % per segment 

and 100 % per recording on the Apnea-ECG dataset, and 

93.70 % accuracy, 90.69 % sensitivity, and 95.82 % 

specificity on the UCDDB dataset [29]. 

D. Evaluation Metrics 

In sleep apnea detection studies, various evaluation metrics 

such as accuracy, precision, recall (sensitivity), and F-score 

are used to assess the performance of artificial intelligence-

based machine learning and deep learning algorithms. These 

metrics play a crucial role in evaluating the algorithms’ 

accuracy, sensitivity and balance [9]. To calculate these 

performance metrics, a confusion matrix is used. Accuracy 

represents the ratio of correctly predicted instances to the total 

number of examples, while precision represents the ratio of 

true positive predictions among all positive predictions. 

Recall (or Sensitivity) represents the proportion of true 

positive predictions among all actual positive instances. F-

Score is a measure that combines precision and recall to 

provide a balanced assessment.  

III. EXPERIMENTAL RESULTS 

In our experimental setup, we used a high-performance 

workstation to process and analyse the collected data. The 

workstation was equipped with 64 GB of RAM, an Intel Xeon 

Silver 4114 CPU operating at 2.2 GHz with 40 cores, and an 

HP Z6 G4 server. Additionally, the system featured an 

NVIDIA GeForce RTX 3080 Ti graphics card, providing 

substantial computational power for intensive data processing 

tasks. 

The operating system used was Ubuntu 20.04.5 LTS, 

which ensured a stable and efficient environment for running 

our data analysis and machine learning algorithms. Our aim 

is to achieve high classification performance with the 

proposed model and develop an effective decision support 
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system capable of detecting sleep disorders. To this end, the 

designed model architecture is comprehensively illustrated in 

Fig. 1. This model is primarily built upon the DNN method. 

The DNN method allows for a thorough processing of the 

data, aiding in a better comprehension of the intricacies and 

features of the sleep data. Consequently, it is possible to 

detect and classify the indicators of sleep disorders with 

greater precision. The flexible structure of the DNN method, 

owing to its ability to capture deep relationships and patterns 

within data, particularly empowers us to attain effective 

outcomes in such intricate and multidimensional datasets. 

During the training phase of our model, the DNN method’s 

learning capacity has been enhanced through the use of large 

and diverse datasets. This enables better learning and 

understanding of the wide range of features embedded in the 

sleep data.

PSG Records

Signal Processing

Feature Extraction

Cleaning Dataset

Pre-processing

Data Standardization

Model Tuning

Optimizer Selection

Batch size

Epoch Number

Optimizer learning-rate

Kernel-initializer

Number of neurons

Training Data 

(70%)
Test Data (30%)

Label Encoding

ApneicNot-apneic

Output

Biomedical Signal 

Analyze 
Dataset Collection

Data under-sampling

DNN Model

Trained 

Model

Model design, 

training and testing

 
Fig. 1.  Designed model architecture.

In this study, both the training of deep learning models and 

all testing processes are performed with a desktop computer 

equipped with 128 GB RAM and Intel(R) Processor Xeon W-

1350P (6C/12T, 4.0/5.1 GHz, 12 MB). Experimental studies 

were carried out using the Python programming language and 

Keras library environment and matplotlib, sklearn, imblearn, 

numpy, pandas libraries. The deep learning neural network 

model used is shown in Fig. 2. The model has one input, 

hidden layers, and one output layer. The number of neurons 

in each layer is shown in the figure. There are 64 neurons in 

the input layer, 32, 16, 8 neurons in the hidden layers and two 

neurons in the output layer, respectively. “reLu” activation 

function is used in the input layer and hidden layers and 

“sigmoid” activation function is used in the output layer. 

“Adam” was selected as the optimiser. “uniform” was used 

as kernel initialiser. To avoid overfitting in the model, early 

stopping is performed, and any dropout layer is used. 

