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Abstract—Chronic venous insufficiency (CVI) is a serious 

disease characterised by the inability of the veins to effectively 

return blood from the legs back to the heart. This condition 

represents a significant public health issue due to its prevalence 

and impact on quality of life. In this work, we propose a tool to 

help doctors effectively diagnose CVI. Our research is based on 

extracting Visual Geometry Group network 16 (VGG-16) 

features and integrating a new classifier, which exploits mean 

absolute deviation (MAD) statistics to classify samples. 

Although simple in its core, it outperforms state-of-the-art 

method which is known as the CVI-classifier in the literature, 

and additionally it performs better than the methods such as 

multi-layer perceptron (MLP), Naive Bayes (NB), and gradient 

boosting machines (GBM) in the context of VGG-based 

classification of CVI. We had 0.931 accuracy, 0.888 Kappa 

score, and 0.916 F1-score on a publicly available CVI dataset 

which outperforms the state-of-the-art CVI-classifier having 

0.909, 0.873, and 0.900 for accuracy, Kappa score, and F1-score, 

respectively. Additionally, we have shown that our classifier has 

a generalisation capacity comparable to support vector 

machines (SVM), by conducting experiments on eight different 

datasets. In these experiments, it was observed that our classifier 

took the lead on metrics such as F1-score, Kappa score, and 

receiver operating characteristic area under the curve (ROC 

AUC).  

 
Index Terms—Classification algorithms; Decision support 

systems; Particle swarm optimisation. 

I. INTRODUCTION 

CVI is a serious condition that affects public health and the 

automatic classification of this state is very beneficial for 

doctors working in the area. In this work, we propose a 

“classical” machine learning method integrated to deep 

learning (DL)-based feature extraction, yielding 

comparatively superior results in a public dataset containing 

221 images.  

In this research, we intend to produce a decision support 

system to help doctors diagnose CVI. Since such a condition 

is fatal to humanity, the development of this system can be 

very beneficial. 

Our work is highly inspired (methodologically, not 

technically) by the study in [1], where a specific classifier is 

constructed to successfully categorise CVI images. Our 

research is based on exploiting descriptive statistics (namely, 

mean absolute deviation (MAD)) to classify images using 

Visual Geometry Group network 16 (VGG-16) features. 

Thus, it can be considered as a “hybrid” model fusing the 

power of DL with the simplicity and the capacity of a MAD-

based approach to categorise samples.  

The structure of this article is organised as follows. 

Initially, a review of literature on CVI classification and 

related studies is provided. Then, brief explanations of each 

“classical” classifier tested is presented. Afterwards, our 

methodology and model are proposed. Following this, the 

description of the dataset used and the experimental results 

are given, after which we start a discussion on our classifier’s 

status.  

II. RELATED WORK 

In [1], researchers propose a bag of visual words variant 

approach to automatically categorise the CVI image data. 

They benefit from a supervised learning of patches to obtain 

a concept classifier. In their study, their method outperforms 

the decisions made by professional doctors. This is the work 

we take as the state-of-the-art since it has outstanding success 

in classifying CVI images and has a decent methodology 

which we replicate in our experiments.  

The authors in [2] develop a DL-based approach where the 

thermal imaging data are used. They compare their results 

with architectures such as VGG-16, EfficientNet-B0, and 

Resnet-152. While these models produce accuracy scores 

0.947, 0.953, and 0.958, respectively, CVINet (the method 

proposed in [2]) obtains a 0.968 on binary classification, 

which is promising. Like in [1], their model outperforms the 

decisions of the clinician. Their dataset consists of 960 

images that have binary labels: CVI class and normal class. 

Their training process involves 25 epochs, batch size 32, and 

optimiser set to stochastic gradient descent (SGD) with a 

learning rate 0.0001 and a dropout rate of 0.5.  

