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Abstract—This paper proposes a design for a Dolph-

Tschebyscheff-weighted microstrip antenna array using a deep 

learning application. For this purpose, a multilayer perceptron 

and a deep learning model, both created using the same data set 

generated by a genetic algorithm, were compared. The antenna 

array population is initially generated randomly and then 

optimised with a genetic algorithm. The data produced by this 

model becomes a data set used for training in the deep learning 

application. The dimensions and specifications of the antenna 

array are obtained from this application, ensuring precision and 

optimisation in the design process. A new microstrip antenna 

array structure is employed for the proposed method, taking 

advantage of this design technique. The Dolph-Tschebyscheff 

weights are applied to achieve better characteristics for the 

microstrip antenna array, thus obtaining low side lobe levels, 

which are crucial for enhancing signal clarity and reducing 

interference. The results demonstrate that the proposed 

algorithm significantly improves the specifications of the 

structure. This improvement highlights the potential for 

integrating deep learning with traditional optimisation 

algorithms for advanced antenna design.  

 
Index Terms—Antenna modelling; Dolph-Tschebyscheff; 

Deep learning; Genetic algorithm.  

I. INTRODUCTION 

The need for higher data capacity in wireless 

communication has been increasing day by day. Antenna 

arrays are key elements in modern communication systems 

and offer the ability to direct radio frequency energy in 

specific directions with high efficiency. With the great 

increase in available wireless devices, new techniques seek to 

design them for several requirements. For these requirements, 

novel techniques and novel integrated algorithm models are 

available for designing antennas. Design and optimisation of 

antenna arrays are critical to achieve desired radiation 

patterns and to improve the performance of communication 

systems. Genetic algorithms (GA), deep learning (DL), and 

the Dolph-Tschebyscheff distribution are widely used in 

antenna design. However, the integration of these methods 

with modern deep learning techniques can further improve 

the radiation pattern optimisation process. This paper 

presents a novel approach where GA outputs are used as input 

to a deep learning model and is further refined with the 

Dolph-Tschebyscheff distribution. 

Microstrip antennas are widely used in many practical 

applications, such as in aircraft and satellite communication 

systems and radars. This structure has many well-known 

advantages, such as low profile and lightweight design [1]. 

To run a wireless communication system at its most efficient 

level, antenna optimisation, design, and selection are crucial 

[2]. Most antenna modelling studies include a number of 

computer-based models, such as GA, DL, and multilayer 

perceptron (MLP) [3]. When an antenna is not well 

optimised, it cannot emit in the manner it was intended for. 

To improve the overall performance of the antenna and save 

time in the layout design process, researchers are increasingly 

using DL techniques [4]. The quality, quantity, and 

accessibility of the data are critical to the success of DL 

systems. From the standpoint of antenna design, these data 

must be gathered, because currently there are not enough 

standard antenna data sets [2]. 

Although series fed antenna arrays solve the power loss 

problem with good efficiency, the side lobe level (SLL) in a 

uniform current distribution case is high [5]. On the other 

hand, high SLL causes false target detection in radar 

operations, data errors in communications, and military 

applications [5]. The optimal beamwidth for a specific SLL 

is provided by the Dolph-Tschebyscheff antenna array 

method, which obtains weights for uniformly spaced linear 

arrays [6]. As a result, some of the strategies that reduce the 

SLLs of the antenna radiation patterns are investigated in this 

study.  

In electromagnetism (EM) optimisation problems, GA is 

one of the first evolutionary algorithms to be used [7]. GA 

has critical mechanisms such as selection, crossover, and 

mutation and takes advantage of these [8]. In the selection 

mechanism, individuals are chosen that are suitable for the 

fitness function. The fitness function confirms the 

performance of the antenna array. Crossover creates new 

individuals from existing population by changing some parts 

of the chromosomes. Mutation allows the creation of a new 

individual from an existing individual by randomly mutating 

one or more characteristics for a chosen individual. This 

process has been continued until the finishing criteria of the 
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algorithm are satisfied. Finishing criteria is the number of 

iterations of the GA in the proposed model. The 

specifications of the antenna array are transformed into a 

chromosome. And all these GA mechanisms are applied to 

these chromosomes.  

