
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

A Raspberry Pi-based Hardware Implementation of

Various Neuron Models

Vedat Burak Yucedag, Ilker Dalkiran*

Graduate School of Natural and Applied Sciences, Electrical and Electronics Engineering, Erciyes University,

Ahmet El Biruni St., 38030, Melikgazi, Kayseri, Turkiye

vedatburakyucedag@erciyes.edu.tr; *ilkerd@erciyes.edu.tr

Abstract—The implementation of biological neuron models

plays an important role in understanding the functionality of the

brain. Generally, analog and digital methods are preferred

during implementation processes. The Raspberry Pi (RPi)

microcontroller has the potential to be a new platform that can

easily solve complex mathematical operations and does not have

memory limitations, which will take advantage while realizing

biological neuron models. In this paper, Hodgkin-Huxley (HH),

FitzHugh-Nagumo (FHN), Morris-Lecar (ML), Hindmarsh-

Rose (HR), and Izhikevich (IZ) neuron models have been

implemented on a standard-equipped RPi. For the numerical

solution of each neuron model, the one-step method (4th order

Runge-Kutta (RK4), the new version of Runge-Kutta (RKN)),

the multi-step method (Adams-Bashforth (AB), Adams-Moulton

(AM)), and predictor-corrector method (Adams-Bashforth-

Moulton (ABM)) are preferred to compare results. The

implementation of HH, ML, FHN, HR, and IZ neuron models

on RPi and the comparison of numerical models RK4, RKN, AB,

AM, and ABM in the implementation of neuron models were

made for the first time in this study. Firstly, MATLAB

simulations of the various behaviors belonging to the HH, ML,

FHN, HR, and IZ neuron models were completed. Then those

models were realized on RPi and the outputs of the models are

experimentally produced. The errors are also presented in the

tables. The results show that RPi can be considered as a new

alternative tool for making complex neuron models.

Index Terms—Raspberry Pi; Hodgkin-Huxley; Hindmarsh-

Rose; Izhikevich; Runge-Kutta; Adams-Bashforth-Moulton.

I. INTRODUCTION

The question of how the brain processes information has

led scientists to investigate the nervous system. The nervous

system is the special network structure in which neurons are

connected and establish chemical and electrical bonds with

each other. Neurons communicate with each other using an

action potential (spike) or an explosive action potential

(burst). Spike or burst behaviors can have different

amplitudes, frequencies, and pattern shapes [1].

Biologically plausible neuron models such as Hodgkin-

Huxley (HH) directly define the behavior of a neuron [2].

This four-dimensional model describes the ionic mechanism

and electrical current on the membrane surface of the neuron

most biologically and accurately. In contrast, the

mathematical complexity and the cost of implementation of

the HH model are quite high. Morris-Lecar (ML) model

describes oscillation in cuttlefish giant axons based on

conductivity [3]. Biologically inspired neuron models such as

FitzHugh-Nagumo (FHN), Hindmarsh-Rose (HR), and

Izhikevich (IZ) replicate biological neuron behaviors. The

FitzHugh-Nagumo (FHN) model was presented as a new

model in the literature by simplifying the complexity of the

HH model [4], [5]. Implementing FHN is easy since, as it has

two variables. But it cannot produce sufficient action

potential patterns such as bursting. The HR model obtained

by the development of the FHN model can exhibit many

dynamic behaviors of a biological neuron [6]. On the other

hand, the IZ neuron model was defined by two simple

differential equations that can mimic the biological neuron at

low cost and produce a very rich membrane dynamics [7].

There are two basic techniques to implement the

mathematical models of neurons, analog and digital systems.

Typically, hardware implementations of neuron models are

realized by using discrete elements, very large-scale

integrated (VLSI) systems, field-programmable analog arrays

(FPAAs), and field-programmable gate arrays (FPGAs).

Lazaridis, Drakakis, and Barahona [8] realized an analog

implementation of the HH neuron model using weak-

inversion CMOS technology. However, the implementation

did not have readjustability. Hu, Liu, Liu, Ni, and Li [9]

realized the ML neuron model using basic analog elements

such as a capacitor, resistance, NPN transistor, and OP-AMP.

The hyperbolic cosine function was defined as half of the sum

of two exponential functions with the same input value but

opposite sign. Realizing the hyperbolic function is difficult

and complex [9]. Khanday Kant, Dar, Zulkifli, and

Psychalinos [10] presented both integer and fractional order

FHN neuron models to perform CMOS circuit in the

hyperbolic sine-domain (SD). Heidarpur, Ahmadi, Ahmadi,

and Rahimi Azghadi [11] modified the IZ neuron model using

the coordinate rotation digital computer (CORDIC) algorithm

in their studies. Later, they adapted the spike timing-

dependent plasticity learning algorithm (STDP) to the

modified model and performed it on an FPGA. Heidarpur,

Ahmadi, and Kandalaft [12] applied a set of piecewise linear

approaches to the 2D HR neuron model. The neural network

structure was able to display tonic spiking, tonic bursting,

https://doi.org/10.5755/j02.eie.38201

Manuscript received 12 May, 2024; accepted 21 October, 2024.
This research is supported by the Erciyes University Scientific Research

Projects Coordination under Grant. No. FDK2022-11506; TUBITAK, the

Scientific and Technological Research Council of Turkey, under Grant No.

TBTK-0039-0783; 2211-A Domestic General Doctorate Scholarship

Program under Grant No. 1649B032201035; 2214-A International Research

Scholarship Program (For PhD students) under Grant No. 1059B142201074-

2022/2.

19

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

spike latency, and class 1 and class 2 excitability behaviors

on an FPGA. Even if the extra approximations are useful to

reduce implementation costs, they produce inaccurate results

compared to real neuron dynamics. Korkmaz, Öztürk, and

Kılıç [13] realized a model of a chemical neuron, which has

chemical coupling, on an FPAA. They modified the

exponential function of the chemical coupling using a new

approach. In this way, they reduced the coupling complexity.

However, the use of four FPAAs in the design makes the

system more expensive [13], [14].