The authors in [3] develop another DL-based approach 

where the input images are the same as the input images in 

[1]. They apply “almost” the same methodology as the 

authors in [1] except that in [1] a 20-run average is reported, 

https://doi.org/10.5755/j02.eie.38394 

 

Manuscript received 24 June, 2024; accepted 12 October, 2024.  

37



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024 

 

while in [3] one run is reported with an accuracy of 0.999, 

which makes their claim on the “outperforming nature” of 

their approach somehow problematic. Additionally, in their 

results they list accuracy scores from several works, but the 

table is not standardized, i.e., input image types, contents, and 

cardinalities vary. On the other hand, the study is valuable in 

the aspect that it collects numerous studies in a structured 

manner, despite their not very healthy style of 

reporting/comparing accuracy scores. Their model consists of 

eight convolutional layers with 3×3 filters, nine exponential 

linear unit (ELU) layers, and nine batch normalisation layers.  

In [4], a new tissue classification procedure is presented for 

the clinical classification of varicose ulcers, leveraging 

medical image analysis and knowledge engineering methods. 

The study proposes a comprehensive methodology including 

preprocessing through image registration and difference 

image calculation, segmentation, feature extraction, and 

finally classification using a k-nearest neighbour (KNN) 

classifier. The feature extraction process describes colour 

features such as colour correlogram and colour moments, 

texture features which contain homogeneity, contrast, and 

correlation, along with shape features such as solidity and 

eccentricity. These extracted features are classified to discern 

the various stages of wound healing, demonstrating efficient 

performance with average sensitivity, specificity, and 

accuracy rates of 0.952, 0.944, and 0.948, respectively. 

The authors in [5] propose a varicose ulcer wound 

classification system consisting of the image preprocessing 

steps (where the reflection of flashlight is removed), contour 

segmentation (to separate the wounded areas from the skin), 

and multidimensional convolutional neural network (for 

which the segmented images and ground truth data are input). 

They use Matlab for the implementation and obtain 0.995 

accuracy, 0.980 specificity, and 0.956 sensitivity.  

The authors in [6] present a method to detect varicose veins 

by using thermal imaging. Their methodology involves two 

main phases: first, image acquisition (where a FLIR ONE is 

used), and second, image processing. In the image processing 

stage, the thermal image is first converted to greyscale. Then, 

the segments of the thermal image are extracted. Afterwards, 

segment areas with higher temperature are detected. 

Following this, an edge-finding operation is applied via the 

Roberts method. Following that, morphological structuring is 

utilised to improve edge detection and then the resulting 

image is converted to red-green-blue (RGB) to fuse with the 

original RGB image. Although this work is valuable in the 

context of varicose vein detection, no evaluation metrics are 

reported.  

The authors in [7] look for association between the 

recorded skin temperature and the severity of chronic venous 

diseases (CVD). To accomplish the task, they acquire 

infrared images from 36 patients. Then they analyse the 

regions “with respect to seven predefined features”. 

According to their findings, mild forms of CVD are correlated 

with local increases in skin temperature. When CVD is more 

severe, these regions with local increases are 2.0° warmer. 

The findings indicate that early detection of the disease is 

possible by infrared thermography.  

The authors in [8] consider fuzzy c-means (FCM) for 

feature extraction. Their pipeline involves steps of image data 

acquisition, preprocessing, FCM clustering, and the output of 

segmented images. The advantage of the work is the 

application of fuzzy logic and FCM to the domain of varicose 

vein analysis. The disadvantages are that the work is 

somehow disorganised (following the steps involved is hard 

from the presentation), and the detection/classification 

rate/success is not decently reported. Rather than well-

defined metrics, a screen showing “Varicose is observed” is 

offered. 

In the context of VGG - or more specifically DL - and 

particle swarm optimisation (PSO) combination, the authors 

in [9] present a “swarm optimised block architecture”, where 

the blocks are optimised via adaptive acceleration. They 

obtain 4.78 % error rate in the CIFAR-10 image classification 

task and succeed to get a 25.42 % error rate in CIFAR-100 

classification task. This differs from our work in the sense 

that for our work, VGG features are directly used and PSO is 

integrated in the framework to obtain a “classical” classifier.  

