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Abstract—To improve the operational efficiency and 

reliability of photovoltaic power stations, this paper introduces 

a novel approach to detect outliers in photovoltaic arrays using 

a Vine-Copula method. The procedure is divided into two 

distinct phases. Initially, it identifies deviations in the direct 

current (DC) component of the photovoltaic (PV) system. The 

following phase extends this by pinpointing irregularities in the 

DC voltage of the array. To model the interconnection between 

the PV current, irradiance, and temperature, the Vine-Copula 

is employed in this process. The optimisation of this function is 

based on the Akaike information criterion. Subsequently, a 

conditional probability model for the PV current is developed 

along with a formula to determine the quantile of this 

probability. This interval is then employed as the primary 

metric for detecting and eliminating current deviations. After 

refining the current data, a similar approach is taken to address 

voltage irregularities. The results of the simulation tests indicate 

that this proposed method is more effective, showing lower error 

rates and higher accuracy in detecting outliers, compared to 

other methods. 

 
Index Terms—Photovoltaic array; Anomalous data 

identification; Vine-Copula; Confidence interval; 

Interdependent structure. 

I. INTRODUCTION 

In recent years, the escalating severity of global 

environmental pollution has propelled the imperative for the 

energy transition, driving research and the application of 

photovoltaic (PV) power generation technology, which has 

shown notable progress [1]. However, the operational 

dynamics of PV arrays is susceptible to various stochastic 

factors, resulting in a plethora of outliers in PV output data, 

which pose significant impediments to its analysis [2]–[4]. 

High-quality PV data serves as the basis for tasks such as 

monitoring the performance of PV arrays, playing a crucial 

role in ensuring system normal operation and grid stability. 

Therefore, the identification of outliers in the PV data is of 

paramount importance [5]. 

The causes of abnormal PV data are diverse, encompassing 

factors such as communication faults, equipment anomalies, 

and intentional power limitations [6]. Presently, two 

predominant categories of methods are employed to identify 

abnormal PV data: probabilistic statistical methods and 

machine learning methods. In the realm of probabilistic 

statistical methods, assumptions are typically made regarding 

the data following specific distributions. An approach, as 

described in [7], relies on the central limit theorem, assuming 

a normal distribution for PV power data and using the three-

sigma method for outlier detection. However, the efficacy of 

this method is constrained by the influence of random factors 

such as weather on the distribution of PV data, leading to 

limitations in outlier identification under varying weather 

conditions. The authors in [8] propose a method based on the 

sliding standard deviation to cleanse abnormal data in the 

operational data of PV arrays, identifying abnormal data 

based on the upturn of the sliding standard deviation curve. 

However, when dealing with large data sets of PV arrays, the 

efficiency of the algorithm may become a significant concern, 

as the sliding standard deviation computation can consume 

substantial computational resources. 

In terms of artificial intelligence methods, the primary 

approach involves quantifying sample isolation using metrics 

such as distance, density, and degree of isolation for anomaly 

detection. The authors in [9] use the local outlier factor 

algorithm combined with empirical clustering and 

successfully eliminate outliers in a wind database. However, 

this performance of this method may be influenced by the 

data distribution, resulting in a less stable recognition of 

different types of outliers. The authors in [10] introduce an 

image-based algorithm using clustering methods to map 

normal data and outliers of wind turbines. However, this 

method may be affected by illumination and image quality, 

and it exhibits limited adaptability to different wind turbine 

models and environmental conditions. The authors in [11] 

present the isolation forest anomaly detection model, 

characterised by linear time complexity and efficient 

perception of global sparse points. However, the model may 

perform inadequately when dealing with locally relative 
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sparse abnormal points, leading to a high error rate due to its 

reliance on global features without sufficient consideration of 

local features. 

Among the references cited, artificial intelligence methods 

typically exhibit satisfactory performance on specific PV 

arrays, but lack generality. Probabilistic statistical methods, 

especially when faced with high-dimensional data, 

particularly in cases requiring consideration of multivariate 

relationships, can encounter computational complexity issues 

[12]. Copula Theory provides a more accurate method for 

characterising interdependencies between random variables, 

independent of specific assumptions about data distribution, 

enabling the capture of complex relationships between 

multivariate data [13]–[15]. The authors in [16] propose a PV 

abnormal data identification algorithm based on the 

irradiance process, utilising Copula joint distribution 

functions to construct the probability distribution relationship 

between irradiance and power. However, this study does not 

account for the influence of temperature. The authors in [17], 

using Copula, establish a conditional probability model of 

wind turbine power-wind speed, calculating confidence 

intervals given wind speed and confidence levels to identify 

outliers. Nevertheless, the aforementioned references do not 

consider the comprehensive impact of irradiance and 

temperature on PV output data, which exhibit a strong 

correlation with factors such as PV power. Additionally, the 

various types of Copula functions pose a challenge; the use a 

single-type Copula function to characterise interdependence 

structures among high-dimensional variables may result in 

poor flexibility and accuracy. 