Although VLSI systems are fast and efficient, they do not

have re-adjustable flexibility, and the development time is so

long. With the development of technology, VLSI systems,

which contain more transistors in the same area, still have a

problem modelling large-value capacities in integrated

circuits [13]. Reconfigurable platforms have more flexible

structures compared to VLSI. FPAAs are a preferred tool with

high stability, accuracy, and rapid prototyping features.

FPAAs have negative features, such as limited capacity and

low saturation level (+2 V). To overcome the limited capacity

problem, FPAAs can be linked with each other to operate in

parallel. However, this significantly increases noise

sensitivity and cost. In addition, since FPAAs are continuous

time-based systems, it is so difficult to realize discrete-time

defined models on an FPAA [14]. FPGAs are digital

platforms. Multiplier blocks, calculations of hyperbolic

functions, footprint, and propagation delay in an FPGA cause

higher costs [15], [16]. If look-up table (LUTs) structures in

an FPGA are used during the calculations of hyperbolic

functions, they reduce the accuracy of the output due to their

limitations on memory size [15], [16]. In contrast, floating-

point operations increase the accuracy of the output, but cause

a considerable use of FPGA resources [14].

The motivation of this work is the presentation of a

Raspberry Pi (RPi) microcontroller/microprocessor as an

alternative tool to realize neuron models. RPi can be

described as a standard hardware with high adjustable ability,

with which to solve complex mathematical expressions easily

and quickly, without memory limitations, low thermal noise

sensitivity, and low-cost production process. In addition,

Python-based open source code applications can be easily

implemented on RPi. In the literature, although there are

several implementations of neuron models on various

platforms such as discrete elements, VLSI, FPAA, and FPGA

as mentioned above, no studies have been encountered using

RPi.

For numerical solutions of neuron models, the fourth order

Runge-Kutta (RK4) method has been generally preferred,

because it is easier to simulate than the other methods [17],

[18]. A few studies about Runge-Kutta New Version (RKN),

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams-

Bashforth-Moulton (ABM) methods have been presented in

[19]–[22]. It is not known which of these solution models will

solve the neuron mathematical models more accurately and

faster. It is also seen that more than one numerical method has

never been tested for a neuron model on the same platform,

such as FPGA, FPAA, and VLSI systems. In addition to RPi

implementation, this study investigates the suitability of RK4,

RKN, AB, AM, and ABM numerical methods for solving

neuron models.

In all these contexts, various action potential behaviors of

HH, ML, FHN, HR, and IZ neuron models, which have a

wide area in the literature, were obtained by numerical

analysis methods in MATLAB. After discretizing each of

neuron models with the RK4, RKN, AB, AM, and ABM

methods, the differential equations obtained were performed

on RPi by running software written in Python. The RPi has

40 general-purpose input and output (GPIO) pins and none of

them has capable of analog output. Therefore, the signal

received from the GPIO pin of the RPi is applied to the 12-bit

digital/analog converter.

The paper is organized as follows. Section II presents HH,

ML, FHN, HR, and IZ neuron models. The numerical

methods and error analysis are presented in Section III. The

implementation of neuron models on RPi is explained in

Section IV. The discussion and conclusions are given in

Sections V and VI, respectively.

II. NEURON MODELS

A. HH Neuron Model

Since the HH neuron model exhibits the properties of a

biological neuron in detail, the number of parameters is

numerous. Accordingly, the implementation cost is high:

() ()

()

4 3

,

M input k K Na Na

L L

dV
C I g n V E g m h V E

dt

g V E

= − − − − −

− − (1)

 ()() ()1 ,n n

dn
a V n V n

dt
= − − (2)

 ()() ()1 ,m m

dm
a V m V m

dt
= − − (3)

 ()() ()1 .h h

dh
a V h V h

dt
= − − (4)

Here, 𝐶𝑀, 𝐼𝑖𝑛𝑝𝑢𝑡, and 𝑉 represent membrane capacitance,

applied external current, and the membrane potential,

respectively. 𝑔𝑘̅̅ ̅ and 𝑔𝑁𝑎̅̅ ̅̅ ̅ are the greatest conductivity of

potassium and sodium ion channels, respectively, and 𝑔𝐿̅̅ ̅ is

the largest conductivity value of leakage ions. 𝑛, 𝑚, and ℎ

represent the probabilities that the activation or inactivation

gate is open. The expressions 𝑎𝑛(𝑉), 𝑎𝑚(𝑉), and 𝑎ℎ(𝑉) are

the speed functions of the ion channel gates which change

from closed to open. The expressions 𝛽𝑛(𝑉), 𝛽𝑚(𝑉), and

𝛽ℎ(𝑉) are also speed functions that determine the transition

of ion channel gates which change from open to closed [2].

B. ML Neuron Model

The conductivity-based neuron model has high biological

accuracy and is easy to implement. The ML neuron model

consists of two differential equations [3]:

()() ()

()

C I

,

Ca Ca K K

L Leak

dV
g M V V E g N V E

dt

g V E

= − − − − −

− − (5)

 () () .N

dN
V N V N

dt
 = −   (6)

Here, 𝑉 represents the membrane potential of the neuron.

The parameter 𝑁 represents the slow activation of 𝐾+

20

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

channels. 𝐶 is the membrane capacitance and 𝐼 is the stimulus

current. 𝑔𝐾, 𝑔𝐶𝑎, and 𝑔𝐿 are the maximal conductivity of the

potassium, the calcium, and the leakage current of ion

channels, respectively.

C. FHN Neuron Model

The FHN neuron model is obtained by simplifying the HH

neuron model. Since it has a structure that mimics the

behavior of a real neuron, its biological accuracy is low.

There are studies examining the effects of external forced

current [23]:

3

,
3

ext

dv v
c v u I I

dt

 
= − + − + 

 
 (7)

 ,
du v bu a

dt c

− +
= (8)

 ()cos 2 ,
2

ext

A
I ft

f



= (9)

where 𝑣, 𝑢, and 𝐼 represent the membrane potential of the

nerve cell, the recovery parameter, and the external current

applied to the cell membrane, respectively. 𝑎 and 𝑏 are

scaling parameters, 𝑐 is a constant value. 𝐼𝑒𝑥𝑡 represents

external forcing current.