The authors of [10] present a similar strategy to generate 

deep neural networks, namely by incorporating PSO to obtain 

optimal architectures. Based on their report, one can say that 

on the datasets such as Convex, Rectangles, and MNIST, 

7.58 % increase in accuracy and up to 63 % improvement in 

computational cost are observed. 

The authors in [11] present a method to improve fuzzy c-

means clustering by the integration of a novel PSO algorithm.  

The authors in [12] combine FCM with PSO to create a 

classifier based on fuzzy systems. The classifier they propose 

is different from ours in the sense that MAD-statistics and 

integration through majority voting is not used. On the other 

hand, their classifier also shows good results in the 

experiments conducted using the Iris, Ionosphere, and Glass 

datasets. 

The authors in [13] utilise PSO-based FCM segmentation 

to predict leaf diseases. They use Gaussian mixture model-

based background subtraction to preprocess the image and 

then perform classical feature extraction steps such as edge 

and “texture features”. They, finally, use a multi kernel 

parallel SVM (MK-PSVM) to classify the features.  

III. METHODOLOGY 

The fuzzy c-means (FCM) [14] algorithm is a clustering 

method that allows one sample to belong to two or more 

clusters. This is different from the hard clustering methods 

such as k-means, in which each sample belongs to exactly one 

cluster. In FCM, each sample has a degree of belonging to 

clusters and this degree is calculated according to the distance 

between the sample and the cluster centre. The closer the 

centre, the higher the degree of belonging, and this belonging 

is computed in probabilities that sum to one for each sample.  

Particle swarm optimisation (PSO) is an evolutionary 

computational method that simulates the social behaviour of 

swarms, such as bird flocking or fish schooling, to find 

optimal solutions to complex problems. In PSO, a population 

of particles explores the search space by adjusting their 

trajectories based on their own experience and the 

experiences of neighbouring particles. Each particle has a 

potential solution to the optimisation problem and has a 

position and velocity in the search space. The algorithm 

iteratively regulates these positions and velocities based on 

the particles’ historical best positions (personal best) and the 

global best position found by any particle in the swarm [15]. 
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The influence of the personal and global best guides the 

swarm towards the most promising areas of the search space, 

aiming to converge on the optimal solution. One point to note 

is that, in PSO, the gradient of the objective function is not 

needed [16]. 

The VGG-16 architecture is a deep convolutional neural 

network model. It was proposed by Karen Simonyan and 

Andrew Zisserman of the VGG at the University of Oxford 

in their paper [17]. In the computer vision community, it has 

been widely used for a variety of tasks due to its simple, yet 

powerful architecture. It has a deep structure that involves 16 

layers that have weights, which include 13 convolutional 

layers and three fully connected layers.  

Its architecture details contain the following. 

− Input layer: This layer accepts images of dimension 

224×224 which has red, green, and blue channels. 

− Convolutional layers: The architecture is composed of a 

series of convolutional layers with small receptive fields of 

3×3, which is the smallest size to capture the notion of 

left/right, up/down, centre. The stride is fixed to one pixel. 

− Activation function: Following each convolution 

operation, a rectified linear unit (ReLU) activation function 

is used to introduce nonlinearity into the model. In this 

way, it can learn more complex patterns. 

− Pooling layers: There are five max-pooling layers in the 

network, which is after some of the convolutional layers. 

These are used to shrink the dimensionality of the feature 

maps. Hence, shrinking the number of parameters and 

computation in the network. The pooling size is 2×2 pixels. 

In measuring accuracy, Kappa score, and macro-F1-score, 

the method given in [1] is strictly followed. 20-runs of 

measurements are executed and the average is reported for the 

scores. The train-test split is done with a 1/3 and 2/3 ratio, the 

latter representing the amount of data separated for training. 