To enhance recognition accuracy, this study builds on 

existing methods by incorporating irradiance and temperature 

as features, expanding the modelling of bivariate 

interdependence structures to trivariate interdependence 

structures. Furthermore, a more flexible and accurate Vine-

Copula method is selected for modelling. Additionally, this 

study focusses on anomaly data identification in distributed 

PV arrays, which, in contrast to traditional centralised PV 

stations that only identify power data anomalies, detects 

anomalies in the direct current voltage and current. On this 

basis, this study derives confidence interval calculation 

formulas for PV current and voltage and validates the 

effectiveness of the proposed method. 

II. ANALYSIS OF PHOTOVOLTAIC OUTPUT ANOMALY DATA 

AND FEATURE SELECTION 

A. Analysis of Photovoltaic Output Anomaly Data 

Compared to normal operational states, photovoltaic (PV) 

arrays exhibit significant variations in maximum power point 

power, the voltage, and the current during abnormal 

operational states. Various factors contribute to the 

occurrence of anomalies in PV arrays, including high-

potential grounding faults, short-circuit faults, open-circuit 

faults, partial shading, dust accumulation, and ageing. These 

factors correspond to five distinct abnormal operational 

states. Table I illustrates the temporal fault characteristics of 

current, voltage, and power for these five abnormal 

operational states of PV. 

From Table I, it is evident that anomalies induced by 

abnormal PV operational states manifest themselves 

primarily as decreases in current and voltage.  

TABLE I. TEMPORAL FAULT CHARACTERISTICS UNDER VARIOUS ANOMALOUS OPERATIONAL STATES. 

Abnormal state Output current Output voltage Output power 

High voltage to ground fault 
Fault transient Momentarily becomes 0 Momentary decline Momentary decline 

After stabilisation Essentially unchanged Decline Decline 

Short-circuit fault 
Fault transient Momentary decline Essentially unchanged Momentary decline 

After stabilisation Essentially unchanged Decline Decline 

Open-circuit fault 
Fault transient Momentary decline Essentially unchanged Momentary decline 

After stabilisation Decline Essentially unchanged Decline 

Partial shading obstruction 
Fault transient Momentary decline Momentary decline Momentary decline 

After stabilisation Decline Decline Decline 

Accumulated dust or ageing Gradual decline Gradual decline Gradual decline 

Moreover, within the same abnormal state, the anomalous 

features of current and voltage differ. Consequently, the PV 

anomaly data identification method proposed in this study 

considers photovoltaic output current and voltage as the 

objects of identification, addressing each in two distinct steps 

for current and voltage recognition, respectively. 

In addition to the decrease in voltage and current caused by 

abnormal PV states, there exists another subset of anomalies 

that surpass normal values. Based on the distinctive features 

of the PV data anomalies, these anomalies can be categorised 

into four types. The first type of anomaly is characterised by 

a continuous period of values exceeding the normal range. 

Such faults are typically caused by malfunctions in 

communication devices or sensors. The second type of 

anomaly is identified by a sustained period of values that fall 

below the normal range. The primary causes of this type of 

anomaly include PV power limitations, abnormal states, or 

faults in communication or sensor devices. The third type of 

anomaly is distinguished by adequate irradiance, yet the PV 

output voltage or current is recorded as zero. The main causes 

of this type of anomaly include inverter malfunctions, faults 

in communication devices or sensors, and shutdown of the 

generator unit. The fourth type of anomaly is marked by 

outliers near the normal range. These data points are the result 

of noise propagated by communication devices or sensor 

signals, random fluctuations from external input, and 

inaccuracies in maximum power point tracking. Recognising 

the diverse nature of these types of anomalies is crucial to 

developing a comprehensive understanding of abnormal 

conditions in PV data and improving the effectiveness of 

anomaly detection methods. 

B. Feature Selection 

Environmental factors exert a significant influence on the 

output characteristics of a PV array, particularly the intensity 

of sunlight and temperature. The PV output power is nearly 

proportional to solar irradiance and inversely proportional to 

temperature. Due to the substantial correlation between 
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humidity and temperature, the impact of humidity can be 

ignored. If data cleaning methods only consider the 

relationship between one type of environmental factor and the 

output distribution, it becomes challenging to identify all 

different types of anomalies. Meanwhile, the influence of 

temperature on the output current and voltage of 

photovoltaics varies. As the temperature of the photovoltaic 

panel increases, the open-circuit voltage of the photovoltaic 

module decreases, while the output current of the 

photovoltaic module remains almost unchanged [18]. 

Therefore, it is necessary to perform separate data cleaning 

for PV voltage and current. 

Table II presents the Spearman rank correlation 

coefficients between irradiance, temperature, and voltage-

current pairs. It is evident that both temperature and 

irradiance exhibit a high correlation with both current and 

voltage. To address this, this paper proposes an outlier 

cleaning method based on the distribution characteristics of 

the output from the PV array. This method employs the Vine-

Copula algorithm in two steps to remove outliers. For 

simplicity, the following sections collectively refer to voltage 

and current as target variables, and the next section will 

elaborate on the proposed algorithm. 

TABLE II. CORRELATION COEFFICIENTS AMONG FEATURE 

VARIABLES. 

 Current Voltage Temperature Irradiance 

Current 1 1 0.771 0.997 

Voltage 1 1 0.771 0.997 

Temperature 0.771 0.771 1 0.609 

Irradiance 0.997 0.997 0.609 1 

III. ALGORITHM CORE PRINCIPLES AND DATA CLEANSING 

METHODS 

The Vine-Copula, capable of capturing intricate nonlinear 

relationships among multivariate parameters based on 

univariate marginal distributions, facilitates the computation 

of confidence intervals for target variables under conditions 

of temperature and irradiance. Values deviating from these 

confidence intervals are identified and excluded as outliers. 