D. HR Neuron Model

The HR neuron model can generate burst waveforms

because it has a variable that defines the adaptation current.

The model is defined by three differential equations [6]:

 3 ,
dx

y ax bx z I
dt

= − − − + (10)

 2 ,
dy

c dx y
dt

= − − (11)

 ()().rest

dz
s x x z

dt
= − − (12)

Here, 𝑥, 𝑦, and 𝑧 represent the membrane potential, the

recovery parameter, and the adaptation current, respectively.

𝑏 regulates the transition control between bursting and

spiking and action potential frequency. 𝜀 is the control

parameter of the frequency of the action potential and the

number of each action potential in the behavior of the burst.

𝑠 is the parameter that provides adaptation. 𝑥𝑟𝑒𝑠𝑡 represents

the resting potential of the system and 𝐼 represents the

stimulating.

E. IZ Neuron Model

The IZ neuron model has the rich dynamics of real neurons

and has a low implementation cost. The model consists of two

differential equations [7]:

 20.04 5 140 ,
dv

v v u I
dt

= + + − + (13)

 () ,
du

a bv u
dt

= − (14)

 30 mV and .v v c u u d    + (15)

Here, 𝑣 is the membrane potential of the neuron and 𝑢 is

the recovery variable. 𝑎 defines the time scaling of the

recovery variable 𝑢 at low values where the recovery is slow.

𝑏 represents the sensitivity of the recovery variable 𝑢 and the

threshold level fluctuations of the membrane potential 𝑣. 𝑐 is

described as the reset value of 𝑣 after an action potential. 𝑑 is

defined as the reset parameter of 𝑢 after the action potential.

The parameter 𝐼 indicates the external stimulus currents.

III. RASPBERRY PI AND NUMERICAL METHODS

RPi is a digital platform that can quickly run complex

mathematical expressions, unlike the FPGA and FPAA

systems, without any memory limitations [24].

RPi 4 has a 1.5 GHz quad-core ARM Cortex-A72

processor architecture, which is very fast and highly energy

efficient. It has a wide RAM bandwidth (2983 MBW) with

2 GB, 4 GB, and 8 GB LPDDR4 SDRAM options, but the

4 GB version was used in the study. The RPi, which supports

OpenGL ES 3.x with its internal image processing unit,

provides two high-resolution image outputs, 4k and 1080p. It

also has external data communication at high write and read

speeds with USB 3.0 support. The Python IDE interface is

included as standard with the Raspberry Pi OS operating

system. In this study, the solution of neuron models with

numerical methods was realized with this interface [25].

Fig. 1. Raspberry Pi 4 design and GPIO pin diagram.

The RPi 4 has 40 GPIO pins with input/output capabilities

for a wide range of purposes such as serial communication

pins UART TX-RX, I2C communication protocols,

EEPROM SDA-SCL, and PWM. These outputs are all

digital, and the RPi does not have analog output pins [25]. For

analog output, the MCP4725 12-bit DAC with 6-pin SOT-23

package is used, which can be easily controlled via I2C. With

a single supply voltage in the range of 2.7 V–5.5 V, the output

pitch is 0 V–3.3 V and 0 V–5 V. For the negative values of

the neuron, a full subtractor circuit was created with the

LM741 OP-AMP. The MCP4725 has a two-wire I2C™

compatible serial interface for standard (100 kHz), fast

(400 kHz), or high speed (3.4 MHz) mode. It also has a DAC

that can operate between -40 ℃ and +125 ℃ ambient

temperature range, ±0.2 LSB DNL and 6 μs fast settling time

[26].

Since neuron models are defined in continuous time, their

digital structure cannot be realized directly on both RPi

microprocessors. These neuron models must be transformed

into discrete time with various discretization methods. One-

step and multi-step methods are generally used to discretize

ordinary differential equations. These numerical solution

methods start from an initial point and then take a short step

21

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

in time to find the next point. This process continues with the

next steps to construct the solution space. One-step methods

(RK4 and RKN) refer only to the previous point and its

derivative to determine the current value. They also take some

intermediate steps to get a higher order, but then discard all

previous information before taking a second step [27]. Multi-

step methods (Adams-Bashforth (AB) and Adams-Moulton

(AM)) try to gain efficiency by storing and using information

from previous steps rather than discarding it. As a result,

multi-step methods refer to the previous points and their

derivative values [28]. The predictor-corrector methods are

based on estimating the solution of differential equations

using the explicit formula and then correcting the estimated

value using another implicit formula. Generally, AB is

chosen as a predictor, and AM is selected as a corrector [28].

The expressions of numerical solution methods are given in

the Appendix A.

In light of this information, RK4, RKN, explicit four-step

AB, implicit three-step AM, and predictor-corrector ABM

numerical methods are preferred to show that various

discretization methods can be performed on RPi in this study.

The RPi microprocessor can easily perform numerical

solution methods which have various calculation difficulties.

In addition, the numerical methods are compared in terms of

design flexibility, simulation speed, simulation accuracy

(with both spike and burst), and achieving dynamical

behaviors of the neuron models. In this way, it has been

determined which methods are more suitable for the

numerical solution of neuron models.

Mean absolute error (MAE) and normalized root mean

squared error (NRMSE) were calculated using

implementation results. MAE is the average of the absolute

differences, whereas MSE is the average of the squared

differences between simulation and implementation results.

NRMSE facilitates comparison between simulation and

implementation of neuron models with different scales. MAE

and NRMSE are formulated as follows:

1

1
,

N
simulation implementation

i i

i

MAE v v
N =

= − (16)

()

()

2

1

, ,

1

.