Our overall algorithm can be summarised as follows 

(please see Fig. 1 and Fig. 2): 

− Extract VGG-16 features from all images; 

− Use proposed binary classifier as a basis to train a one-

vs-one multiclass classifier; 

− Train and test using this multiclass classifier. 

The proposed binary classifier runs as follows: 

Fitting phase: 

− Get the training features and labels; 

− Separate the features as 𝑋+ and as 𝑋− depending on the 

class labels (which means that 𝑋+ is the training samples 

with positive class while 𝑋− contains the samples with 

negative class); 

− Fit fuzzy c-means to each of the positive and negative 

sets, namely to 𝑋+ and 𝑋−; 

− Get the cluster centres of each fit to  𝑋1 and 𝑋0, 

respectively, meaning that 𝑋1, 𝑋0 have the cluster centres 

of FCM fitted to 𝑋+ and 𝑋−, respectively; 

− Optimise the coefficients of the absolute value distances 

to clusters with PSO with respect to the average of 

accuracy, the F1-score, and the Kappa score. Make 

predictions during this optimisation according to the 

following “Prediction” method. 

Prediction phase: 

− Get the input sample 𝑥; 

− Store the weighted (weights are determined/tested by the 

PSO) mean absolute deviation array of 𝑋1 about the input 

sample in 𝑚𝑎𝑑𝑡𝑚𝑝 and take the exponential of each 

element in the array. Record the resulting array in 𝑚𝑎𝑑1. 

That is, we measure weighted mean absolute deviation of 

each component of 𝑋1 about the sample 𝑥 into 𝑚𝑎𝑑𝑡𝑚𝑝 and 

take the exponential of each item in 𝑚𝑎𝑑𝑡𝑚𝑝 to find 𝑚𝑎𝑑1. 

Do the same for negative class and measure exponential-

MAD array of 𝑋0 about the input sample into 𝑚𝑎𝑑0; 

− Initialise 𝑠0 to 0. Initialise 𝑠1 to 0. We hold the total vote 

for each class in these variables; 

− For 𝑖 = 1 to size(𝑚𝑎𝑑0): 

− if 𝑚𝑎𝑑1[𝑖]  <  𝑚𝑎𝑑0[𝑖], add 𝑚𝑎𝑑0[𝑖] - 𝑚𝑎𝑑1[𝑖] to 

𝑠1, 

− else add 𝑚𝑎𝑑1[𝑖] - 𝑚𝑎𝑑0[𝑖] to 𝑠0; 

− If 𝑠1  >  𝑠0, return 1 (sample belongs to the positive 

class); 

− Else return 0. 

 
Fig. 1.  Fitting Phase.

 
Fig. 2.  Predicting phase.
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One-vs-one multiclass support in sklearn [18] also needs a 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑟𝑜𝑏𝑎  method which must return the probability of 

the classes. For this, we simply return the pair (
𝑠0

𝑠0+𝑠1
,

𝑠1

𝑠0+𝑠1
) . 

Recall that 𝑠0 and 𝑠1 are the sums of MAD-differences for 

class 0 and 1, respectively.  

One can summarise the method as follows: we characterise 

the positive and negative classes with the cluster centres of 

FCMs. We measure the MAD of cluster centres about the 

input sample and take an exponential of each dimension. We 

compare MAD-exponential scores and decide to favour the 

class which has less MAD-exponential (i.e., the class which 

deviates less from the test sample). MADs are measured in a 

weighted manner by which we mean each cluster centre has 

its own weight, and these are determined by the PSO with 

objective function set to the average of training accuracy, F1-

score and Cohen Kappa score. 