Dense_input Input Layer

input output

[(None, 21)] [(None, 21)]

dense Dense

input output

[(None, 21)] [(None, 64)]

dense 1 Dense

input output

[(None, 64)] [(None, 32)]

dense 4 Dense

input output

[(None, 8)] [(None, 2)]

dense 3 Dense

input output

[(None, 16)] [(None, 8)]

dense 2 Dense

input output

[(None, 32)] [(None, 16)]  
Fig. 2.  Architecture of proposed DNN model. 

For the determination of the structure of the DNN model 

and parameter selection, the grid search algorithm is used to 

automatically select the parameters at certain intervals, and 

the selected values are given in Table II. Within these 

selections, the highest classification performance is achieved. 

Early stopping is used to prevent the model from overfitting. 

With a proactive approach, the aim is to increase the security 

of the model by intervening and stopping a possible 

overfitting at an early stage. The model uses sigmoid as an 

activation function and man as optimiser in the training 

process. The learning rate is chosen as 0.001 and the batch 

size is set to 50. Uniform is used as a kerner_initiliazer at the 

beginning of the model. Model training is terminated at 100 

epochs. As a result, with these choices, the objective is to 

keep the performance of the DNN model at the best value. 

In this study, upon analysis of the average, maximum, and 

minimum outcome values obtained for the proposed two-

layer classifier design developed using the DNN deep 

learning model for 50 patients, it is evident that the suggested 

model outperforms other classifiers in terms of all 

parameters, including accuracy, precision, recall, and F-

score. These results include the highest and lowest accuracy 

rates among patients, as well as the average accuracy among 

all patients, and are comprehensively presented in Table III. 

Due to the utilisation of deep learning models in the context 
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of deep learning, the proposed model has gained the ability to 

extract complex features from the data. This ability is crucial 

to accurately discern subtle differences between cases of 

sleep disorders and normal conditions. As a result, the model, 

through its enhanced ability to understand subtle variations 

and patterns within the data, achieves higher precision, recall, 

and F1-score values.  

TABLE II. HYPERPARAMETERS OF THE PROPOSED SYSTEM. 

Parameter Tuning Range 

Selected 

Parameters for 

Each DL 

Models 

Kernel_initializer 

Uniform, 
lecun_uniform,normal, zero, 

glorot_normal, 

glorot_uniform, he_normal, 
he_uniform 

uniform 

Optimizer 

SGD, RMSProp, Adagrad, 

Adadelta, Adam, Adamax, 

Nadam 

DNN: adam 

Learning_rate 
[0.001, 0.005, 0.008, 0.01, 

0.02, 0.1, 0.3] 
0.001 

Batch_size 
[5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 100] 
50 

Epoch 
[10, 20, 50, 100, 150, 160, 

170, 200, 300] 
100 

Neuron activation 
function 

Softmax, softplus, softsign, 

relu, tanh, sigmoid, 

hard_sigmoid, linear 

DNN:  sigmoid 

Number of 

neurons 

[1, 5, 10, 15, 20, 50, 100, 200, 

500] 

DNN: 64, 32, 

16, 8, 2 

Early stopping 
(patient) 

 32 epochs 

TABLE III. EVALUATION METRICS RESULTS OF PROPOSED 

SYSTEM FOR PATIENTS. 

Model Accuracy Precision Recall 
F1-

Score 
AUC 

Patient 1 

(Max) 
0,9835 0,9895 0,9774 0,9834 0,9835 

Patient 2 
(Min) 

0,9320 0,9320 0,9310 0,9320 0,9317 

All 

Patients 
(Avg.) 

