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Abstract—Managing energy in batteryless Internet of Things 

(IoT) nodes, especially in solar-powered mesh networks, 

presents significant challenges. This paper introduces an 

advanced solar irradiance model that simulates detailed daily 

energy profiles. The model considers various azimuth and 

elevation angles of solar panels, as well as cloud cover. Accurate 

simulation of daily energy production is critical for optimising 

the behaviour of solar-powered IoT nodes. The results highlight 

the utility of the model as a robust tool for research and 

simulations involving batteryless IoT devices, emphasising its 

enhanced capabilities for precise energy management and 

optimisation. This study offers a reliable framework for 

predicting and managing energy production in solar-powered 

IoT networks, thus supporting the development of more efficient 

and sustainable IoT systems. 

 
Index Terms—Solar model; Energy management; Internet of 

Things. 

I. INTRODUCTION 

The use of remote sensing monitoring systems is currently 

experiencing a surge in popularity due to its advantages in 

remote and challenging locations. These systems are being 

actively deployed for monitoring and remote sensing 

operations, functioning both as early warning systems (EWS) 

[1] and integral components of the Internet of Things (IoT) 

[2]. Additionally, they serve a wide range of applications, 

including environmental surveillance [3], precision 

agriculture [4], and infrastructure management. The low 

accessibility and challenging conditions in areas where sensor 

networks are deployed have created a strong demand for the 

development of resilient and reliable maintenance-free 

devices [5]. Current battery technology requires frequent 

replacement, incurs high operational costs, exhibits 

sensitivity to temperature variations, and lacks ecological 

sustainability. A potential solution to these drawbacks is 

energy harvesting. However, unlike batteries, energy 

harvesting yields an inconsistent, fluctuating supply of 

energy [6]. Therefore, researchers are increasingly exploring 

intelligent energy management solutions. To develop an 

intelligent energy management system, it is important to 

create simulations of the environments in which these 

systems will operate [7]. Meteorological stations are typically 

located near these systems and are a convenient means of 

collecting the relevant data for predicting energy supplies and 

setting up energy harvesting devices. Nevertheless, minor 

disparities in device placement and characteristics require 

that all variations be tested in a system model.  

The paper introduces a model that decomposes historical 

solar irradiance data, including the total irradiance as a sum 

of direct and diffuse components, into its individual direct 

and diffuse components. This decomposition is essential 

because many meteorological stations and solar power plants 

provide only the total irradiance data, making it necessary to 

separate these components using known factors such as 

position and date. 

These decomposed values are subsequently used in 

simulations of solar panels positioned in various orientations. 

This is crucial for simulating batteryless IoT nodes, which are 

placed at different azimuths and elevations and therefore 

receive inconsistent energy inputs. Simulating these 

conditions helps estimate the energy harvested for each node. 

Figure 1 illustrates the system model. Historical data are 

decomposed into direct and diffuse components and then 

input into a solar panel model implemented in Matlab code. 

This model simulates the energy intake for panels orientated 

in different directions. The output is the estimated harvested 

energy, which is used to simulate a mist computing IoT node 

network. This simulation can account for various weather 

conditions, such as multiday storms, and their impact on the 

energy supply to the nodes. 

 
Fig. 1  Historical data for total solar irradiance are processed in a model that 

decomposes solar irradiance into direct and diffuse components. The solar 

panel model subsequently estimates the available energy via a mist 

computing network. 

 

Manuscript received 24 May, 2024; accepted 30 August, 2024.  

This article has been produced with the financial support of the European 

Union under the REFRESH – Research Excellence for REgion Sustainability 

and High-tech Industries project under Grant No. 

CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just 

Transition. This work was supported by the project “Development of 

algorithms and systems for control, measurement and safety applications X” 

of Student Grant System under Grant No. SP2024/021, VSB-TU Ostrava. 

https://doi.org/10.5755/j02.eie.38283 

31



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 5, 2024 

 

The sensor network determines the energy available in the 

nearby environment using data from a single weather station 

[8]. In addition to assessing current energy availability, it is 

crucial to forecast future energy availability based on 

meteorological conditions. Predicting this parameter allows 

sensor nodes to effectively plan their operational modes and 

optimise energy consumption according to forecast weather 

changes. The present study contributes the following. 