It can also be noted that the find_weights_pso function 

given in the pseudocode is not very straightforward (it is kept 

simple in the pseudocode for the aim of not distracting the 

reader). In the implementation, an obj_func method is given 

as a parameter to a GlobalBestPSO object. obj_func then calls 

measure_acc several times. measure_acc measures the mean 

of accuracy, F1-score, and Cohen Kappa score for a particle 

(set of coefficients). It does this by calling the internalised 

predict, which is __predict0. __predict0 calls the internalised 

__get_mad, which is __get_mad0. In summary, application 

of the PSO in the algorithm is not very straightforward. You 

can see the call graph of the classifier from the Fig. 3. 

 
Fig. 3.  Call graph of WMADC. 

The novelty of the method lies in combining the majority 

vote scheme with the idea of “MAD about the input sample” 

(Fig. 4). Normally, MAD is calculated about a mean or 

another descriptive statistic. However, in our classifier, it is 

calculated about the input sample (test vector). Accumulating 

the differences (corresponds to the “𝑠1 < −𝑠1 + 𝑚𝑎𝑑_0[𝑖] −
𝑚𝑎𝑑_1[𝑖]” part of the pseudocode) and integrating the PSO 

to find the weights of the clusters can be considered as the 

other novel aspects of the work.  

For the default parameters experiment, a train-test split of 

1:2 is performed, and all measurements of metrics are done in 

this setting. 

For hyperparameter tuning, a three-fold cross-validation 

grid search is applied to select the optimal parameters for the 

modelling. After this, again a train-test split of 1:2 is 

performed to measure the final outcomes.  

 
Fig. 4.  Pseudocode for the algorithm. 

IV. EXPERIMENTS 

For this research, the dataset used in [1] is retrieved from 

http://isyslab.info/CVI/CVI-img-datasets.zip, a total of 211 

images with three classes: mild, moderate, and severe.  

We have also tested the generalisation ability of our 

classifier on eight datasets obtained from UCI Machine 

Learning repository and compared it with nine classifiers 

available from sklearn.  

Eight datasets are: 

− Breast cancer; 

− Heart failure; 

− Fertility; 

− Parkinson’s disease; 

− Haberman’s survival; 

− Breast cancer Coimbra; 

− Blood Transfusion Service Center; 

− SPECTF Heart. 

The compared classifiers are: 

− Decision tree (DT); 

− Gaussian Naïve Bayes (GaussianNB); 

− Support vector machines (SVC); 

− Multi-layer perceptron (MLP); 

− Logistic regression (LR); 

− Passive aggressive classifier (PAC); 

− Perceptron (PCT); 

− Ridge classifier (RC); 

− SGD classifier (SGD). 

The programming platform is Colab Pro. The PSO 

implementation used is pyswarms, and the FCM 

implementation is fuzzy-c-means.  

V. RESULTS 

The CVI results can be seen from Table I. “Doctors” and 

“CVI-classifier” results are taken from the work in [1]. Others 

are   the  VGG  combined   with  classical  machine  learning 
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algorithms tested with default implementation parameters. In 

our method, 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 is taken as 3. For PSO, the maximum 

iteration is set to 30, the number of particles is set to 11 and 

the remaining parameters are taken from the default settings. 

The bounds are taken as (−5, 5) where −5 is the minimum, 

5 is the maximum. Before running each classifier, we have 

applied min-max scaling, and we have selected features 

through RFECV with estimator set to linear SVM. Note that, 

except for min-max scaling, this is not done in the generic 

classification experiments (i.e., no feature selection is 

performed on generic classification). Test runs results are 

visualised at Fig. 5–10.  

TABLE I. CVI RESULTS. 

Method Accuracy F1-Score Kappa 

Doctors 0.818 0.805 0.748 

CVI-Classifier [1] 0.909 0.900 0.873 

VGG-MLP 0.926 0.909 0.881 

VGG-NB 0.924 0.875 0.90 

VGG-GBM 0.912 0.893 0.855 

VGG-RF 0.913 0.895 0.861 

VGG-SVM 0.924 0.907 0.879 

Proposed Method (PM) 0.931 0.9162 0.888 

 
Fig. 5.  VGG-MLP test runs. 