The establishment of a Vine-Copula model generally 

encompasses two phases: Initially, it involves the 

determination of the marginal distributions for each variable; 

subsequently, it requires the identification of the vine 

structure and the optimal Copula function for each node. The 

following discussion delves into the algorithmic principles 

from these two perspectives.  

A. Nonparametric Kernel Density Estimation 

Establishing marginal distributions is a critical step in 

statistical analysis and modelling, which is typically 

employed to address the distribution of individual random 

variables. Common methodologies for constructing marginal 

distributions include parametric estimation, nonparametric 

methods, distribution fitting, and empirical distribution 

function approaches. In cases like photovoltaic current, 

voltage, irradiance, and temperature, which are often 

continuous variables with potentially indistinct distribution 

types, this study adopts the nonparametric kernel density 

estimation (KDE) approach. KDE establishes marginal 

distributions by estimating probability densities based 

directly on the data itself, obviating the need for pre-assuming 

a distribution type. The formula for nonparametric kernel 

density estimation is as follows: 

 
1

1
( ) ( ),ˆ N n

n

x X
F x G

N h=

−
=   (1) 

 ( ) ( ) ,
x

G x K t dt
−

=   (2) 

 
21

( ) exp( ),
22

x
K x


= −  (3) 

where ˆ ( )F x  denotes the estimated value of the marginal 

distribution for the random variable ,x  N  represents the 

total number of samples, 
nX  signifies the nth sample value of 

the random variable ,x  the variable h  is typically referred to 

as the bandwidth or smoothing parameter, and ( )K x  refers to 

the Gaussian kernel function. 

B. Copula Theory 

1. Sklar theorem. 

A Copula can be succinctly described as a function that 

“binds or couples a multivariate distribution function to its 

one-dimensional marginal distribution functions” [19]. This 

characterisation is primarily articulated by Sklar’s theorem, 

which posits that for a d-dimensional distribution function F

with continuous marginal distributions, there exists a unique 

Copula function C such that for all 

1( , , ) ( { , }) ,d

dx x=   − +x  the following holds 

 ( ) ( )1 1 2 2( ), ( ), ( ) .d dF x C F x F x F x=  (4) 

The joint probability density function thereof can be 

articulated as such 

 ( ) ( )1 1 2( ), , ( ) ( ) ( ) ( ),d df c F x F x f x f x f x=  x  (5) 

where ( )F x  denotes the marginal distribution function of a 

single variable, ( )C   signifies the Copula function, ( )c   

represents the Copula density function, and ( )f x  stands for 

the univariate probability density function.  

2. Types of Copula functions 

The Elliptical (Ellipse-Copula) and Archimedean 

(Archimedean-Copula) families represent two prevalent 

types of Copula functions. 

Elliptical Copulas, such as the normal and t-Copula 

functions, are a class of Copula functions that are used to 

describe symmetric tail dependencies. On the other hand, 

Archimedean Copulas, encompassing the Gumbel, Clayton, 

and Frank Copula functions, are employed to characterise 

asymmetric or asymptotically independent tail features. 

The Gaussian, Clayton, and Gumbel Copulas each possess 

a single parameter, whereas the t-Copula encompasses two 

parameters, with the additional parameter controlling the 

strength of tail dependence in bivariate distributions. The 

Clayton Copula exhibits greater correlation in the lower tail 

than in the upper, while the Gumbel Copula, another 

asymmetric Copula, shows greater dependence in the upper 

tail than in the lower. This diversity in Copula functions 

underscores their suitability for different types of variables, 

necessitating the selection of the most appropriate Copula 
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function based on the specific correlation characteristics of 

the variables involved. Detailed formulations of these Copula 

functions can be found in [20].  

C. Regular Vine Structure 

Confronted with the complex tail dependencies of high-

dimensional variables, Vine-Copula theory introduces the 

structure of Regular Vines, decomposing the multivariate 

joint probability density function into a cascading form of 

multiple bivariate Copula density functions. This approach 

effectively reduces a multidimensional variable problem to 

several bivariate issues, thereby addressing the inaccuracies 

inherent in using a singular Copula function to describe 

multidimensional variables. Consequently, Vine-Copula 

demonstrates improved efficacy in capturing various types of 

dependency relationships.  

The Regular Vine structure is a hierarchical tree-like 

configuration, typically comprising multiple levels. Each 

level features a tree, and each branch of the tree encompasses 

two nodes, representing two variables. Each branch 

symbolises a Copula function. Hence, Regular Vines are 

adept at modelling intricate dependency relationships among 

multiple variables, with each branch affording the flexibility 

to choose different Copula functions tailored to varied 

dependency patterns. Figure 1 illustrates two commonly 

utilised vine structures: the C-vine and the D-vine. 

1U 2U 3U 4U

12U 23U 34U

13|2U 24|3U

12C 23C 34C

13|2C 24|3C

14|23C

1Tree

2Tree

3Tree
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12U

13U

14U

13|2U 24|3U

12C

23C

34C

23|1C

24|1C

34|12C

1Tree 2Tree 3Tree
 

(b) 

Fig. 1.  Two commonly used forms of rule-based trellis structures: (a) D-vine structure; (b) C-vine structure.

