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Abstract—The implementation of biological neuron models 

plays an important role in understanding the functionality of the 

brain. Generally, analog and digital methods are preferred 

during implementation processes. The Raspberry Pi (RPi) 

microcontroller has the potential to be a new platform that can 

easily solve complex mathematical operations and does not have 

memory limitations, which will take advantage while realizing 

biological neuron models. In this paper, Hodgkin-Huxley (HH), 

FitzHugh-Nagumo (FHN), Morris-Lecar (ML), Hindmarsh-

Rose (HR), and Izhikevich (IZ) neuron models have been 

implemented on a standard-equipped RPi. For the numerical 

solution of each neuron model, the one-step method (4th order 

Runge-Kutta (RK4), the new version of Runge-Kutta (RKN)), 

the multi-step method (Adams-Bashforth (AB), Adams-Moulton 

(AM)), and predictor-corrector method (Adams-Bashforth-

Moulton (ABM)) are preferred to compare results. The 

implementation of HH, ML, FHN, HR, and IZ neuron models 

on RPi and the comparison of numerical models RK4, RKN, AB, 

AM, and ABM in the implementation of neuron models were 

made for the first time in this study. Firstly, MATLAB 

simulations of the various behaviors belonging to the HH, ML, 

FHN, HR, and IZ neuron models were completed. Then those 

models were realized on RPi and the outputs of the models are 

experimentally produced. The errors are also presented in the 

tables. The results show that RPi can be considered as a new 

alternative tool for making complex neuron models. 

 
Index Terms—Raspberry Pi; Hodgkin-Huxley; Hindmarsh-

Rose; Izhikevich; Runge-Kutta; Adams-Bashforth-Moulton.  

I. INTRODUCTION 

The question of how the brain processes information has 

led scientists to investigate the nervous system. The nervous 

system is the special network structure in which neurons are 

connected and establish chemical and electrical bonds with 

each other. Neurons communicate with each other using an 

action potential (spike) or an explosive action potential 

(burst). Spike or burst behaviors can have different 

amplitudes, frequencies, and pattern shapes [1].  

Biologically plausible neuron models such as Hodgkin-

Huxley (HH) directly define the behavior of a neuron [2]. 

This four-dimensional model describes the ionic mechanism 

and electrical current on the membrane surface of the neuron 

most biologically and accurately. In contrast, the 

mathematical complexity and the cost of implementation of 

the HH model are quite high. Morris-Lecar (ML) model 

describes oscillation in cuttlefish giant axons based on 

conductivity [3]. Biologically inspired neuron models such as 

FitzHugh-Nagumo (FHN), Hindmarsh-Rose (HR), and 

Izhikevich (IZ) replicate biological neuron behaviors. The 

FitzHugh-Nagumo (FHN) model was presented as a new 

model in the literature by simplifying the complexity of the 

HH model [4], [5]. Implementing FHN is easy since, as it has 

two variables. But it cannot produce sufficient action 

potential patterns such as bursting. The HR model obtained 

by the development of the FHN model can exhibit many 

dynamic behaviors of a biological neuron [6]. On the other 

hand, the IZ neuron model was defined by two simple 

differential equations that can mimic the biological neuron at 

low cost and produce a very rich membrane dynamics [7]. 

There are two basic techniques to implement the 

mathematical models of neurons, analog and digital systems. 

Typically, hardware implementations of neuron models are 

realized by using discrete elements, very large-scale 

integrated (VLSI) systems, field-programmable analog arrays 

(FPAAs), and field-programmable gate arrays (FPGAs). 

Lazaridis, Drakakis, and Barahona [8] realized an analog 

implementation of the HH neuron model using weak-

inversion CMOS technology. However, the implementation 

did not have readjustability. Hu, Liu, Liu, Ni, and Li [9] 

realized the ML neuron model using basic analog elements 

such as a capacitor, resistance, NPN transistor, and OP-AMP. 

The hyperbolic cosine function was defined as half of the sum 

of two exponential functions with the same input value but 

opposite sign. Realizing the hyperbolic function is difficult 

and complex [9]. Khanday Kant, Dar, Zulkifli, and 

Psychalinos [10] presented both integer and fractional order 

FHN neuron models to perform CMOS circuit in the 

hyperbolic sine-domain (SD). Heidarpur, Ahmadi, Ahmadi, 

and Rahimi Azghadi [11] modified the IZ neuron model using 

the coordinate rotation digital computer (CORDIC) algorithm 

in their studies. Later, they adapted the spike timing-

dependent plasticity learning algorithm (STDP) to the 

modified model and performed it on an FPGA. Heidarpur, 

Ahmadi, and Kandalaft [12] applied a set of piecewise linear 

approaches to the 2D HR neuron model. The neural network 

structure was able to display tonic spiking, tonic bursting, 
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spike latency, and class 1 and class 2 excitability behaviors 

on an FPGA. Even if the extra approximations are useful to 

reduce implementation costs, they produce inaccurate results 

compared to real neuron dynamics. Korkmaz, Öztürk, and 

Kılıç [13] realized a model of a chemical neuron, which has 

chemical coupling, on an FPAA. They modified the 

exponential function of the chemical coupling using a new 

approach. In this way, they reduced the coupling complexity. 