 
Fig. 6.  VGG-GBM test runs. 

The first part of the generic classification results can be 

seen from Tables II–V where F1-score, Kappa score, and 

receiver operating characteristic area under the curve (ROC 

AUC) scores are measured, respectively (in the tables, “PM” 

stands for “Proposed Method”). In these experiments, to be 

fair, the iteration count and number of particles are set to the 

same numbers as in CVI. Other classifiers are also used with 

their default parameters on sklearn.  

The second part of the generic classification results 

involves hyperparameter tuning. A total of 12 parameter 

combinations for grid search is used for each classifier. These 

can be seen from the parameter Tables V–XIV.  

 
Fig. 7.  VGG-NB test runs. 

 
Fig. 8.  VGG-SVM test runs. 

 
Fig. 9.  VGG-RF test runs. 

 
Fig. 10.  Proposed method test runs.
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TABLE II. F1-SCORE COMPARISON ON EIGHT DIFFERENT DATASETS. 

Dataset DT NB SVC MLP LR PAC PCT RC SGD PM 

Breast Cancer 0.876 0.883 0.938 0.969 0.937 0.955 0.97 0.929 0.955 0.917 

Heart Failure 0.739 0.566 0.51 0.733 0.771 0.49 0.418 0.766 0.639 0.592 

Fertility 0 0.206 0 0 0 0 0 0 0 0.363 

Parkinson’s 0.876 0.75 0.895 0.893 0.884 0.912 0.886 8840. 0.891 0.876 

Haberman’s Survival 0.431 0.333 0 0 0.083 0.414 0.37 0.083 0.083 0.618 

Breast Cancer Coimbra 0.585 0.526 0.75 0.68 0.692 0.413 0.638 0.68 0.666 0.634 

Blood Transfusion Service Center 0.389 0.294 0 0.2 0.107 0.229 0.229 0.203 0.2 0.529 

SPECTF Heart 0.822 0.732 0.887 0.887 0.898 0.88 0.536 0.88 0.859 0.871 

Avg. 0.59 0.536 0.497 0.545 0.546 0.537 0.506 0.553 0.536 0.675 

TABLE III. KAPPA C0MPARISON ON EIGHT DIFFERENT DATASETS. 

Dataset DT NB SVC MLP LR PAC PCT RC SGD PM 

Breast Cancer 0.833 0.874 0.942 0.93 0.872 0.875 0.894 0.883 0.92 0.874 

Heart Failure 0.5 0.545 0.31 0.443 0.465 0.266 0.485 0.444 0.259 0.402 

Fertility -0.1 -0.047 0 0 0 -0.078 -0.078 0 -0.083 0.016 

Parkinson’s 0.292 0.319 0.440 0.292 0.202 0.360 0 0.292 0.265 0.232 

Haberman’s Survival 0.146 0.023 0.041 0 0 0.023 0.023 0.061 0 0.294 

Breast Cancer Coimbra 0.434 0.34 0.172 -0.087 -0.194 0.231 0.328 -0.087 0.223 0.231 

Blood Transfusion Service Center 0.045 0.151 0.192 0.217 0.144 0.150 0.156 0.144 0.144 0.331 

SPECTF Heart 0.234 0.326 0 0.107 0.080 0 0 -0.021 0 0.283 

Avg. 0.298 0.316 0.262 0.238 0.196 0.228 0.226 0.214 0.236 0.333 

TABLE IV. ROC AUC COMPARISON ON EIGHT DIFFERENT DATASETS. 