The D-vine structure offers greater flexibility, particularly 

when the dependency relationships do not follow a specific 

sequence. In contrast, the C-vine is better suited for scenarios 

with a clear dependency structure. In this paper, considering 

the distinct dependency relationships among the target 

variable, irradiance, and temperature, the C-vine structure is 

used. 

The definition of a Regular Vine 
1 1{ , , }nV T T −=  

representing the joint probability of n-dimensional variables 

is as follows:  

− 
1 1 1{ , }T N E=  represents the first tree, 

1 {1, , }N n=  

denotes the nodes of the first tree, and 
1E  signifies the set 

of edges in the first tree; 

− For 2, , 1,i n= −  
1i iN E −=  represents a node of the 

tree ;iT  

− If there exists an edge in 
iE  that connects nodes a  and 

,b  then a  and b  must share a common node in 
1iT −
 (i.e., 

a  and b  are edges in the tree 
1iT −
). This property is often 

referred to as the “proximity condition”, as it indicates that 

two nodes in tree 
1iT −

 are adjacent only if the 

corresponding edges in 
iT  are adjacent, meaning they 

share a common node; 

− If the number of edges connected to each node in 
1T  does 

not exceed 2, then the Regular-Vines is a D-vine; if for 

each tree ( , , 1),iT i i n= −  there exists a unique node with 

n i−  edges connected, i.e., the root node, then the 

Regular-Vines structure is a C-vine; 

− Specifically, in the context of modelling for photovoltaic 

power anomaly detection, it is crucial to ensure that, aside 

from the photovoltaic power itself, all other variables are 

treated as conditional variables. This requires that, in all 

generated trees, the nodes associated with photovoltaic 

power are linked to one single edge. This constraint is 

imposed to maintain the conditional independence inherent 

in the tree structure, thereby facilitating the effective 

capture of the relationships between photovoltaic power 

and other conditional variables.  

Following adherence to the aforementioned conditions, the 

joint probability density function of d-dimensional variables 

can be delineated as follows 

 

( ) ( )

( ) ( )( )

1
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( ) ( ) ( ) ( )( ), ( ) ( )

1

,| |
i

d

n n

n

d

j e D e k e D ej e k e D e

i e E

f f x

c F x F x

=

−

= 
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 x x

x
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where 
iE  denotes the set of all edges in the ith generated tree, 

, |j k D  represents the edge of the ith tree determined by the 
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two nodes , ,j k  D  is the set of all nodes in the ith tree, and 

( ), ( ) ( )j e k e D e
c

∣  represents the bivariate Copula density function 

corresponding to the e  edges. The conditional distribution 

function ( )|F x x  can be expressed as 

 
|, | ( ( ), ( ))

( ) .
( )

|
|

|

j k D j D k D

j D k

k D

C F x F x
F x

F x




 =

x x
x

x
 (7) 

For simplicity, the following function is introduced 
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=

=

x x

x x
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Hence, (7) can be succinctly expressed as 

 
, |( ) ( ( ),| ) .| |( )j D k j k D j D k DF x h F x F x = x xx  (9) 

D. Optimisation of the Vine-Copula Model 

The flexibility of the Vine-Copula model is manifested on 

two fronts: first, in the availability of various vine structures 

to choose from and second, for each edge within the vine 

structure, there exists a variety of Copula functions available. 

Subsequently, optimisation of the Copula model is pursued, 

addressing both of these aforementioned dimensions.  

1. Optimising Copula functions 

Initially, parameter estimation for all types of Copula 

functions is performed based on sample fitting. Given ,x y  as 

a pair of random variables with sample sets 

1 1( , , ), ( , , ),i N i Nx x x x y y y y= =  the maximum 

likelihood method is employed for parameter estimation 

 ( ) ( )( )
1

max lnˆ , ,
N

x i y ii
c F x F y


 

=
=   (10) 

where   represents the parameter set of the Copula function 

and N is the total number of samples. 

Subsequently, leveraging the Akaike information criterion 

(AIC), Copula functions are sifted. The AIC serves as a 

standard for evaluating the goodness of fit in statistical 

models, incorporating not only the likelihood function for 

assessing fitting quality but also considering the impact of 

model complexity. This aids in striking a balance between 

model complexity and fitting goodness, thereby mitigating 

the risk of overfitting. As elucidated in [21], this method is 

considered more suitable for the selection of the Copula 

function compared to alternative evaluation approaches. 

Based on the parameters estimation outcomes, the AIC 

evaluation metric for each Copula function is computed using 

(11) 

 ( ) ( )( )AlC 1
2 ln , 2 ,

N

x i y ii
f c F x F y k

=
= − +  (11) 

where k  represents the number of parameters included in the 

Copula function. The Copula function with the minimum AIC 

evaluation metric is selected as the optimisation result.  

2. Optimising the vine structure 

Within the vine structure, the stronger the interdependence 

among nodes in a regular vine, the more accurately it 

characterises the dependency structure of high-dimensional 

variables. In particular, the strength of dependence in the first 

generated tree exerts the most significant impact on the model 

accuracy. In addressing this, the present study employs the 

Kendall correlation coefficient to quantify the magnitude of 

interdependence. Furthermore, an orderly approach, 

specifically the sequential method, is used to optimise the 

vine structure. Table III elucidates the specific optimisation 

steps taken.  