− A mathematical model proposed that estimates the energy 

obtained from groups of small solar panels with various 

orientations. 

− A simulation of the effect of clouds on the proposed 

model under various weather conditions. 

− Model validation with real data: Testing and validation of 

the accuracy of the model using historical data from solar 

panels and meteorological stations. 

− Suggestion of implementation in IoT networks: 

Integration of the model into IoT node networks to ensure 

reliable and efficient operation of sensor networks in real 

time. 

The rest of this article is organised as follows. Section II 

presents related works. Section III provides a description of 

the proposed model and methods. Section IV provides a 

detailed description of the results, and Section V discusses the 

results in the context of state-of-the-art methods, highlighting 

the significance of the study and its limitations. Finally, 

Section VI concludes the article. 

II. RELATED WORKS 

In this section, the focus is on describing works related to 

this and highlighting the differences between them. Existing 

methods and technologies in the field of solar modelling are 

analysed, discussing both their strengths and weaknesses. The 

identified shortcomings of these approaches are addressed by 

the proposed solution, which brings new perspectives and 

improvements to the area of solar irradiance modelling. 

Table I shows an overview of the state-of-the-art methods 

that provide solar models. A comprehensive review of these 

solar models is described in [9]. The authors use various 

models and compare them at different locations in China. 

However, all of the models presented are capable of 

modelling horizontal panels only.

TABLE I. TABLE OF SOURCES OF SELECTED APPROACHES FOR MEASURING AND CALCULATING SOLAR IRRADIANCE UNDER THE 

EFFECT OF VARIOUS ATMOSPHERIC CONDITIONS. 

Authors Topic Data Cloud model Results Limits 

Cai, Qin, Wang, Hu, 

and Zhang [9] 

The authors created a 

MATLAB library 

containing several 

methods for calculating 

irradiance 

Hourly solar irradiance 

was measured hourly at 

35 stations across China 

Modelled with a 

machine learning 

algorithm 

Machine learning 

models 

Absence of a 

relevant input 

parameter 

Hottel [10] 

The study proposes 

constants for four 

climates to calculate solar 

radiation as a simple 

equation 

Data used for 

comparative purposes 

were measured with a 

pyranometer 

Not calculated 

Constants for 

calculating clear-

sky conditions at 

various altitudes 

and climates were 

introduced into the 

model, yielding 

measurements with 

0.3 % 

This method does 

not calculate with 

cloud effects 

Kambezidis, Mimidis, 

and Kavadias [11] 

The authors examine the 

variations in clear-sky 

conditions throughout the 

year, considering 

different rotations of 

solar panels but not 

changes in the solar beam 

itself 

Data were collected from 

43 meteorological 

stations across 

southeastern Europe 

Values measured at 

43 meteorological 

stations were 

applied 

Formulas were 

developed to 

estimate the solar 

energy potential at 

any location in 

Greece, using the 

available data 

Information about 

clouds must be 

measured at 

meteorological 

station 

Ruiz-Arias [12] 

The authors apply filters 

that represent suspended 

aerosols in the air, 

representing the 

formation of clouds with 

varying shape and density 

Ground stations, 

including 15 years of 

direct normal irradiance 

measurements 

Clouds were 

modelled as series 

of filters 

10 % for diffuse 

irradiation, 2 % for 

direct irradiation 

(standard deviation 

error) 

Absence of a 

relevant input 

parameter 

Dazhi, Jirutitijaroen, 

and Walsh [13] 

The authors suggested 

three models to predict 

next-hour solar irradiance 

Two meteorological 

stations from USA in 

Miami and Orlando 

Weather index 

based on regression 

analysis to predict 

cloud transients 

and a look-up table 

for irradiance 

Models capable of 

predicting next-hour 

solar irradiance 

based on current 

data 

Cannot be 

calculated with 

panel angle 

Diez, Martínez-

Rodríguez, Navas-

Gracia, Chico-

Santamarta, Correa-

Guimaraes, and Andara 

[14] 