The use of design models using DL in antenna modelling, 

analysis, design, and array radiation synthesis is increasing 

rapidly [9]–[13]. These models improve engineering 

processes by offering higher accuracy and efficiency 

compared to traditional methods. In addition, DL-based 

approaches have the ability to optimise complex antenna 

structures and make performance predictions faster and more 

accurately. 

Previous studies have shown that Dolph-Tschebyscheff 

weighted antenna arrays offer advantages in various 

applications. For example, the effectiveness of genetic 

algorithms in antenna array optimisation has been 

investigated, and their results have been shown to provide 

important improvements in radiation patterns [14]. Similarly, 

the use of deep learning techniques in antenna design has 

been studied, and these methods have been shown to provide 

faster and more effective results than traditional optimisation 

techniques [2]. In addition, significant gains have been 

achieved by using artificial neural networks to improve the 

performance of microstrip antenna arrays has [15]. The main 

concept of the DL algorithm is to learn behaviours in the data 

[16], which makes it useful in many disciplines [17]. In this 

study, the DL and GA methods have been used with the aim 

of achieving low SLLs.  

II. MICROSTRIP ANTENNA ARRAY STRUCTURE 

In spacecraft, aircraft, satellite, missile, and any other high-

performance applications, where weight, size, cost, ease of 

installation, performance, and aerodynamic profile are 

constraints, low-profile antennas may be required [1]. To 

meet these requirements, occupy less space, increase 

bandwidth, and microstrip antennas can be used [1].  

In this study, the shape of the microstrip antenna is a 

rectangular patch given in Fig. 1 [1].  

 
(a) 

 
(b) 

Fig. 1.  Physical and effective lengths of rectangular microstrip patch [1]: (a) 

Top view; (b) Side view. 

Equations (1) to (5) are used to calculate the effective patch 

length, the patch length, the effective dielectric constant, and 

the patch width [1]. The notation and descriptions used are 

given in Table I.  

TABLE I. NOTATIONS USED AND DESCRIPTIONS. 

Symbol Description 

𝑣0 The free-space velocity of light 

𝑓𝑟  Resonant frequency 

ℎ Height of the substrate 

r  Dielectric constant of the substrate  

reff  Effective dielectric constant 

λ Wavelength 

𝑊 Width of the antenna 

𝐿 Length of the antenna 

𝑑 Spacing between the elements 

 

Equation (1) is used to calculate of the length of the 

antenna 
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As given in Fig. 1, the length of the antenna has been 

extended by ∆𝐿 for each side. To avoid the fringing effect, (2) 

is used for calculations of the length of the patch antenna 

 2 .effL L L    (2) 

The actual length of the microstrip antenna is determined 

by (3), where the permeability constant is µ0 and dielectric 

constant of the free space is 
0  
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The effective dielectric constant changes with frequency 

and (4) gives this formula. For the case where the width is 

greater than the height, the equation becomes the following 
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The width of the patch is given in (5) 
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.
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
 (5) 

These microstrip patch antenna’s equations are 

implemented to optimise the microstrip patch antenna 

structure in GA and DL.  

III. DOLPH-TSCHEBYSCHEFF DISTRIBUTION 

To achieve better beamforming, the smallest side lobes are 

required. A linear array with uniform spacing, non-uniform 

amplitude is a solution for this.  
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The popular distribution method is Dolph-Tschebyscheff 

whose excitation coefficients are coming from Tschebyscheff 

polynomials which are given in Table II with the identity 

equation (6) 

 cos .
d

u





  (6) 

TABLE II. EXCITATION COEFFICIENTS USED. 

m 𝐜𝐨𝐬( 𝒎𝒖) 