N simulation implementation

i ii

implementation implementation

i max i min

v v
N

NRMSE
v v

=
−

=
−


 (17)

IV. RESULTS

In this section, the implementation of HH, ML, FHN, HR,

and IZ neuron models on RPi is explained using numerical

methods RK4, RKN, AB, AM, and ABM. Various neuron

dynamic behavior examples were obtained according to

parameters determined. Each instance of each neuron model

was performed with five different numerical methods. In

addition, waveforms were obtained with both MATLAB

simulation and the oscilloscope. For simplicity and

intelligibility of the paper, not all waveforms are presented,

but four states are specified for each neuron model.

A. Implementation of HH Neuron Model

The HH neuron model is implemented on the RPi using

(1)–(4). Two samples’ dynamics was formed with the

parameters selected from the HH neuron model and named as

HH-Sp. Each sample was carried out with the numerical

methods RK4, RKN, AB, AM, and ABM. The parameters are

determined from previous studies [2]. The error between the

MATLAB simulation and RPi implementation after synthesis

are presented in Table I. The membrane potential waveform

is also presented in Fig. 2.

TABLE I. THE ERROR OF THE HH NEURON MODEL BETWEEN

MATLAB SIMULATION AND RPI IMPLEMENTATION.

HH Model HH-Sp1 HH-Sp2 Average

RK4

MAE 2,1506 2,3079 2,2293

NRMSE 2,8149 3,3094 3,0622

Period [s] 1,197 0,954 1,0755

RKN

MAE 2,2124 2,2549 2,2337

NRMSE 3,0609 3,5117 3,2863

Period [s] 1,261 1,002 1,1315

AB

MAE 2,6957 3,9776 3,3367

NRMSE 3,9879 6,3379 5,1629

Period [s] 1,198 0,952 1,0750

AM

MAE 2,4275 2,2445 2,3360

NRMSE 3,1864 3,0136 3,1000

Period [s] 1,319 1,056 1,1875

ABM

MAE 3,3559 4,3618 3,8589

NRMSE 5,1703 6,5923 5,8813

Period [s] 1,307 1,050 1,1785

Considering Table I, the largest error value was obtained

when using the AB numerical method. The periods of the

membrane potential waveforms of the HH neuron model

based on the AB numerical method are shorter than those of

the other numerical methods. It is seen that although AB is a

fast multi-step method, it has large error values while

implementing the HH neuron.

 (a) (b)

Fig. 2. Waveforms resulting from the implementation of the HH neuron model on RPi: (a) HH-Sp1 behavior with RK4 method; (b) HH-Sp2 behavior with

RKN method.

The lowest error on the RPi was obtained by the AM

method. However, it is the slowest among the five methods

while solving the HH neuron. The error of the numerical

methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝐻𝐻 < 𝐴𝑀𝑒𝑟𝑟𝑜𝑟

𝐻𝐻 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟
𝐻𝐻 <

22

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

𝐴𝐵𝑒𝑟𝑟𝑜𝑟
𝐻𝐻 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝐻𝐻 . The order of the numerical methods

according to the speed of solving HH neuron is 𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝐻𝐻 <

𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑
𝐻𝐻 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑

𝐻𝐻 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑
𝐻𝐻 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑

𝐻𝐻 . According to this

comparison, RK4 and RKN methods, which are relatively

fast and relatively have low error, can be preferred to the

numerical solution method of the HH neuron. However,

during RPi implementation, low-value distortions occur in

the waveforms as the membrane potential increases from its

lowest value to 20 𝑚𝑉. This situation increases, MAE and

NRMSE. The reason for distortion is that environmental

parasitic effects cannot be completely prevented during the

measurement process of the waveform with 𝑚𝑉 amplitude.

B. Implementation of ML Neuron Model

The ML neuron is also implemented on the RPi. |The

parameters are determined from previous studies [9]. Two

samples were built and named ML-Sp. Each sample was

carried out with the numerical methods RK4, RKN, AB, AM,

and ABM. The regular spike condition is presented in Fig. 3.

The error between the MATLAB simulation and the RPi

implementation after synthesis are presented in Table II.

 (a) (b)

Fig. 3. Waveforms resulting from the implementation of the ML neuron model on RPi: (a) ML-Sp1 behavior with RK4 method; (b) ML-Sp2 behavior with

RK4 method.

TABLE II. THE ERROR OF THE ML NEURON MODEL BETWEEN

MATLAB SIMULATION AND RPI IMPLEMENTATION.

ML Model ML-Sp1 ML-Sp2 Average

RK4

MAE 1,5676 1,2207 1,3942

NRMSE 2,5809 1,8516 2,2163

Period [s] 1,651 1,110 1,3805

RKN

MAE 3,9243 2,7229 3,3236

NRMSE 5,9390 3,9767 4,9579

Period [s] 1,706 1,155 1,4305

AB

MAE 1,9192 1,4184 1,6688

NRMSE 3,2773 2,3417 2,8095

Period [s] 1,654 1,112 1,3830

AM

MAE 1,9458 1,4647 1,7053

NRMSE 3,3486 2,4703 2,9095

Period [s] 1,875 1,265 1,5700

ABM

MAE 1,7312 1,4101 1,5707

NRMSE 2,4287 2,2995 2,3641

Period [s] 1,873 1,269 1,5710

Considering Table II, the largest error was obtained when

the RKN method was used. The periods of the membrane

potential waveforms of the ML neuron based on the RKN

numerical method are larger than those of the other methods.

ABM is a relatively slow one-step method with large error

values for the implementation of the neuron. The ML neuron

implementation with the lowest error on the RPi was obtained

using the RK4 method. The error values of the numerical

methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 < 𝐴𝐵𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 <

𝐴𝑀𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 . The order of the numerical methods

according to the speed of solving ML neuron is 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 <

𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 . According to this

comparison, the RK4 numerical method, which is fast and has

lowest error, can be preferred in the numerical solution of the

ML neuron.

C. Implementation of FHN Neuron Model

The differential equations given in (7)–(9) are used to

implement the FHN neuron on RPi and the parameter values

determined according to other studies [29]. Two samples

were built and named FHN-Sp. Each sample was carried out

with the numerical methods RK4, RKN, AB, AM, and ABM.