Modelling solar radiation 

on tilted PV panels 

Horizontal global solar 

irradiation hours from 

nearby meteorological 

station 

Anisotropic models 

of diffuse solar 

irradiation 

Improved 

estimations of solar 

irradiation on the 

inclined plane using 

anisotropic models, 

with RMSE values 

as low as 

11.95 W/m² and R² 

values up to 0.9835 

for different models 

and days 

The model requires 

pyranometer data as 

input information 

Furlan, de Oliveira, 

Soares, Codato, and 

Escobedo [15] 

The study introduces a 

new regression model to 

estimate hourly values of 

Hourly values of global 

and diffuse solar 

radiation, air 

Modelled with a 

regression 

algorithm that 

Coefficient of 

determination R² of 

0.93 

Visual observation 

of clouds can 

introduce errors, 
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Authors Topic Data Cloud model Results Limits 

diffuse solar radiation at 

the surface, incorporating 

cloud effects 

temperature, relative 

humidity, atmospheric 

pressure, cloudiness, 

cloud type, and 

particulate matter 

measured in São Paulo, 

Brazil, during the year 

2002 

includes the effects 

of cloudiness, 

cloud type, and 

traditional 

meteorological 

variables 

limited temporal 

resolution, and 

spatial 

representativeness 

of the cloud data. 

These data cannot 

be received from all 

meteorological 

stations 

Solar irradiation can be calculated using a physical model 

that includes air mass modelling [10]. However, clouds must 

also be considered, which significantly affect the resulting 

solar irradiance values on the Earth’s surface. Advanced 

models that incorporate the effect of cloud cover and are 

capable of modelling various panel elevations and azimuths 

typically rely on advanced historical data or historical data 

from many weather stations [11]. 

Another approach to modelling solar radiance is the use of 

filters. Solar irradiance is modelled as a series of 

mathematical filters [12]. The advantage of this approach is 

the complex model of solar irradiance; however, it requires 

advanced historical data to be measured. 

The authors in [13] explore the prediction of solar 

irradiance for the next hour using three different methods. 

They utilise meteorological data, including three types of 

irradiances and cloud cover, employing auto-regressive 

integrated moving average (ARIMA) models. All three 

methods were tested using data from meteorological stations 

in Miami and Orlando, demonstrating that incorporating 

cloud cover information improves forecast accuracy. 

The authors in [14] have thus attempted to estimate the 

hourly global solar irradiance on tilted and orientated 

photovoltaic solar panels applied to greenhouse production. 

They used horizontal solar irradiance data from 

agrometeorological stations and anisotropic diffuse solar 

irradiance models to improve estimates of solar irradiance on 

a tilted surface.  

The authors in [15] seek to develop a new regression model 

to estimate hourly values of diffuse solar radiation from the 

surface that incorporate the effects of clouds, traditional 

meteorological variables, and air pollution to improve the 

accuracy of the predictions of this radiation. 

III. MODEL AND METHODS 

This paper introduces a mathematical model capable of 

simulating the solar beam, diffuse radiation, clouds, and air 

mass. Additionally, the model can simulate a solar panel with 

variable zenith and azimuth angles. 

Figure 2 shows a block diagram of a model designed to 

calculate the power output of a solar panel. The model 

extends the calculation of solar energy with the calculation of 

an equivalent area and cloud simulations. The first step in 

calculating solar irradiance involves determining the 

direction of solar radiation based on the Earth’s position and 

the current time. The calculation is performed by the Solar 

Beam block, which outputs the azimuth and elevation of the 

solar panel array. As solar radiation passes through the 

atmosphere, it loses a certain amount of energy, which is 

calculated by an Air Mass block. Direct solar radiation strikes 

the solar panel at a certain angle, necessitating the calculation 

of an equivalent area. The total solar irradiance is then 

calculated by summing the diffuse radiation and direct 

radiation. In addition, solar irradiance is adjusted by a cloud 

coefficient to account for cloud cover. The resultant power 

obtained from a particular solar panel is calculated according 

to the size and efficiency of the panel. 

 
Fig. 2.  Block diagram illustrating a model capable of calculating the power 

output of a solar panel. 

To incorporate the impact of clouds into the model, a cloud 

simulator was added. The cloud data were obtained from a 

historical data set containing global irradiance values. The 

real global irradiance is compared to the simulated global 

irradiance without clouds. The simulated global irradiance 

was derived from the model with the solar panel positioned 

horizontally (elevation is zero). 