0 1   

1 cos 𝑢   

2 cos(2𝑢) = 2 𝑐𝑜𝑠2𝑢 − 1   

3 cos(3𝑢) = 4 𝑐𝑜𝑠3𝑢 − 3 cos 𝑢   

4 cos(4𝑢) = 8 𝑐𝑜𝑠4𝑢 − 8 𝑐𝑜𝑠2𝑢 + 1 

5 cos(5𝑢) = 16 𝑐𝑜𝑠5𝑢 − 20 𝑐𝑜𝑠3𝑢 + 5 cos 𝑢   

6 cos(6𝑢) = 32 𝑐𝑜𝑠6𝑢 − 48 𝑐𝑜𝑠4𝑢 + 18 𝑐𝑜𝑠2 𝑢 − 1   

7 cos(7𝑢) = 64 𝑐𝑜𝑠7𝑢 − 112 𝑐𝑜𝑠5𝑢 + 56 𝑐𝑜𝑠3 𝑢 − 7 cos 𝑢   

8 
cos(8𝑢) = 128 𝑐𝑜𝑠9𝑢 − 256 𝑐𝑜𝑠6𝑢 + 160 𝑐𝑜𝑠4 𝑢 − 32  𝑐𝑜𝑠2 𝑢

+ 1 

9 
cos(9𝑢)  =  256 𝑐𝑜𝑠9𝑢 − 576 𝑐𝑜𝑠7𝑢 + 432 𝑐𝑜𝑠5 𝑢 − 120 𝑐𝑜𝑠3 𝑢

+ 9 cos 𝑢   

 

From Table II, the following equation can be obtained  

      1 22 .m m mT z zT z T z    (7) 

Thus, it can be used to calculate the next polynomial with 

the previous two orders of it: 
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Array structure has uniform spacing and non-uniform 

amplitude array factor, equations are given (10) to (11) where 

2M is the number of elements, the wave number is 𝑘 = 2𝜋/𝜆, 

and the polar angle relative to the array axis is 𝜃: 

 

     

   

1/2 cos 3/2 cos

1 22

2 1 /2 cos

1

...

2 1
2 cos cos ,

2

j kd j kd

M

Mj M kd

M nn

AF a e a e

n
a e a kd

 




 

   



   

 
   

 
  (10) 

 

 

 

cos 2 cos

1 2 22 1

1cos

1 1

2 ...

2 cos 1 cos .

jkd j kd

M

MjMkd

M nn

AF a a e a e

a e a n kd

 

 

 





 

    

      (11) 

These Dolph-Tschebyscheff distribution array factor (AF) 

equations are implemented to optimise the antenna array 

structure in the GA and DL. 

IV. GENERATING DATA USING GENETIC ALGORITHM 

The dimensions length, width, height, the number of 

antenna elements in the array, and spacing between these 

elements constitute a chromosome. For a 32-bit chromosome, 

five bits are used for length of the microstrip antenna, five 

bits used for width of the microstrip antenna, ten bits used for 

height of the microstrip antenna, seven bits used for spacing 

between elements of the array, and the four bits are used for 

element count given in Fig. 2. Hence 31 bits are used in the 

32-bit chromosome and one bit is reserved for redundancy. If 

necessary, it will be used for any part of the chromosome; 

however, there is no longer a necessity. For the thickness 

small values are needed, so more bits have been allocated to 

the thickness. 

 
Fig. 2.  The chromosome structure. 

The flow chart of the GA, which starts with generation 

initial population, is given in Fig. 3.  

 
Fig. 3.  Genetic algorithm flow chart. 

The first population is created at random. The crossover 

mechanism is applied to the parents randomly selected from 

this population. The mutation mechanism is applied and a 

new generation is produced with a probability. The new 

individual is added to the new generation. The new generation 

is tested using the fitness function and, if it is satisfied, the 

chromosome is added to the new generation. The fitness 

function, which is given in (12), is determined based on the 

desired parameters in the antenna array, such as bandwidth 
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(BW), fractional bandwidth (FBW), the resonant frequency 

𝑓𝑟   of the antenna structure, the constants 𝑋 and 𝑌 are 

determined by the user, and 𝑁 is the number of elements in 

the antenna structure 

 .
r

BW X
Fitness function FBW

f Y N
  


 (12) 

Thus, crossover and mutation applied generations are 

added to the new generation. If the finishing criteria are 

satisfied, new generations are used for the next step. The final 

result is the optimised antenna specifications.  