The regular spike condition obtained at various values is

presented in Fig. 4 and the error RPi implementation is

presented in Table III.

 (a) (b)

Fig. 4. Waveforms resulting from the implementation of the FHN neuron model on RPi: (a) FHN-Sp1 behavior with AB method; (b) FHN-Sp2 behavior with

AB method.

Considering Table III, the largest error was obtained when the ABM method was used. The periods of the membrane

23

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

potential waveforms of the FHN neuron based on the ABM

method are greater than those of the other numerical methods.

ABM is a relatively slow one-step method with large error

values for model implementation. The FHN neuron

implementation with the lowest error on the RPi was obtained

by the AM method. However, it is slow in solving the FHN

neuron. The error values of the numerical methods are

ordered as 𝐴𝑀𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝐴𝐵𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 < 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 .

The order of the numerical methods according to the speed of

solving differential equations is 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝐴𝑀𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 <

𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 . According to this comparison,

the AB method, which is fast and relatively has low error

values, can be preferred in the numerical solution of the FHN

neuron.

D. Implementation of HR Neuron Model

The next neuron implemented is HR. Two samples, one of

which was chaotic, were constructed with selected

parameters and named HR-Sp. Each sample was carried out

with the numerical methods RK4, RKN, AB, AM, and ABM.

The burst and chaotic conditions obtained at the various

values of the parameters are presented in Fig. 5. The error

values of RPi implementation after synthesis are presented in

Table IV.

 (a) (b)

Fig. 5. Waveforms resulting from the implementation of the HR neuron model on RPi: (a) HR-Sp1 (Burst of 4 Spike) behavior with RK4 method; (b) HR-

Sp2 (Chaotic) behavior with AB method.

TABLE IV. THE ERROR OF THE HR NEURON MODEL BETWEEN

MATLAB SIMULATION AND RPI IMPLEMENTATION.

HR Model
HR-Sp1

(Burst of 4 Spike)

HR-Sp2

(Chaotic)
Average

RK4

MAE 0,0347 0,0785 0,05

NRMSE 2,9527 7,8779 4,5971

Period [s] 13,910 -- 16,27

RKN

MAE 0,0787 0,0499 0,0692

NRMSE 5,4939 4,6018 5,0564

Period [s] 14,350 -- 16,785

AB

MAE 0,0815 0,0430 0,0556

NRMSE 7,9339 3,3252 4,9339

Period [s] 13,690 -- 16

AM

MAE 0,0583 0,0635 0,0588

NRMSE 5,9089 6,4861 5,8892

Period [s] 15,590 -- 18,345

ABM

MAE 0,0889 0,0422 0,0583

NRMSE 8,9312 3,1453 5,4639

Period [s] 15,360 -- 17,9325

Considering Table IV, the largest error was obtained when

using the AM method. The periods of the membrane potential

waveforms of the HR neuron based on AM method are larger

than those of the other methods. AM is a slow multi-step

method with large error values for the implementation of the

HR neuron. The HR neuron implementation with the lowest

error value on the RPi was obtained with the RK4 method. It

is also fast in solving the HR neuron. The error values of the

numerical methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝐻𝑅 < 𝐴𝐵𝑒𝑟𝑟𝑜𝑟

𝐻𝑅 <

𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟
𝐻𝑅 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝐻𝑅 < 𝐴𝑀𝑒𝑟𝑟𝑜𝑟
𝐻𝑅 . The order of the numerical

methods according to the speed of solving differential

equations is 𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝐻𝑅 < 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑

𝐻𝑅 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑
𝐻𝑅 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑

𝐻𝑅 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑
𝐻𝑅 .

According to this comparison, RK4 and AB numerical

methods, which are relatively fast and relatively have low

error values, can be preferred in the numerical solution of the

HR neuron model.

E. Implementation of IZ Neuron Model

The last model which is implemented on the RPi is the IZ

neuron. The parameter values of the differential equations

that are given in (13)–(15) were obtained. Two samples were

formed and defined by the expression IZ-Sp. Each sample

was carried out with the numerical methods RK4, RKN, AB,

AM, and ABM. The error between RPi implementation after

synthesis is presented in Table V. The different membrane

behaviors are presented in Fig. 6.

TABLE V. THE ERROR OF THE IZ NEURON MODEL BETWEEN MATLAB SIMULATION AND RPI IMPLEMENTATION.

IZ Model
IZ-Sp1

(Fast Spike)

IZ-Sp2

(Burst of 3 Spike)
Average

RK4

MAE 1,6548 2,1416 1,8982

NRMSE 6,8243 5,4824 6,15335

Period [s] 5,792 34,550 20,171

RKN

MAE 1,7588 2,5794 2,1691

NRMSE 6,9163 6,8508 6,88355

Period [s] 5,894 34,860 20,377

AB

MAE 1,5471 3,4937 2,5204

NRMSE 6,3682 8,1993 7,28375

Period [s] 5,804 34,890 20,347

AM

MAE 1,5293 3,3799 2,4546

NRMSE 5,1136 8,6370 6,8753

Period [s] 6,020 35,430 20,725

24

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

IZ Model
IZ-Sp1

(Fast Spike)

IZ-Sp2

(Burst of 3 Spike)
Average

ABM

MAE 1,3827 3,9585 2,6706

NRMSE 5,6117 9,1965 7,4041

Period [s] 5,982 35,300 20,641

 (a) (b)

Fig. 6. Waveforms resulting from the implementation of the IZ neuron model on RPi: (a) IZ-Sp1 (Fast Spike) behavior with RK4 method; (b) IZ-Sp2 (Burst

of 4 Spike) behavior with RKN method.