Calculation of the azimuth and altitude of the solar beam is 

described in [16]. The solar beam is represented as a vector 

in three-dimensional space, pointing to the ground. The angle 

of the solar beam is calculated for each time interval. 

As the solar beam permeates the atmosphere, it loses 

energy due to refraction and heats the air molecules within 

the air mass. The air mass index represents the amount of 

material through which the beam passes. A beam 

perpendicular to the surface has an index of 1, while a beam 

parallel to the ground surface has an infinite index. The air 

mass calculation is defined as follows [17]: 

 90 ,sEl = −  (1) 

 
( ) ( )

1.6364

1
,

cos 0.50572 96.07995
AM

−
=

 +  −
 (2) 

 1 1.135,c =  (3) 

 2 0.678,c =  (4) 

 ( )
2

1Intensity 0.7 W ,
c

AMc=   (5) 

where AM is the air mass index, with a value of 1 representing 

a perpendicular angle to the ground, Els represents the solar 

elevation, and Intensity is the power of the solar beam. The 

vector of the solar beam is obtained by combining the 

33



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 5, 2024 

 

Intensity with azimuth and elevation. 

The solar beam intensity vector strikes the solar panel at a 

certain angle; therefore, the equivalent area of the solar panel 

is calculated as follows: 

 ( ) ( )sin / 2 cos / 2 ,x p ph El Az=  −   +  (6) 

 ( ) ( )sin / 2 cos / 2y p ph El Az=  −   +  (7) 

 ( )cos / 2 ,z ph El=  −  (8) 

 ( ), , ,vec x y zh h h h=  (9) 

 ( ) ( )( )cos ,sin ,0 ,vec p pw Az Az=  (10) 

 ( ) ( ) ,
T

eq vec vec sS w h=     (11) 

where Seq is the area of the solar panel perpendicular to 

sunlight that would generate the same energy as a tilted solar 

panel with an area of one, Elp is the panel elevation angle, Azp 

is the panel azimuth angle, and φ is the normalised vector of 

the solar beam striking the surface of the solar panel. 

The diffuse irradiance depends on various factors. It 

comprises terrestrial radiation, which is energy reflected from 

the ground, hills, and nearby objects, and scattered solar 

radiation is the energy redirected to solar panels by clouds. 

Because modelling these factors is complex, a constant value 

of IR = 10 % of direct irradiance can be applied to 

approximate these minor irradiance contributions. 

To determine the amount of sunlight blocked by clouds, the 

proposed model uses historical data collected from weather 

stations. The approach involves simulating clear-sky 

conditions at a specific location, mirroring the geographical 

context of the historical data, and subsequently comparing the 

simulated clear-sky scenario with historical observations. 

Cloud coverage is quantified as the ratio between historical 

and simulated values, expressed as 

 hist
coef

sim,CS

SR
1 ,

SR
C = −  (12) 

where Ccoef is the cloud coefficient, SRhist denotes the 

historical solar irradiance value, and SRsim,CS is the simulated 

solar irradiance value under clear-sky conditions. In instances 

where the historical data align precisely with the simulated 

data, the cloud coefficient equals zero, indicating the absence 

of clouds. 

Finally, the total solar irradiance is computed as follows 

 ( ) ( )( )

sim

coef

SR

Intensity IR Intensity 1 W ,eqS C

=

=  +   −  (13) 

where SRsim represents simulated solar power in Watts, 

Intensity denotes solar beam power after air mass correction, 

Seq is the equivalent area, IR is the indirect irradiance 

coefficient, and Ccoef is the cloud coefficient. 

The model was implemented in MATLAB and its source 

code is available on GitHub [18] for reference and further 

exploration. The experiment was carried out to assess the 

effectiveness of the model in simulating the capture of solar 

radiation under diverse conditions. For this purpose, solar 

irradiance data from the Mošnov meteorological station 

(49.6918 ° latitude, 18.1126 ° longitude, altitude 252.8 

metres) recorded at 10-minute intervals were used. 