V. PROPOSED DEEP LEARNING APPLICATION 

As mentioned above, DL algorithms are very popular in 

antenna array design. Therefore, fully connected (FC) 

multilayer perceptron (MLP) and DL algorithms are used. 

The architecture of the proposed model consists of an input 

layer, up to 20 hidden layers for DL, and an output layer. The 

activation function of this model is rectified linear unit 

(ReLU), which is given in (13) and (14) and Fig. 4: 

    max 0, ,y x x  (13) 
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The effective computational properties of the activation 

layer ReLU enables the neural network to learn rapidly. When 

the input 𝑥 is below zero, the gradient of the function becomes 

zero, which makes the network avoid backpropagation.  

 
Fig. 4.  ReLU function. 

The number of layers and neurons used in each layer is 

established by the input data. If too small numbers are 

determined for layers or neurons, this causes unsuccessful 

learning; on the contrary, too large numbers cause overfitting, 

and the results will be the same. This may cause the prediction 

of the unknown result to be unsuccessful. To avoid this 

situation, a comparison is made. The same configuration is 

used with changing number of layers, and the lowest mean 

squared error (MSE) (%) is investigated.  

The comparison of the neural networks with different layer 

size structures under the other same conditions is given in Fig. 

5. MSE of the structure with five hidden layers has the 

smallest error. Thus, the final architecture of the proposed DL 

model includes five hidden layers, the input layer with five 

neurons, the others include 512 neurons per layer, and the 

output layer includes one neuron. The architecture of the 

proposed DL model is shown in Fig. 6.  

In the input layer, scaling is used to change the antenna 

parameters to bits. For the deep learning model, 1024 GA 

generated antenna array samples are used. All hidden layers 

are fully connected, and the ReLU activation layer is used. 

The optimiser used in DL is chosen as adaptive moment 

estimation (Adam) due to its advantages of adaptive learning 

rates, computational efficiency, and low memory 

requirements [18].  

 
Fig. 5.  Variation of MSE with the number of hidden layers. 

  
Fig. 6.  Architecture of the proposed deep learning model. 

In the proposed deep learning model, the GA generated 

data set is used for training and testing data. Training has been 

completed in 1000 epochs. The model is trained for a %80 

number of epochs on the training data, and its performance is 
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evaluated with validation data. After the training of the DL 

model is executed, %20 of the data set is used for test data. 

The errors of the testing data are analysed.  

In the feedback mechanism, the errors analyses and the test 

data are used for the evaluation. All these analyses are input 

to the training. Later, the proposed model is applied to new 

data, and this process gives the prediction. The block diagram 

of the proposed DL model is given in Fig. 7.  

Recent advances in DL have shown promising results in 

various antenna array optimisation problems [19]–[23]. 

However, the integration of GA generated inputs into deep 

learning models has not yet been adequately tried in antenna 

array optimisation before.  

The proposed model contains three phases. The first phase, 

data generation for DL, is shown in Fig. 3; second phase, the 

proposed DL application that extracts high-level features 

from the input data and makes prediction, is given in Fig. 6 

(in this phase, the initial solutions provided by the genetic 

algorithm are further developed to produce more precise and 

optimised predictions). The third phase, the Dolph-

Tschebyscheff distribution phase, applies the Dolph-

Tschebyscheff distribution to further improve the results 

obtained from the deep learning model. This distribution 

controls the side lobe levels (SLLs) of the antenna array, 

providing a balance between the width of the main lobe and 

the suppression of the side lobe.  

In this proposed integrated model of complex algorithms, 

the results are aimed to be even better. Thus, the final antenna 

array pattern exhibits optimal performance at both high 

fidelity and low SLLs. 