Dataset DT NB SVC MLP LR PAC PCT RC SGD PM 

Breast Cancer 0.912 0.872 0.934 0.925 0.92 0.952 0.958 0.91 0.952 0.934 

Heart Failure 0.699 0.623 0.612 0.718 0.697 0.708 0.78 0.738 0.66 0.747 

Fertility 0.416 0.5 0.5 0.5 0.5 0.433 0.316 0.5 0.483 0.583 

Parkinson’s 0.929 0.70 0.733 0.66 0.669 0.5 0.77 0.669 0.76 0.75 

Haberman’s Survival 0.551 0.563 0.493 0.5 0.538 0.538 0.538 0.531 0.538 0.587 

Breast Cancer Coimbra 0.682 0.717 0.831 0.766 0.725 0.634 0.741 0.735 0.828 0.756 

Blood Transfusion Service Center 0.560 0.591 0.565 0.581 0.541 0.544 0.614 0.542 0.541 0.614 

SPECTF Heart 0.651 0.744 0.559 0.586 0.526 0.592 0.712 0.5 0.579 0.751 

Avg. 0.675 0.664 0.653 0.654 0.639 0.613 0.679 0.641 0.668 0.715 

TABLE V. DECISION TREE PARAMETERS. 

Parameter name Values 

criterion “gini”, “entropy” 

Splitter-*- “best”, “random” 

max_depth None, 5, 10 

TABLE VI. NAIVE BAYES PARAMETERS. 

Parameter name Values 

var_smoothing np.logspace(0, -9, num = 100) 

TABLE VII. SVM PARAMETERS. 

Parameter name Values 

kernel “linear”, “poly”, “rbf”, “sigmoid” 

C 0.1, 1.0, 10.0 

TABLE VIII. MLP PARAMETERS. 

Parameter name Values 

activation “identity”, “logistic”, “tanh”, “relu” 

hidden_layer_sizes (50, 50, 50), (50, 100, 50), (100) 

TABLE IX. LOGISTIC REGRESSION PARAMETERS. 

Parameter name Values 

fit_intercept True, False 

C 0.001, 0.01, 0.1, 1, 10, 100 

TABLE X. PASSIVE AGGRESSIVE CLASSIFIER PARAMETERS. 

Parameter name Values 

fit_intercept True, False 

C 0.001, 0.01, 0.1, 1, 10, 100 

TABLE XI. PERCEPTRON PARAMETERS. 

Parameter name Values 

fit_intercept True, False 

alpha 0.001, 0.01, 0.1, 1, 10, 100 

TABLE XII. RIDGE CLASSIFIER PARAMETERS. 

Parameter name Values 

fit_intercept True, False 

alpha 0.001, 0.01, 0.1, 1, 10, 100 
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TABLE XIII. SGD CLASSIFIER PARAMETERS. 

Parameter name Values 

fit_intercept True, False 

alpha 0.001, 0.01, 0.1, 1, 10, 100 

TABLE XIV. PROPOSED METHOD PARAMETERS. 

Parameter name Values 

n_clusters  2, 3, 5 

iters 20, 30, 40 

TABLE XV. F1-SCORE HYPERPARAMETER TUNING COMPARISON. 

Dataset DT NB SVC MLP LR PAC PCT RC SGD PM 

Breast Cancer 0.913 0.884 0.942 0.925 0.942 0.934 0.944 0.932 0.94 0.937 

Heart Failure 0.571 0.612 0.716 0.714 0.735 0.739 0.702 0.716 0.71 0.684 

Fertility 0.0 0.285 0.5 0.25 0.25 0.25 0.25 0.0 0.25 0.4 

Parkinson’s 0.905 0.779 0.910 0.891 0.901 0.910 0.901 0.9 0.91 0.874 

Haberman’s Survival 0.26 0.374 0.26 0.0 0.266 0.428 0.205 0.266 0.279 0.514 

Breast Cancer Coimbra 0.744 0.628 0.782 0.749 0.816 0.721 0.745 0.733 0.721 0.808 

Blood Transfusion Service Center 0.452 0.321 0.386 0.437 0.363 0.035 0.426 0.228 0.126 0.456 

SPECTF Heart 0.782 0.765 0.873 0.873 0.866 0.873 0.873 0.873 0.873 0.835 

Avg. 0.578 0.581 0.671 0.605 0.642 0.611 0.631 0.581 0.601 0.689 

TABLE XVI. KAPPA HYPERPARAMETER TUNING COMPARISON. 