IV. RESULTS 

The presented model was tested with data for the months 

of March, June, September, and December to cover seasonal 

variations in solar irradiance. The solar panels were 

positioned at elevations of 30, 60, and 90 degrees and 

azimuths of 0 (North), 45, 90 (East), 135, 180 (South), 225, 

270 (West), and 315 degrees. Each configuration was tested 

under clear and cloudy sky conditions to evaluate the model’s 

responsiveness to atmospheric changes. The results include 

total 30-day cumulative energy obtained for a 1 cm2 panel 

with an efficiency of 21 %. Additionally, the results present 

the total monthly total energy and illustrate daylight graphs 

for various panel orientations.  

Table II presents the 30-day energy totals for a 1 cm2 solar 

panel with a 21 % efficiency in different orientations under 

clear-sky conditions at the Mošnov location in 2016. The 

table includes monthly totals for March, June, September, and 

December to represent all four seasons. The energy totals are 

computed for clear-sky conditions, indicating that the results 

depict the theoretical maximum energy obtainable from the 

solar panel. 

To emulate real-world conditions with more accuracy, 

cloud data from a historical data set were integrated into the 

model. Table III presents the 30-day energy totals for a 1 cm2 

solar panel with 21 % efficiency in various orientations under 

cloudy conditions at the Mošnov location in 2016. In general, 

the energy totals exhibit a significant reduction, with only 

54 % of the total potential energy being obtained.

TABLE II. TOTAL ENERGY OVER 30 DAYS FOR A 1 CM2 SOLAR PANEL WITH AN EFFICIENCY OF 21 %, IN VARIOUS ORIENTATIONS 

UNDER CLEAR-SKY CONDITIONS AT THE MOŠNOV LOCATION IN 2016. 

Az. (→) El. (↓) 0 (N) 45 90 (E) 135 180 (S) 225 270 (W) 315 

March 30 1,92 2,95 4,66 6,13 6,66 5,91 4,41 2,79 

 60 0,83 1,90 4,12 6,14 6,93 5,83 3,78 1,70 

 90 0,83 1,46 3,22 4,88 5,57 4,57 2,87 1,28 

June 30 10,88 11,29 12,72 13,73 14,03 13,91 12,93 11,40 

 60 5,32 7,45 10,26 11,18 11,07 11,48 10,55 7,58 

 90 3,00 5,15 7,30 7,14 6,04 7,40 7,45 5,10 

September 30 4,26 5,71 8,36 10,52 11,32 10,32 8,11 5,55 

 60 1,50 3,72 7,31 10,18 11,22 9,88 6,98 3,53 

 90 1,45 2,80 5,64 7,84 8,51 7,54 5,30 2,61 

December 30 0,46 0,53 1,54 2,83 3,39 2,79 1,49 0,53 

 60 0,46 0,47 1,50 3,49 4,47 3,42 1,43 0,47 

 90 0,46 0,46 1,30 3,34 4,47 3,26 1,24 0,46 
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TABLE. III. TOTAL ENERGY FOR 30 DAYS FOR A 1 CM2 SOLAR PANEL WITH AN EFFICIENCY OF 21 %, IN VARIOUS ORIENTATIONS 

UNDER CLOUDY CONDITIONS AT THE MOŠNOV LOCATION IN 2016. 

Az. (→) El. (↓) 0 (N) 45 90 (E) 135 180 (S) 225 270 (W) 315 

March 30 1,92 2,95 4,66 6,13 6,66 5,91 4,41 2,79 

 60 0,83 1,90 4,12 6,14 6,93 5,83 3,78 1,70 

 90 0,83 1,46 3,22 4,88 5,57 4,57 2,87 1,28 

June 30 10,88 11,29 12,72 13,73 14,03 13,91 12,93 11,40 

 60 5,32 7,45 10,26 11,18 11,07 11,48 10,55 7,58 

 90 3,00 5,15 7,30 7,14 6,04 7,40 7,45 5,10 

September 30 4,26 5,71 8,36 10,52 11,32 10,32 8,11 5,55 

 60 1,50 3,72 7,31 10,18 11,22 9,88 6,98 3,53 

 90 1,45 2,80 5,64 7,84 8,51 7,54 5,30 2,61 

December 30 0,46 0,53 1,54 2,83 3,39 2,79 1,49 0,53 

 60 0,46 0,47 1,50 3,49 4,47 3,42 1,43 0,47 

 90 0,46 0,46 1,30 3,34 4,47 3,26 1,24 0,46 

As expected, the tables present typical behaviour, 

indicating that the highest energy gain can be achieved during 

summer (June) when the solar panel is orientated south with 

an elevation of 30 degrees, which closely approximates the 

optimal elevation of 35 degrees for the Czech Republic. The 

results also confirm the well-established principle that a 

higher panel elevation can increase potential gains during 

winter, while gains during summer are limited, therefore, 

requiring a trade-off. 