0,9648 0,9769 0,9519 0,9641 0,9648 

 
In terms of accuracy, the proposed model demonstrates 

exceptional performance in different patient scenarios. For 

the patient achieving the highest accuracy, the model 

achieves an impressive accuracy rate of 98.35 %, alongside 

noteworthy precision, recall, and F-score values of 98.95 %, 

97.74 %, and 98.34 %, respectively, highlighting its 

proficiency in accurately identifying the cases of sleep 

disorders. Even for the patient with the lowest accuracy, the 

model maintains a commendable accuracy rate of 93.20 %, 

showcasing consistent performance. This robustness is 

further substantiated by precision, recall, and F-score metrics 

of 93.20 %, 93.10 %, and 93.20 % respectively. When 

considering the collective patient group, the model’s 

performance remains strong, with an average accuracy of 

96.48 %, accompanied by precision, recall, and F-score 

values of 97.69 %, 95.19 %, and 96.41 %, respectively. These 

outcomes underscore the model’s reliability in consistently 

delivering accurate results in diverse patient profiles. The 

confusion matrix, accuracy loss, and area under the curve 

(AUC) for patients with the highest and lowest accuracy rates 

obtained by the classification of apnea using DNN method 

are presented in Figs. 3 to 10.  

 
Fig. 3.  Detailed confusion matrix of patient 1. 

 
Fig. 4.  Accuracy graph of patient 1. 

 
Fig. 5.  Loss graph of patient 1. 

 
Fig. 6.  ROC graph of patient 1. 

Upon examining the confusion matrix in Fig. 3, it can be 

observed that the designed model misclassifies some apnea 

patients as nonapnea, but accurately distinguishes nonapnea 

cases. When examining the accuracy and loss graphs 
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provided in Figs. 4 and 5, a consistent pattern of change in 

accuracy and loss over time is clear.  

 
Fig. 7.  Detailed confusion matrix of patient 2. 

 
Fig. 8.  Accuracy graph of patient 2. 

 
Fig. 9.  Loss graph of patient 2. 

 
Fig. 10.  Loss graph of patient 2. 

Considering the test results of the study, it is evident that 

the proposed model does not suffer from overfitting issues 

during apnea detection and consistently achieves high levels 

of accuracy. Furthermore, the designed model underwent 

early stopping during the training phase, with an early 

stopping value of 32 epochs. This was implemented as a 

precaution against overfitting and to enhance the 

generalisability of the model. 

IV. DISCUSSION 

This work focusses on the application of deep learning 

methodologies in the field of detection of sleep apnea. It was 

conducted using a comprehensive dataset obtained from 

Yozgat Bozok University Department of Chest Diseases 

Sleep Laboratory. Ethical approvals are obtained and 

valuable insights about the performance of the DNN model 

are obtained by performing training and testing phases on 

data obtained from 50 patients. The results of the study 

highlight the effectiveness of the DNN-based classifier 

design in accurately classifying cases of sleep apnea. Efforts 

to reduce the imbalance between normal and apnea cases 

come to the fore during the data preprocessing stage. This 

affects the training and evaluation phases of the model, as 

apnea cases are less common than normal cases. The 

undersampling strategy corrected for this imbalance and 

contributed to a more balanced training process. Despite the 

reduction in the dataset, the proposed model demonstrated 

superior performance and reaffirmed its ability to accurately 

detect sleep disorders. Deep learning architecture, 

specifically the DNN method, proved to be a suitable choice 

for this study due to its ability to learn complex and high-level 

features from complex data structures. The potential of DNN 

in the field of sleep apnea detection is encouraging advances 

in this field. However, the limitations of the study and areas 

on which future research could focus should also be 

considered. Over the last decade, numerous studies have 

focussed on detecting sleep apnea, and research continues 

today. Table IV highlights a selection of these studies.  

TABLE IV. SIMILAR WORKS RELATED TO SLEEP APNEA 

DETECTION. 