TABLE III. OPTIMISATION METHODS FOR VINE STRUCTURES. 

Algorithm: Vine structure optimisation based on the sequential method. 

Input： , ,I T EU U U  

Output：Optimal vine structure and its parameters 

1. Compute the Kendall correlation coefficient 
,j k  for all possible 

variable pairs { , },j k  where , { , , }j k I T E  and .j k   

2. Consider the Kendall coefficient 
,j k  as weights for the edges 

, ,j ke  

solve for the maximum spanning tree: 
,max | |j k , obtaining the first 

generated tree 
,max | |.j k   

3. Optimise the Copula function for each edge in the generated tree, 

calculate the conditional distribution ( | ), ( | )j k k jF x x F x x  based on (7).  

4. Optimise the Copula function for the edges in the second tree, calculate 

the conditional distribution ( | ), ( | )j k D k j DF x x F x x 
 based on (7).  

IV. IDENTIFICATION OF ANOMALOUS DATA 

A. Methodology Design 

Irradiance and temperature are stochastic variables 

correlated with the target variable. The process involves 

calculating the marginal distributions of these variables and 

using the Vine-Copula function to articulate the correlations 

between irradiance, temperature, and the target variable. 

Given specific values of irradiance, temperature, and 

confidence, the conditional probability distribution of the 

target variable is determined, yielding the upper and lower 

quantile values. The interval formed by these quantile points 

under various irradiance and temperature conditions 

constitutes the confidence interval. This interval encapsulates 

the probabilistic distribution relationship among irradiance, 

temperature, and the target variable. Data points within this 

confidence interval are considered to conform to normal 

patterns under the given confidence level, reflecting more 

closely the real energy generation performance of 

photovoltaic power stations.  

The specific steps are as follows: 

1. Selecting the raw data. Encompassing irradiance, 

ambient temperature, photovoltaic array output current, 

and voltage; 

2. Data preprocessing. Aligning the four aforementioned 

data sets based on time sequences, imputing missing 

values, and excluding data points where voltage and 

current are zero to mitigate the impact of cumulative 

effects arising from zero data accumulation; 

3. Removing current data. Initially, the marginal 

distributions of current, temperature, and irradiance are 

computed. Based on these distributions, an appropriate 

vine structure is selected. Subsequently, the optimal 

Copula function is chosen for each edge. This is followed 

by derivation of the conditional probability distribution 
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function for the current. Finally, an appropriate confidence 

level is set to ascertain the confidence interval for the 

current, and data points falling outside this interval are 

excluded;  

4. Removing the voltage data. Following the exclusion of 

data in the previous step, the marginal distributions of 

voltage, temperature, and irradiance are recalculated. This 

process is repeated to determine the confidence interval for 

the voltage, after which the data points falling outside this 

voltage confidence interval are removed. The overall 

workflow is depicted in Fig. 2.  

Start

Data preprocessing

End

Select the optimal 
vine structure and 
Copula function for 

current, temperature, 
and irradiance

Compute the confidence 
interval for current

Cleanse the current 
data

Select the optimal 
vine structure and 
Copula function for 

voltage, temperature, 
and irradiance

Compute the confidence 
interval for voltage.

Cleanse the voltage 
data

Step1： Step2：

Calculate the marginal 
distributions of voltage, 
current, temperature, and 

irradiance

 
Fig. 2.  The overall schematic diagram of the Two-Step Vine-Copula 

Method. 

B. Detailed Implementation Steps 

1. Calculation of marginal distribution of variables 

As depicted in (12), the sample set S  is a matrix of size 

4,N   where N  represents the sample capacity, and 4 is the 

dimension of the feature vector. Each column of the matrix 

corresponds, in order, to the voltage, current, temperature, 

and irradiance sample sets, denoted as , , ,V I T EX X X X  

 

TV,1 ,1 T,1 ,1

V, , T, ,

V, , T, ,

.

I E

n I n n E n

N I N

E

N

I

E

V

T

N

x x x x

x x x x

X X x x

  
   
   
   = = =
   
   
   

   

1

n

N

X

X

X

X

S X

X

X
 (12) 

Applying the nonparametric kernel density estimation 

method to transform the sample set , , ,V I T EX X X X  into a 

form of marginal distribution yields a new set 

, , , .V I T EU U U U  This transformed set is then utilised as the 

 input for the model. The distribution histograms of each 

random variable before and after the transformation are 

provided in Appendix A. 

2. Current cleansing 

− Identification of vine structure and copula functions 

For the variable , , ,I T EU U U  optimise its vine structure 

following the steps outlined in Table III, and subsequently 

select the Copula function for each edge based on (11).  

− Establishment of conditional probability model for 

current 

Taking 
EU  as the root node, for example, the formula for 

the conditional probability distribution function ( | )I T EF x x x  

of the photovoltaic current I with respect to temperature T and 

irradiance E is given by:  

 
,

,

( | ) ( ( ), ( )),

( | ) ( ( ), ( )),

I E I E I E

T E T E T E

F x x h F x F x

F x x h F x F x

=


=
 (13) 

 , |

( | )

( ( | ), ( | )),

I T E

I T E I E T E

F x x x

h F x x F x x

=

=  (14) 

where , ,I T Ex x x  represents the photovoltaic current, 

irradiance, and temperature, respectively; function 
, | ( )j k Dh   

corresponds to (7); ( | )I T EF x x x  denotes the conditional 

probability distribution function of the photovoltaic current.  