Figure 3 presents a bar graph illustrating the monthly 

income from solar energy for a 1 cm2 solar panel with 21 % 

efficiency, orientated at 180 ° and elevated at 30 ° in Mošnov 

2016. The blue bars indicate the energy income under clear-

sky conditions, whereas the orange bars depict the energy 

income under cloudy conditions. 

 
Fig. 3.  Bar graph of the monthly incoming solar energy on a 1 cm2 solar 

panel with an efficiency of 21 %, orientated 180 ° and elevated 30 °, in 

Mošnov 2016. 

The primary aim of the proposed solution is to simulate the 

temporal behaviour of solar radiation rather than relying on 

statistical parameters. Essentially, the model is capable of 

computing solar irradiance for any given time and over any 

period. However, the incorporation of cloud cover data into 

the model requires historical data. For the present study, 

historical data with a 10-minute period were employed, 

enabling the model to simulate temporal behaviour at the 

same interval. It is important to note that meteorological 

stations typically provide data on global irradiance, which 

assumes a horizontally placed solar panel. Consequently, 

these data cannot be applied to panels with varying 

orientations and elevations. 

Figure 4 illustrates the solar irradiance available for a panel 

with various azimuth angles at a fixed elevation of 30 ° on 

different types of days. Figures 4(a)–(d) present the solar 

irradiance patterns over time for different weather conditions. 

Figure 4(a) shows the solar irradiance on a sunny summer 

day. Solar irradiance peaks around midday, with the highest 

values observed for an azimuth angle of 180 °. The maximum 

recorded irradiance is approximately 1000 W/m2. Figure 4(b) 

represents a cloudy winter day. The irradiance values are 

significantly lower compared to a summer day, peaking at 

approximately 600 W/m2. Fluctuations throughout the day 

indicate intermittent cloud cover. Figure 4(c) depicts spring 

conditions with rapid weather changes. Solar irradiance 

varies significantly, with sharp peaks and troughs throughout 

the day. The maximum irradiance reaches approximately 

1000 W/m2 during brief periods of clear sky. Figure 4(d) 

depicts the solar irradiance on a cloudy spring day. Similarly 

to a cloudy winter day, solar irradiance is lower, with peaks 

at approximately 600 W/m2. Multiple peaks throughout the 

day correspond to intermittent clear periods. 

 
Fig. 4.  Graph of solar irradiance in the panel for various azimuths and 

elevation of 30 ° under a range of weather and climate conditions: (a) Sunny 

summer day; (b) Cloudy winter day; (c) Spring with rapid weather changes; 

(d) Cloudy spring day. 
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V. DISCUSSION 

This section compares the proposed model with state-of-

the-art methods and discusses its significance and limitations 

in the context of its novelty and contribution to the field. 

Table IV compares the features of the proposed solution 

with state-of-the-art methods. Hottel’s model [10] is a widely 

applied physical model known for its robustness. However, it 

lacks the capability to account for diffuse radiation and does 

not allow for changes in panel orientation. On the contrary, 

the advanced physical model developed by Kambezidis, 

Mimidis, and Kavadias [11] integrates data from multiple 

stations, providing a comprehensive view of solar radiation. 

Nevertheless, this model provides only summary values and 

cannot capture detailed daily variations. Ruiz-Arias [12] 

propose a model that employs filters to simulate solar 

radiation. Although this approach can yield accurate results, 

it relies on complex historical data and cannot accommodate 

different panel orientations.  