The output of the first phase is used as input for the second 

phase and the output of the second phase is used as input for 

the third phase. This situation is together shown in Fig. 8. 

These block diagrams together become the proposed model 

block diagram, which is given in Fig. 8.  

 
Fig. 7.  Block diagram of the proposed DL model.  

 
Fig. 8.  Block diagram of the proposed model.

23



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 4, 2024 

 

The pseudocode of the integrated model of the proposed 

algorithm is given in Fig. 9. 

 
Fig. 9.  Pseudocode of the proposed model. 

The new data, which contain specifications of the antenna 

array structure applied in the DL, are given in Table III.  

TABLE III. SPECIFICATIONS OF THE ANTENNA ARRAY 

STRUCTURE. 

Specification Parameter 

Amplitude Distribution Dolph-Tschebyscheff 

Antenna Model Microstrip patch 

Frequency 28.13 GHz 

Number of Elements 4 

Spacing between the Elements 

(optimised with GA) 
0,0052 m 

Length 0,0095 m 

Width 0,0095 m 

Height 0,00062 m 

 

The optimisation codes are implemented for GA in C++ 

and for the DL in Python. The computer used for the 

computations has a 64-bit operating system with an Intel i7 

processor at 2.80 GHz and 16 GB RAM. Compiling the code 

takes about for GA 60 min, for DL 5 hidden layers, 60 min.  

VI. RESULTS 

In this paper, the GA generated data set is used for a DL 

antenna design methodology. The data set includes the 

antenna parameters as input features of the DL. For a desired 

performance of the antenna array, the Dolph-Tschebyscheff 

distribution is used. The array structure’s performance is 

compared by computing the radiation patterns and gains for 

the uniform array, the Dolph-Tschebyscheff array, and the 

proposed model. The result obtained on the training and 

validation sets shows that the model can make the estimation 

with high accuracy as given in Figs. 10 and 11. This makes 

an important contribution to the process of optimising the 

antenna array parameters in the design. 

 
Fig. 10.  Comparison of the structures Radiation Pattern. 

 
Fig. 11.  Comparison of the structures Gain. 

Although the GA-generated arrays offered improved side 

lobe levels (SLLs) compared to traditional uniform arrays, the 

results obtained with DL integration showed improved 

performance. The main reason for this improvement is the 

capacity of the DL model to create more complex and 

effective patterns by learning from GA outputs. In addition, 

the proposed GA+DL method is able to reduce SLL without 

a significant increase in the width of the main lobe, which 

improves the focus of the radiation pattern in the desired 

direction.  

Figures 10 and 11 show that SLL in the proposed GA+DL 
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model is suppressed. This means the proposed model, 

combined use of GA and DL, is an effective method in 

antenna optimisation. When the discovery capabilities of GA 

are combined with the learning and generalisation capabilities 

of DL, better antenna array patterns can be obtained. This 

study demonstrates the potential advantages of the GA+DL 

approach in applications where SLLs are critical.  

VII. CONCLUSIONS 

A DL-based model is designed to improve the 

characteristics of the Dolph-Tschebyscheff distributed 

antenna array structure. In this study, a four-element linear 

antenna array with uniform spacing and non-uniform 

amplitudes is used. Then, a GA was created with mutation 

and crossover mechanisms and initialised with a random 

initial population. The results validated that the proposed DL 

algorithm based on the samples generated by the GA provides 

better radiation pattern characteristics than the original 

spaced Dolph-Tschebyscheff distributed antenna array 

structure and uniform array. This offers significant 

advantages, such as low side lobe levels.  

For future studies, it is anticipated that antenna 

performance using the DL-based methodology can be 

extended to other wireless communication technologies such 

as spacecraft, the Internet of Things (IoT), the Internet of 

Vehicles (IoV) [24], and Vehicle-to-Vehicle (V2V) [25] 

communication. This proposed GA+DL model will 

contribute to the development of more efficient and reliable 

communication systems in related technologies. 

The results of this study reveal that the integration of DL 

and GA is a powerful tool for antenna array design and 

constitutes an important reference for future research.  
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