Reference Method Dataset 
Input 

Type 

Classif

iers 

Accura

cy 

Surrel, 

Aminifar, 

Rincón, 

Murali, 

and 

Atienza 

2018 [30] 

ML 

PhysioN

et 

Apnea-
ECG 

Single 
channel 

ECG 

SVM 
88.2 % 

(max) 

Li, Pan, 

Li, Jiang, 

and Liu 

2018 [19]  

DL 
Apnea-
ECG 

dataset 

Single 
channel 

ECG 

Decisio
n 

fusion 

85 % 

Wang. Lu, 

Shen, and 

Hong 2019 

[21] 

DL 

PhysioN

et 
Apnea-

ECG 

Single 

channel 

ECG 

LeNet-
5 

87.6 % 

Erdenebay

, Kim, 

Park, Joo, 

and Lee 

2019 [11] 

DL 
Own 

dataset 

Single 

channel 

ECG 

CNN 93.1 % 

Shen, Qin, 

Wei, and 

Liu 2021 

[22] 

DL 
Apnea-
ECG 

database 

ECG 

CNN + 

weight

ed-loss 
time-

89.4 % 
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Reference Method Dataset 
Input 

Type 

Classif

iers 

Accura

cy 

depend

ent 

classifi

cation 

Sheta et al. 

2021 [31] 

DL and 
ML 

Physione
t’s CinC 

challeng

e-2000 
database 

ECG 
signals 

CNN + 
LSTM 

86.2 % 

Yang, Zou, 

Wei, and 

Liu 2022 

[32] 

DL 

Apnea-

ECG 

dataset 

ECG 

Multi-

model 

fusion 

90.3 % 

Wang, 

Xiao, 

Fang, Li, 

Wang, and 

Zhao 2022 

[33] 

DL 
Own 

dataset 

EEG 

channels 
LSTM 92.7 % 

Zarei, 

Beheshti, 

and Asl 

2022 [29] 

DL 

Apnea-

ECG and 

UCDDB 

ECG 
CNN + 
LSTM 

97.2 % 

Hu et al. 

2024 [34] 
DL PAEDB 

Single 
Lead 

ECG 

Hybrid 
Transfo

rmer 

90.3 % 

Our study DL 

Own 

dataset 

occupie

d from 

50 

patients 

All 

channel

s 

 
96.48 

% 

 

Analysis reveals that recent research predominantly uses 

various datasets. Classification tasks are typically performed 

in pairs using algorithmic solutions, mainly relying on 

machine learning and deep learning techniques. The 

classification performance ranges from 85 % to 97.21 %. 

V. CONCLUSIONS 

This study used deep learning techniques to detect sleep 

apnea, with the aim of establishing a robust decision support 

system for precise diagnosis. Using deep neural networks 

(DNNs), the research achieved a remarkable accuracy rate of 

96.48 %, surpassing benchmarks from similar studies. This 

breakthrough significantly enhances early detection 

capabilities and has the potential to improve patient outcomes 

in sleep medicine. The application of deep learning enables 

accurate pattern recognition, promising advancements in real-

time monitoring technologies. Ensuring model 

interpretability through explainable AI methods is crucial for 

building confidence among medical professionals. Ongoing 

clinical validation and longitudinal studies are underway to 

refine the model for practical implementation in medical 

settings. 

In this study, we explored the application of deep learning 

techniques in the detection of sleep apnea. Our aim was to 

develop a robust decision support system to accurately 

identify sleep disorder cases. Leveraging DNNs, we focussed 

on effectively distinguishing between normal sleep patterns 

and sleep apnea instances, thus improving diagnostic 

accuracy. Through meticulous data collection and analysis, 

we demonstrated DNNs’ potential in capturing complex sleep 

data patterns. Our results highlight the success of the DNN-

based classifier, achieving an accuracy of 96.48 %, 

surpassing similar  studies.  This  study  contributes  to  sleep 

medicine by enhancing early diagnosis, which can 

significantly impact patient outcomes. The use of deep 

learning enables precise pattern recognition, promising 

advancements in real-time monitoring applications. Ensuring 

model interpretability through explainable AI methods is 

crucial for medical practitioners’ trust. Clinical validation and 

longitudinal studies will further refine the model for real-

world medical settings. 
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