On the contrary, the solution proposed in the present study 

offers several distinct advantages. First, it incorporates both 

direct and diffuse radiation, providing a more comprehensive 

model of solar energy capture. Additionally, the proposed 

solution allows for the adjustment of panel orientation and 

elevation, allowing energy capture to be optimised according 

to specific site conditions. The model also simulates cloud 

coverage using historical solar irradiance data, incorporating 

the effect of these atmospheric conditions on solar energy 

capture in the solar panel array. Detailed daily profiles of 

solar radiation are also produced, which enhances the 

accuracy of the simulations and shows the versatility of the 

model as a tool for simulating solar energy capture. 

TABLE. IV. COMPARISON OF THE PROPOSED SOLUTION’S FEATURES WITH STATE-OF-THE-ART METHODS. 

Ref. No. Model Parameters Direct Diffuse Panel or.  Clouds  Detailed Values 

[4] Physical Cloud measurement ✔ ✘ ✘ ✔ ✔ 

[5] Physical 
Hist. data various 

locations 
✔ ✔ ✔ ✔ ✘ 

[11] Filters Advance parameters ✔ ✔ ✘ ✔ ✔ 

[13] Physical Cloud cover of dome ✔ ✔ ✘ ✔ ✔ 

[14] Physical 
Three types of 

cloudiness 
✔ ✔ ✔ ✔ ✔ 

[15] Physical 
Visual observation of 

clouds 
✔ ✔ ✘ ✔ ✔ 

Proposed 

solution 

Physical + Hist. 

data 
Hist. data ✔ ✔ ✔ ✔ ✔ 

The significance of this study is in its development of a 

model that accurately simulates energy capture dynamics 

throughout the day. By integrating cloud simulation 

capabilities and using real data from a weather station, the 

model achieves improved reliability and applicability in real-

world scenarios. The model is especially relevant for future 

research and simulations in connection with batteryless IoT 

devices. Its practical utility lies in its ability to predict and 

optimise energy harvesting processes. 

The performance evaluation of the proposed model 

indicates a strong alignment between its predictions and the 

actual daily energy production patterns, demonstrating its 

accuracy and effectiveness. Unlike previous studies, the 

proposed model successfully integrates the ability of tilting 

solar panels, providing an effective solution for various 

applications. However, it is important to acknowledge the 

limitations of this approach. Simulation of diffuse radiation is 

based on a fixed percentage, which may not accurately reflect 

variations in meteorological conditions, e.g., during 

thunderstorms. This aspect requires further refinement to 

improve the accuracy of the model in a broader range of 

weather scenarios. 

VI. CONCLUSIONS 

In this study, we introduce a novel solar irradiance model 

specifically tailored to the energy management systems of 

batteryless Internet of Things (IoT) devices. The model 

effectively decomposes historical solar irradiance data into 

direct and diffuse components, simulates various solar panel 

orientations, and incorporates the impact of cloud cover. The 

validation of the model using data from the Mošnov 

meteorological   station   demonstrates   its    robustness   and 

accuracy across different seasons and weather conditions. 

The results of the study highlight the utility of the model in 

predicting solar energy capture with high precision, which is 

a crucial factor in optimising the performance of solar-

powered IoT networks. This capability enables better 

planning and energy management for devices in such 

networks. The model is therefore a valuable tool for the 

design of maintenance-free, resilient IoT devices for 

deployment in remote and inaccessible areas. 

Compared to existing state-of-the-art methods, the 

proposed model is distinguished by several key features. 

Specifically, the model provides detailed daily energy 

profiles, accommodates variable solar panel orientations, and 

accurately simulates the effects of clouds on the ability of a 

solar panel to capture solar energy. While the model’s 

reliance on historical data for cloud simulation limits its 

predictive accuracy in unprecedented weather scenarios, 

future enhancements could address this by integrating real-

time meteorological data and advanced weather prediction 

algorithms. 

In conclusion, the proposed solar irradiance model offers a 

comprehensive and practical approach to energy harvesting 

for batteryless IoT devices. The model lays the foundation for 

more efficient and sustainable IoT solutions. The continued 

refinement and application of the model has the potential to 

significantly contribute to advancements in energy 

management strategies for IoT networks. By providing 

accurate predictions of solar energy availability, the model 

holds promise for various fields, including environmental 

monitoring, precision agriculture, and infrastructure 

management, and can support the widespread adoption of 

solutions that employ renewable energy. 
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