Dataset DT NB SVC MLP LR PAC PCT RC SGD PM 

Breast Cancer 0.803 0.879 0.976 0.0 0.952 0.976 0.928 0.928 0.976 0.861 

Heart Failure 0.63 0.436 0.615 0.608 0.608 0.602 0.555 0.608 0.555 0.371 

Fertility 0.063 0.0 0.063 -0.05 0.0 0.0 0.0 0.0 0.0 0.136 

Parkinson’s 0.48 0.277 0.615 0.621 0.672 0.673 0.362 0.711 0.322 0.621 

Haberman’s Survival 0.004 0.268 0.013 0.202 0.202 0.05 0.249 0.202 0.092 0.457 

Breast Cancer Coimbra 0.023 0.063 0.233 0.131 0.231 0.231 0.221 0.178 0.088 0.39 

Blood Transfusion Service Center 0.293 0.172 0.151 0.34 0.142 0.035 0.055 0.122 0.103 0.354 

SPECTF Heart 0.233 0.31 0.4 0.0 0.491 0.098 0.0 0.22 0.417 0.189 

Avg. 0.316 0.301 0.384 0.231 0.412 0.333 0.296 0.371 0.319 0.422 

TABLE XVII. ROC AUC HYPERPARAMETER TUNING COMPARISON. 

Dataset DT NB SVC MLP LR PAC PCT RC SGD PM 

Breast Cancer 0.912 0.924 0.979 0.984 0.984 0.98 0.954 0.937 0.984 0.952 

Heart Failure 0.704 0.59 0.696 0.666 0.674 0.727 0.734 0.666 0.712 0.734 

Fertility 0.466 0.5 0.566 0.716 0.583 0.483 0.70 0.433 0.416 0.649 

Parkinson’s 0.673 0.817 0.865 0.798 0.5 0.778 0.5 0.673 0.5 0.778 

Haberman’s Survival 0.644 0.567 0.5 0.537 0.585 0.5 0.5 0.567 0.5 0.71 

Breast Cancer Coimbra 0.634 0.653 0.75 0.673 0.807 0.576 0.576 0.73 0.673 0.634 

Blood Transfusion Service Center 0.5 0.515 0.5 0.533 0.542 0.526 0.5 0.535 0.514 0.627 

SPECTF Heart 0.519 0.69 0.561 0.568 0.568 0.492 0.816 0.5 0.5 0.589 

Avg. 0.632 0.657 0.677 0.684 0.655 0.633 0.66 0.63 0.6 0.709 

VI. DISCUSSION 

In the eight datasets used, the proposed classifier 

outperformed the previous studies on average F1-score, 

Kappa score, and ROC AUC. However, this study has also 

some limitations. First of all, it is (its Computer Vision part 

is) restricted to only one dataset. On the other hand, it has 

been shown that the classifier has a certain generalisation 

power by its status in an experiment series conducted through 

eight different datasets. On average, F1-score, Kappa score, 

and ROC AUC take the lead.  

One point which can be criticised is that the datasets are 

taken from a middle scale level and that the cardinality of 

training samples are limited to 1000. That is true, and for 

handling large scale datasets, the algorithm can be edited. 

Future work can contain theoretical/mathematical analysis of 

the classifier and a more extensive evaluation of it.  

VII. CONCLUSIONS 

In this work, we have proposed a new method merging the 

power of DL with a newly introduced MAD-based classifier. 

We have measured accuracy, macro F1-score, and Kappa 

coefficient values, and in all of these, our method outperforms 

both traditional ML algorithms and state-of-the-art. 

Moreover, it also outperforms the manual diagnosis of 

professional doctors. Additionally, it has been shown that the 

proposed classifier has a certain generalisation power, which 

can be understood from the experiment series conducted on 

eight different datasets.  
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