Considering Table V, the largest error value was obtained

when using the ABM method. The periods of the membrane

potential waveforms of the IZ neuron obtained by the AM

method are of great value compared to those obtained by

other methods. AM is a slow one-step method with large error

values for the implementation of the IZ neuron. The IZ

neuron implementation with the lowest error on the RPi was

obtained with the ABM method. However, it is slow in

solving the IZ neuron. The error values of the numerical

methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝐼𝑍 < 𝐴𝑀𝑒𝑟𝑟𝑜𝑟

𝐼𝑍 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟
𝐼𝑍 <

𝐴𝐵𝑒𝑟𝑟𝑜𝑟
𝐼𝑍 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝐼𝑍 . The order of the numerical methods

according to the speed of solving differential equations is

𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝐼𝑍 < 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑

𝐼𝑍 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑
𝐼𝑍 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑

𝐼𝑍 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑
𝐼𝑍 .

According to this comparison, RK4 and RKN method,

which is relatively fast and has relatively low error values,

can be preferred in the numerical solution of the IZ neuron.

However, on RPi implementation, low-value distortions

occur on the waveform as the membrane potential increases

from its lowest value to −50 𝑚𝑉.

V. DISCUSSION

In this study, both the implementation of HH, ML, FHN,

HR, and IZ neuron models and the comparison of the

obtained results of the RK4, RKN, AB, AM, and ABM

numerical methods on RPi was made for the first time.

According to the results presented, the action potential

patterns of both simulations and implementations were

matching. It is divided into some categories for comparison

of these numerical methods, such as achieving the dynamic

behaviors of the neuron with these numerical methods, design

flexibility, simulation speed, and simulation accuracy. Thus,

in Table VI, the performance comparison of the numerical

methods is summarized instead of the exact results. While

(+++++) shows high performance, (+++) represents good

performance, and (++) means average acceptability.

To determine the performance of RPi in neuron

implementation, various neuron dynamics behaviors such as

regular spike, fast spike, burst, and chaotic were formed with

different parameters. RPi was able to perform all samples

using numerical methods RK4, RKN, AB, AM, and ABM.

TABLE VI. A QUALITATIVE COMPARISON FOR NUMERICAL

METHODS USED FOR IMPLEMENTATION OF NEURON ON RPI.

 RK4 RKN AB AM ABM

To achieve the
dynamic behaviors

of the neuron

+++++ +++++ +++++ +++++ +++++

Design flexibility +++++ ++++ ++++ +++ ++

Simulation speed +++++ ++++ +++++ ++ ++

Simulation accuracy
(with spike)

+++++ ++++ +++ +++++ ++

Simulation accuracy

(with burst)
+++++ +++++ ++++ ++ +++

However, the design flexibility of numerical methods is

different. RK4 and RKN are easy to design because they do

not keep the previous information in memory and use the

current information. For the AB numerical method to solve

the differential equation, the first four terms must be known

in advance. It gradually predicts other terms based on these

terms, which can be determined using methods such as RK4

or RKN. The design of the AB is relatively more difficult, as

additional methods are used. The AM numerical method, on

the other hand, has an algorithm that corrects previously

known terms and creates new terms. That is, unlike the AB,

all terms must be known beforehand. Therefore, the AM

numerical method consists of two stages: determining the

terms using RK4 or RKN and correcting the determined

terms. This complicates the design of the AM method. In the

ABM numerical method, the predictive method AB is used in

determining the terms, and the AM method is used in the

corrective stage. The ABM is the most difficult method to

design, as the AB and the AM are used together. The

difficulty of designing numerical methods directly affects the

simulation speed. The RK4 method is the fastest as it finds

the new term in four steps with random starting points.

Another method that finds the new term in four steps is AB.

Although the first four terms must be known beforehand, it is

faster than the five-step RKN method. Step 5 had a negative

effect on the simulation speed. AM and ABM are the slowest

methods, where all terms need to be known beforehand.

25

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

TABLE VII. SCORING TABLE FOR THE PERFORMANCE OF

NUMERICAL METHODS IN NEURON MODEL REALIZATION ON
RPI.

Speed (Scoring from 1 to 5)

 HH ML FHN HR IZ Average

RK4 4 5 4 4 5 4,4

RKN 3 3 3 3 3 3

AB 5 4 5 5 4 4,6

AM 1 1 1 1 1 1

ABM 2 2 2 2 2 2

Error (Scoring from 1 to 5)

 HH ML FHN HR IZ Average

RK4 3 4 2 5 1 3

RKN 4 1 3 3 2 2,6

AB 1 2 4 4 3 2,8

AM 5 5 5 1 4 4

ABM 2 3 1 2 5 2,6

Overall (Speed + Error (Scoring from 2 to 10))

 HH ML FHN HR IZ Average

RK4 7 9 6 9 6 7,4

RKN 7 4 6 6 5 5,6

AB 6 6 9 9 7 7,4

AM 6 6 6 2 5 5

ABM 4 5 3 4 7 4,6

The speed and error values of the numerical methods are

compared. Table VII has been prepared to understand which

numerical method gives better results in the realization of the

neuron model on RPi. Here, scores were made between 1 and

5, with the best result being 5 points and the worst result being

1 point. Considering the average values, the numerical

methods that solve the neuron models in the fastest way are

RK4 and AB. The numerical methods that solve with the

highest accuracy are RK4 and AM. However, it should be

noted that while AM is best at achieving spike behavior, it is

worst at achieving burst behavior. When speed and error are

considered together, it is understood that RK4 and AB are the

best numerical methods for the realization of neuron models

on RPi, with a score of 7,4 (The order of performance here is

as follows: 2–4 very bad, 4–5 bad, 5–7 good, 7–10 best).

Another preferred method is RKN. AM and ABM are not

suitable methods to realize neuron models on the RPi.

VI. CONCLUSIONS

Researchers have proposed various neuronal models that

mimic neural activity for a better understanding of brain

structure. They differ from each other by various features

such as membrane dynamics richness, biological accuracy,

and complexity of their expressions [1]–[7]. Different

platforms have been developed for digital and analog

realization of the models [8]–[16]. These platforms have the

following disadvantages:

1. VLSI platforms do not have the flexibility to be

reconfigurable. The design needs to be recreated to apply

the parameter change to the platform. In addition, with

reduced transistor area, it becomes more sensitive to noise

and is highly affected by changing environmental

conditions [13].