− Solving the confidence interval for photovoltaic current 

Determining the confidence interval involves calculating 

the upper and lower quantile points that define the interval 

boundaries. This calculation process is inversely related to the 

computation of the conditional probability distribution, as 

described in (13) and (14).  

Figure 3 presents a schematic illustration of the quantile 

point calculation process. Solve following the steps shown in 

(15) to (18): 

 ,( ) ( ( ), ( )),T E T E T EF x x h F x F x=  (15) 

 1

, |( ) ( , ( )),I E I T E T EF x x h F x x−=  (16) 

 1

|( ) ( ( ), ( )),I I E I E EF x h F x x F x−=  (17) 

 1( ( ) ) ,I Ix F F x−=  (18) 

where   represents the conditional probability distribution 

values corresponding to the quantiles, i.e., ( | ) ;I T EF x x x =  

function 1

, | ( )j k Dh−   denotes the inverse function of (7), and its 

specific form is provided in [22].  

Setting the confidence probability to   implies that   

percent of the data lies within the probability interval. Let 

 1 . = −  (19) 

Due to the uneven distribution of abnormal values in 

photovoltaic current data, type 2 anomalies are typically more 

prevalent. Therefore, setting an asymmetry coefficient   for 

the confidence interval, with quantile probabilities 
1 2,   for 

the upper and lower bounds, respectively, is defined as 

follows, expressing the probability of data points exceeding 

the upper bound as 
1  and falling below the lower bound as

2 :  

 
1 (1 ) ,  = −  (20) 
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2 . =  (21) 

When 0.5, =  the confidence probability interval is 

symmetrical, and when 0.5,   the confidence probability 

interval is shifted upward. 

For the sample set S  as shown in (12), substitute 

, ,I I nx x=  
, ,E E nx x=  and 

1 =  into (15) to (18) to obtain 

the upper bound 
, ,upI nx  of the current confidence interval for 

the 
thn  sample. Similarly, substitute 

, ,I I nx x=  
, ,E E nx x=  

and 
2 =  into (15) to (18) to obtain the lower bound 

, ,lowI nx  of the current confidence interval for the 
thn  sample. 

( )IF x( )TF x

( )EF x

( | )I EF x x

( | )T EF x x

( | )I T EF x x x

Input Output

)(1

| −

EIh)(1

| −

ETh

)(1

|, −

ETIh

 
Fig. 3.  Quantile calculation procedure. 

− Cleanse the current data 

When the current of the 
thn  sample is 

, , ,low , ,up[ , ],I n I n I nx x x  the sample point is labelled as a normal 

data point. Otherwise, the sample point is labelled as an 

outlier, and the sample points labelled as outliers are 

removed. 

3. Voltage cleansing 

After cleansing the anomalous current data, perform the 

operations described in Section II on the photovoltaic voltage, 

temperature, and irradiance data sets. Calculate the 

confidence interval for the photovoltaic voltage and label the 

anomalous data. 

V. CASE STUDY ANALYSIS 

A. Experimental Data 

The experimental setup consists of a high-performance 

workstation equipped with an Intel Core i7-9700K CPU, 

32 GB RAM, and an NVIDIA GTX 1080 Ti GPU, running 

MATLAB R2021a. The experimental data are derived from 

actual data collected by Tongzhou Power Supply Company 

from March 2022 to September 2022, with a data collection 

interval of 15 minutes. Each individual sample is composed 

of photovoltaic voltage, photovoltaic current, temperature, 

and irradiance. As there are no available data on faults or 

malfunctions in the photovoltaic array, this study artificially 

synthesised anomalous data by manually introducing 

anomalies into the original data set. The scatter plots for 

photovoltaic voltage and current after the introduction of 

artificially synthesised anomalies are illustrated in Fig. 4.  

  
(a) 

  
(b) 

Fig. 4.  Scatter plot following artificial anomaly synthesis: (a) Current; (b) 

Voltage. 

The time series curves for photovoltaic power data before 

and after the introduction of artificially synthesised anomalies 

can be found in Appendix A. The proportions of each type of 

anomaly in the overall data set are as follows: Type 1 is 1 %, 

Type 2 is 2 %, Type 3 is 1 %, and Type 4 is 1 %.  

B. Optimisation Results of Vine-Copula 

The optimisation results are presented in Table IV. When 

modelling the dependency relationship for current, the root 

node of the first generated tree is .EU  Similarly, when 

modelling the dependency relationship for voltage, the root 

node of the first generated tree is also .EU   

TABLE IV. RESULTS OF VINE OPTIMISATION. 

 Tree Node Edge , || |max  j k D
 

Current 
Tree 1 , ,I T EU U U  ,IE TEC C

 
1.428 

Tree 2 | |,I E T EU U  |IT EC
 

0.045 

Voltage 
Tree 1 , ,V T EU U U  ,VE TEC C

 
1.0090 

Tree 2 | |,V E T EU U  |VT EC
 

0.0483 

 

Figure 5 illustrates the vine structure of the Copula model 

in the given example. Table V presents the specific 

parameters of the Vine-Copula model, including the optimal 

Copula function corresponding to each edge and their 

parameter estimation results.  
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EU

TU

IU

TEU IEU

TEC

IEC

|TI EC

1Tree 2Tree
 

(a) 

EU

TU

VU

TEU VEU

TEC

VEC

|TV EC

1Tree 2Tree
 

(b)

Fig. 5.  Vine-Copula structure: (a) I-T-E; (b) V-T-E. 

TABLE V. RESULTS OF VINE-COPULA PARAMETER OPTIMISATION. 

 
Edge 

AIC value Optimal 

Copula 

Parameter 

1 

Parameter 

2  Clayton Gumbel Frank Gaussian t 

Current 

IEC  -24179.08 -21887.22 -24686.31 -16315.37 -33197.44 t 0.99631 1 

TEC  -883.61 -2136.37 -1764.27 -1988.70 -1996.2 Gumbel 1.4946 - 

|IT EC  -12.72 -43.28 -58.06 -42.94 -41.81 Frank 0.55923 - 

Voltage 

VEC  -38050.51 -32303.46 -37130.71 -34345.05 -37334.67 Clayton 56.2069 - 

TEC  -602.01 -1556.36 -1209.08 -1403.96 -1408.61 Gumbel 1.4145 - 

|VT EC  -11.14 -1.13 -17.46 -21.11 -19.11 Gaussian 0.060297 - 

C. Results of Anomaly Identification 

The calculated upper and lower thresholds are illustrated in 

Fig. 6. Figure 7(a) shows a three-dimensional scatter plot of 

current against temperature and irradiance. For each pair of 

specific environmental variables (temperature and 

irradiance), an upper and lower quantile point for the current 

is determined, together forming an upper and lower threshold 

surface. Points within this surface are classified as normal, 

whereas those outside are identified as anomalies. Figure 7(c) 

shows a time-series graph of the current, where the upper and 

lower quantile points of the current of each moment are 

determined by the current environmental variables, ultimately 

creating a threshold curve. Points within this curve are 

recognised as normal, whereas those outside are marked as 

anomalies. 

 
(a) 

 
(b)

 
(c) 

 
(d)

Fig. 6.  Outlier identification outcome: (a) Current identification results; (b) Voltage identification results; (c) Current confidence interval; (d) Voltage 

confidence interval.
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                                                                              (a)                                                                                      (b)                                                                        

    
                                                                               (c)                                                                                    (d)                                                                          

Fig. 7.  Comparison of outlier identification results: (a) Our method; (b) Bivariate Copula; (c) Vine-Copula-PTE; (d) Quantile method.

D. Comparison of Different Anomaly Detection Methods 

To compare the efficacy of different algorithms, the 

experimental data are subjected to anomaly detection using 

the method described in this paper, the one-step Vine-Copula 

method, the two-step Copula method, and the quantile 

method. In the one-step Vine-Copula approach, temperature 

and irradiance are treated as conditional variables for 

identifying anomalies in photovoltaic power, hereafter 

referred to as Vine-Copula-PTE. Both the two-step Copula 

method and the quantile method initially identify anomalies 

in the current using irradiance as the conditional variable, 

followed by the identification of anomalies in the voltage 

using temperature as the conditional variable.  

To facilitate comparison, two metrics are defined: the 

accuracy rate of anomaly detection and the false positive rate 

for normal data. The definition of the accuracy rate for 

anomaly detection is as follows: 

 ˆ / ,i i iTR N N=  (22) 

 ˆ ,/i ii i
TR N N=   (23) 

where 
iTR  represents the correct recognition rate for the 

anomaly type ,i  ˆ
iN  denotes the number of data points 

correctly identified as the anomaly type ,i  
iN  represents the 

total number of data points for the anomaly type ,i  and TR  

overall signifies the overall correct anomaly recognition rate.  

The definition for the false positive rate of anomaly 

detection is as follows 

 
error total/ ,FR N N=  (24) 

where FR  represents the false recognition rate, 
errorN  is the 

number of normal values incorrectly identified as anomalies, 

and 
totalN  represents the total number of sample points.  

The results of anomaly detection using different methods 

are presented in Table VI. 

TABLE VI. OUTLIER IDENTIFICATION RESULTS. 

Method 1
TR  2

TR  3
TR  4

TR  TR  FR  
Runing 

time (s) 

Our method 0.965 0.876 1 0.54 0.878 0.05 632 

Bivariate Copula 0.977 0.802 1 0.494 0.813 0.07 376 

Vine-Copula-PTE 0.955 0.865 1 0.483 0.831 0.04 493 

Quantile method 0.733 0.861 0.982 0.473 0.806 0.06 309 

To facilitate observation and comparison, the final results 

of anomaly detection are presented using a two-dimensional 

scatter plot of irradiance versus current. Identification results 

are illustrated in Fig. 7. 