2. Although FPAA platforms are reconfigurable, their

capacity is limited. For neuron model realization, multiple

FPAA elements need to be connected in parallel. As a

result, they become more susceptible to noise [14].

3. In FPGA platforms, multiplier blocks, computation of

hyperbolic functions, and propagation delays lead to high

costs. Even if computational costs are tried to be reduced

with various approaches, the actual dynamics of the neuron

is distorted, and the accuracy decreases. In addition, in

some applications, computational costs become more

difficult due to the high use of FPGA resources [15].

4. Neuron models are mathematical approximations

defined in continuous time. On FPAA and FPGA

platforms, continuous time definitions must be converted

to discrete time. The Euler and Runge-Kutta methods are

preferred for their simple expressions. However, they

produce results with a certain amount of error from the

actual result [14]–[16]. The suitability of other methods

such as RKN, AB, AM, and ABM to solve neuron models

with complex dynamics such as burst and chaotic has not

yet been determined.

In this study, HH, ML, FHN, HR, and IZ neuron models

are implemented with the Raspberry Pi 4 (RPi 4)

microprocessor platform, which has a standard hardware,

powerful processor architecture, facilitates multi-input

operations thanks to its high RAM capacity, open source

code, and has recently attracted the attention of researchers.

In addition, the suitability of the RK4, RKN, AB, AM, and

ABM mathematical methods for solving neuron models is

compared. It has been demonstrated that RPi 4 is capable of

realizing various neuron membrane dynamics such as spike,

burst, and chaotic with high accuracy, without any memory

limitation, with little effect on noise, with the solution

methods compared. On the other hand, the RK4 and AB

methods were found to be the most suitable for solving

neuron models, while the ABM method was relatively

inadequate; the AM method solved spike dynamics with high

accuracy, while the AM method solved burst dynamics with

high error. In light of the results obtained, the scope of the

suitability of mathematical solution methods for neuron

models has been expanded, and it is understood that RPi 4 is

a new digital platform for neuron realization (the code is

freely available for non-commercial use from:

https://github.com/vedatburakyucedag/A-Raspberry-Pi-

Based-Hardware-Implementations-of-Various-Neuron-

Models.git).

APPENDIX A

In this appendix, the numerical methods RK4, RKN, AB,

AM, and ABM are described.

Fourth-order Runge-Kutta (RK4):

  1 1 2 3 4

1
2 2 ,

6
i iy y h k k k k+ = + + + + (18)

 ()1 , ,i ik f x y= (19)

 2 1, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (20)

 3 2, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (21)

 ()4 3, .i ik f x h y hk= + + (22)

Runge-Kutta New Version (RKN):

  1 1 2 3 5

1
2 2 ,

6
i iy y h k k k k+ = + + + + (23)

26

https://github.com/vedatburakyucedag/A-Raspberry-Pi-Based-Hardware-Implementations-of-Various-Neuron-Models.git
https://github.com/vedatburakyucedag/A-Raspberry-Pi-Based-Hardware-Implementations-of-Various-Neuron-Models.git
https://github.com/vedatburakyucedag/A-Raspberry-Pi-Based-Hardware-Implementations-of-Various-Neuron-Models.git

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

 ()1 , ,i ik f x y= (24)

 2 1, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (25)

 3 2, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (26)

 ()4 3, ,i ik f x h y hk= + + (27)

 ()5 1 2 3 4

3 1
, 5 32 13 ,

4 32
i ik f x h y h k k k k

 
= + + + + − 

 
 (28)

Four-step explicit Adams-Bashforth method (AB):

  1 1 2 3 4

1
55 59 37 9 ,

24
i iy y h k k k k+ = + − + − (29)

 ()1 , ,i ik f x y= (30)

 ()2 1 1, ,i ik f x y− −= (31)

 ()3 2 2, ,i ik f x y− −= (32)

 ()4 3 3, .i ik f x y− −= (33)

Three-Step Implicit Adams-Moulton Method (AM):

  1 1 2 3 4

1
9 19 5 ,

24
i iy y h k k k k+ = + + − + (34)

 ()1 1 1, ,i ik f x y+ += (35)

 ()2 , ,i ik f x y= (36)

 ()3 1 1, ,i ik f x y− −= (37)

 ()4 2 2, .i ik f x y− −= (38)

Adams-Bashforth-Moulton Method (ABM)

As a first step, the next value is estimated using the AB

method. This value is then corrected by the AM method.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry

of Excitability and Bursting. The MIT Press, 2007. DOI:

10.7551/mitpress/2526.001.0001.

[2] A. L. Hodgkin and A. F. Huxley, “A quantitative description of

membrane current and its application to conduction and excitation in

nerve”, The Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952.
DOI: 10.1113/jphysiol.1952.sp004764.

[3] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant

muscle fiber”, Biophysical Journal, vol. 35, no. 1, pp. 193–213, 1981.
DOI: 10.1016/S0006-3495(81)84782-0.

[4] R. FitzHugh, “Impulses and physiological states in theoretical models

of nerve membrane”, Biophysical Journal, vol. 1, no. 6, pp. 445–466,
1961. DOI: 10.1016/S0006-3495(61)86902-6.

[5] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse
transmission line simulating nerve axon”, Proceedings of the IRE, vol.

50, no. 10, pp. 2061–2070, 1962. DOI:

10.1109/JRPROC.1962.288235.
[6] J. L. Hindmarsh and R. M. Rose, “A model of neuronal bursting using

three coupled first order differential equations”, Proceedings of the

Royal Society B: Biological Sciences, vol. 221, no. 1222, pp. 87–102,
1984. DOI: 10.1098/rspb.1984.0024.

[7] E. M. Izhikevich, “Simple model of spiking neurons”, IEEE

Transactions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.
DOI: 10.1109/TNN.2003.820440.

[8] E. Lazaridis, E. M. Drakakis, and M. Barahona, “Full analogue

electronic realisation of the Hodgkin-Huxley neuronal dynamics in

weak-inversion CMOS”, in Proc. of 2007 29th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society,
2007, pp. 1200–1203. DOI: 10.1109/IEMBS.2007.4352512.

[9] X. Hu, C. Liu, L. Liu, J. Ni, and S. Li, “An electronic implementation

for Morris–Lecar neuron model”, Nonlinear Dynamics, vol. 84, no. 4,
pp. 2317–2332, 2016. DOI: 10.1007/s11071-016-2647-y.

[10] F. A. Khanday, N. A. Kant, M. R. Dar, T. Z. A. Zulkifli, and C.

Psychalinos, “Low-voltage low-power integrable CMOS circuit
implementation of integer- and fractional-order FitzHugh-Nagumo

neuron model”, IEEE Transactions on Neural Networks and Learning

Systems, vol. 30, no. 7, pp. 2108–2122, 2019. DOI:
10.1109/TNNLS.2018.2877454.

[11] M. Heidarpur, A. Ahmadi, M. Ahmadi, and M. Rahimi Azghadi,

“CORDIC-SNN: On-FPGA STDP learning with Izhikevich neurons”,
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66,

no. 7, pp. 2651–2661, 2019. DOI: 10.1109/TCSI.2019.2899356.

[12] M. Heidarpur, A. Ahmadi, and N. Kandalaft, “A digital implementation
of 2D Hindmarsh–Rose neuron”, Nonlinear Dynamics, vol. 89, no. 3,

pp. 2259–2272, 2017. DOI: 10.1007/s11071-017-3584-0.

[13] N. Korkmaz, İ. Öztürk, and R. Kılıç, “The investigation of chemical
coupling in a HR neuron model with reconfigurable implementations”,

Nonlinear Dynamics, vol. 86, no. 3, pp. 1841–1854, 2016. DOI:

10.1007/s11071-016-2996-6.
[14] N. Dahasert, I. Öztürk, and R. Kiliç, “Implementation of Izhikevich

neuron model with field programmable devices”, in Proc. of 2012 20th

Signal Processing and Communications Applications Conference
(SIU), 2012, pp. 1–4. DOI: 10.1109/SIU.2012.6204544.

[15] E. L. Graas, E. A. Brown, and R. H. Lee, “An FPGA-based approach

to high-speed simulation of conductance-based neuron models”,
Neuroinformatics, vol. 2, no. 4, pp. 417–436, 2004. DOI:

10.1385/NI:2:4:417.

[16] P. Pourhaj, D. H.-Y. Teng, K. Wahid, and S.-B. Ko, “A novel scalable
parallel architecture for biological neural simulations”, in Proc of 2010

IEEE International Symposium on Circuits and Systems, 2010, pp.

3152–3155. DOI: 10.1109/ISCAS.2010.5537951.
[17] S. Valadez-Godínez, H. Sossa, and R. Santiago-Montero, “On the

accuracy and computational cost of spiking neuron implementation”,

Neural Networks, vol. 122, pp. 196–217, 2020. DOI:
10.1016/j.neunet.2019.09.026.

[18] G. de Alteriis and C. M. Oddo, “Tradeoff between accuracy and
computational cost of Euler and Runge Kutta ODE solvers for the

Izhikevich spiking neuron model”, in Proc. of 2021 10th International

IEEE/EMBS Conference on Neural Engineering (NER), 2021, pp. 730–
733. DOI: 10.1109/NER49283.2021.9441070.

[19] A. Tutueva, T. Karimov, and D. Butusov, “Semi-implicit and semi-

explicit Adams-Bashforth-Moulton methods”, Mathematics, vol. 8, no.
5, 2020. DOI: 10.3390/math8050780.

[20] R. Siciliano, “The Hodgkin-Huxley Model: Its Extensions, Analysis

and Numerics”, 2012.
[21] M. Xiao, “Stability analysis and Hopf-type bifurcation of a fractional

order Hindmarsh-Rose neuronal model”, in Advances in Neural

Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer
Science, vol. 7367. Springer, Berlin, Heidelberg, 2012, pp. 217–224.

DOI: 10.1007/978-3-642-31346-2_25.

[22] N. H. Sweilam and T. A. Assiri, “Numerical simulations of some real-
life problems governed by ODEs”, in Numerical Simulation - From

Brain Imaging to Turbulent Flows. IntechOpen, 2016. DOI:

10.5772/63958.

[23] A. Adili and B. Wang, “Random attractors for stochastic FitzHugh-

Nagumo systems driven by deterministic non-autonomous forcing”,

Discrete and Continuous Dynamical Systems - B, vol. 18, no. 3, pp.
643–666, 2013. DOI: 10.3934/dcdsb.2013.18.643.

[24] V. B. Yucedag and I. Dalkiran, “Raspberry Pi implementation of the

Wilson-Cowan neural network with chemical synapse”, in Proc. of
2023 Innovations in Intelligent Systems and Applications Conference

(ASYU), 2023, pp. 1–6. DOI: 10.1109/ASYU58738.2023.10296705.

[25] Raspberry Pi Documentation, Raspberry Pi Foundation Inc.,
Cambridge, UK, 2009.

[26] MCP4725 Data Manual, Microchip Technology Inc., Arizona, ABD,

2009.
[27] J. C. Butcher, “Implicit Runge-Kutta processes”, Mathematics of

Computation, vol. 18, no. 85, pp. 50–64, 1964. DOI: 10.1090/S0025-

5718-1964-0159424-9.
[28] S. Kumar, R. Kumar, R. P. Agarwal, and B. Samet, “A study of

fractional Lotka-Volterra population model using Haar wavelet and

Adams-Bashforth-Moulton methods”, Mathematical Methods of
Applied Sciences, vol. 43, no. 8, pp. 5564–5578, 2020. DOI:

10.1002/mma.6297.

[29] S. Vaidyanathan, “Anti-synchronization of the FitzHugh-Nagumo
chaotic neuron models via adaptive control method”, International

27

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 6, 2024

Journal of PharmTech Research, vol. 8, no. 7, pp. 71–83, 2015.

[Online]. Available:

https://www.researchgate.net/publication/283566545

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0
(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

28