Among the four methods, the two-step Vine-Copula 

approach exhibits the highest precision in detecting 

anomalies. Compared to the two-step Copula method, the 

method discussed in this paper demonstrates superior 

identification rates and lower false positive rates. This 

improvement is attributed to the inclusion of additional 

characteristic variables, which further narrows the confidence 

interval, thus enhancing the sensitivity of the confidence 

interval in detecting anomalies. The Vine-Copula-PTE 

method, which only identifies anomalies in power, overlooks 

the details in voltage and current. On the contrary, our method 

considers the varying impacts of temperature on current and 
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voltage. The quantile method segments the target variable 

data set based on the magnitude of the conditional variables, 

employing the quantile approach within each group. This 

method ignores the dependency relationship between the 

target and conditional variables, resulting in a lower 

identification rate.  

Although our two-step Vine-Copula method is slightly 

more computationally intensive due to its high-dimensional 

modelling, it optimises the use of system memory and 

processor time by employing a more streamlined data 

handling and processing approach. Despite its complexity, 

the method does not excessively burden computational 

resources, making it suitable for scenarios with large data 

volumes where computational efficiency is critical. By 

minimising redundant calculations required by traditional 

methods, our approach reduces overall computational costs. 

This makes our method not only faster on a per-data set basis 

but also more scalable across larger data sets. These 

enhancements ensure that our method is particularly 

beneficial for organisations seeking to implement robust 

anomaly detection capabilities with limited computational 

resources. 

In addition to this, to provide a clearer understanding of the 

practical implications of the various anomaly detection 

methods used in this study, we conducted a comparative 

analysis focussing on the execution times. Our findings reveal 

that the proposed two-step Vine-Copula method, while 

slightly more computationally intensive due to its high-

dimensional modelling, offers a favourable balance between 

execution speed and detection accuracy compared to other 

methods. In particular, traditional methods, while faster, often 

sacrifice accuracy and may not adequately capture complex 

dependencies in the data. The execution time for the two-step 

Vine-Copula method averaged approximately 632 seconds 

per data set, which is competitive considering the enhanced 

detection capabilities it provides. 

E. Photovoltaic Current Prediction Based on Anomaly 

Recognition 

To further compare the precision of different anomaly 

detection methods, after removing anomalies using various 

approaches, the anomalous data are reconstructed using the 

method detailed in [23]. This reconstruction results in 

different data sets. Subsequently, each data set is trained 

using a bidirectional long short-term memory network (Bi-

LSTM). The same set of data is then predicted using the 

different trained models. The reconstructed data are depicted 

in Fig. 8, and the prediction results are shown in Fig. 9.  

 
Fig. 8.  Results of data reconstruction. 

 
Fig. 9.  Comparison of the prediction results. 

The mean absolute error (MAE) and root mean square error 

(RMSE) for the prediction results of different data sets are 

shown in Table VII. It is evident that the photovoltaic data 

anomaly detection method proposed in this paper effectively 

reduces prediction errors. By identifying anomalies or faulty 

data during the data collection process, the prediction model 

can better adapt to real-world conditions, improving the 

prediction accuracy. This, in turn, helps power systems to 

plan and manage energy supply more effectively.  

TABLE .VII. COMPARATIVE ANALYSIS OF PREDICTION ERRORS. 

Method MAE/MW RMSE/MW 

Our method 1.06 1.03 

Vine-Copula-PTE 2.43 1.56 

Bivariate Copula 3.61 1.90 

Quantile method 2.01 1.42 

Unprocessed 133.4 11.55 

VI. CONCLUSIONS 

This paper addresses the limitations of existing anomaly 

detection methods in photovoltaic systems and introduces a 

novel two-step Vine-Copula method for high-dimensional 

dependency structure modelling. The key findings from our 

experimental simulations and analysis are as follows. 

1. The proposed method analyses anomalous output data 

under abnormal operational conditions of photovoltaic 

arrays. By focussing on both photovoltaic current and 

voltage anomalies rather than just power, our approach 

uncovers hidden discrepancies more effectively, thereby 

increasing the accuracy of anomaly detection. 

2. Using the Vine-Copula theory, we have established 

robust models for photovoltaic current and voltage as 

functions of temperature and irradiance. These models are 

finely tuned to optimise the structure and parameters, 

which facilitated the development of precise formulas for 

computing confidence intervals for current and voltage. 

3. Our method significantly enhances the prediction 

accuracy of photovoltaic current outputs. By processing 

data through our advanced anomaly detection and 

reconstruction protocol, we demonstrate that our approach 

surpasses other existing methods in predicting photovoltaic 

behaviours accurately. 

4. The method is designed for practical efficiency, 

requiring just a single modelling step to establish 

confidence intervals at various levels. Once configured, the 

model only needs input of current environmental 

conditions (temperature and irradiance) to determine real-
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time thresholds for the target variables, making it highly 

applicable to real-world operational environments. 

APPENDIX A 

 
(a) 

  
(b) 

  
(c) 

  
(d) 

Fig. A-1.  Probability distribution histograms for each variable: (a) Voltage; 

(b) Current; (c) Temperature; (d) Irradiance. 

  
(a) 

  
(b) 

  
(c) 

 
(d) 

Fig. A-2.  Probability distribution histograms for each variable: (a) Voltage; 

(b) Current; (c) Temperature; (d) Irradiance. 
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(a) 

 
(b) 

Fig. A-3.  Comparative analysis of current (a) and voltage (b) data before and 

after the incorporation of anomaly data. 
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