However, the use of four FPAAs in the design makes the 

system more expensive [13], [14]. 

Although VLSI systems are fast and efficient, they do not 

have re-adjustable flexibility, and the development time is so 

long. With the development of technology, VLSI systems, 

which contain more transistors in the same area, still have a 

problem modelling large-value capacities in integrated 

circuits [13]. Reconfigurable platforms have more flexible 

structures compared to VLSI. FPAAs are a preferred tool with 

high stability, accuracy, and rapid prototyping features. 

FPAAs have negative features, such as limited capacity and 

low saturation level (+2 V). To overcome the limited capacity 

problem, FPAAs can be linked with each other to operate in 

parallel. However, this significantly increases noise 

sensitivity and cost. In addition, since FPAAs are continuous 

time-based systems, it is so difficult to realize discrete-time 

defined models on an FPAA [14]. FPGAs are digital 

platforms. Multiplier blocks, calculations of hyperbolic 

functions, footprint, and propagation delay in an FPGA cause 

higher costs [15], [16]. If look-up table (LUTs) structures in 

an FPGA are used during the calculations of hyperbolic 

functions, they reduce the accuracy of the output due to their 

limitations on memory size [15], [16]. In contrast, floating-

point operations increase the accuracy of the output, but cause 

a considerable use of FPGA resources [14]. 

The motivation of this work is the presentation of a 

Raspberry Pi (RPi) microcontroller/microprocessor as an 

alternative tool to realize neuron models. RPi can be 

described as a standard hardware with high adjustable ability, 

with which to solve complex mathematical expressions easily 

and quickly, without memory limitations, low thermal noise 

sensitivity, and low-cost production process. In addition, 

Python-based open source code applications can be easily 

implemented on RPi. In the literature, although there are 

several implementations of neuron models on various 

platforms such as discrete elements, VLSI, FPAA, and FPGA 

as mentioned above, no studies have been encountered using 

RPi.  

For numerical solutions of neuron models, the fourth order 

Runge-Kutta (RK4) method has been generally preferred, 

because it is easier to simulate than the other methods [17], 

[18]. A few studies about Runge-Kutta New Version (RKN), 

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams-

Bashforth-Moulton (ABM) methods have been presented in 

[19]–[22]. It is not known which of these solution models will 

solve the neuron mathematical models more accurately and 

faster. It is also seen that more than one numerical method has 

never been tested for a neuron model on the same platform, 

such as FPGA, FPAA, and VLSI systems. In addition to RPi 

implementation, this study investigates the suitability of RK4, 

RKN, AB, AM, and ABM numerical methods for solving 

neuron models.  

In all these contexts, various action potential behaviors of 

HH, ML, FHN, HR, and IZ neuron models, which have a 

wide area in the literature, were obtained by numerical 

analysis methods in MATLAB. After discretizing each of 

neuron models with the RK4, RKN, AB, AM, and ABM 

methods, the differential equations obtained were performed 

on RPi by running software written in Python. The RPi has 

40 general-purpose input and output (GPIO) pins and none of 

them has capable of analog output. Therefore, the signal 

received from the GPIO pin of the RPi is applied to the 12-bit 

digital/analog converter. 

The paper is organized as follows. Section II presents HH, 

ML, FHN, HR, and IZ neuron models. The numerical 

methods and error analysis are presented in Section III. The 

implementation of neuron models on RPi is explained in 

Section IV. The discussion and conclusions are given in 

Sections V and VI, respectively. 

II. NEURON MODELS 

A. HH Neuron Model 

Since the HH neuron model exhibits the properties of a 

biological neuron in detail, the number of parameters is 

numerous. Accordingly, the implementation cost is high:  
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Here, 𝐶𝑀, 𝐼𝑖𝑛𝑝𝑢𝑡, and 𝑉 represent membrane capacitance, 

applied external current, and the membrane potential, 

respectively. 𝑔𝑘̅̅ ̅ and 𝑔𝑁𝑎̅̅ ̅̅ ̅ are the greatest conductivity of 

potassium and sodium ion channels, respectively, and 𝑔𝐿̅̅ ̅ is 

the largest conductivity value of leakage ions. 𝑛, 𝑚, and ℎ 

represent the probabilities that the activation or inactivation 

gate is open. The expressions 𝑎𝑛(𝑉), 𝑎𝑚(𝑉), and 𝑎ℎ(𝑉) are 

the speed functions of the ion channel gates which change 

from closed to open. The expressions 𝛽𝑛(𝑉), 𝛽𝑚(𝑉), and 

𝛽ℎ(𝑉) are also speed functions that determine the transition 

of ion channel gates which change from open to closed [2]. 

B. ML Neuron Model 

The conductivity-based neuron model has high biological 

accuracy and is easy to implement. The ML neuron model 

consists of two differential equations [3]: 
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Here, 𝑉 represents the membrane potential of the neuron. 

The parameter 𝑁 represents the slow activation of 𝐾+ 
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channels. 𝐶 is the membrane capacitance and 𝐼 is the stimulus 

current. 𝑔𝐾, 𝑔𝐶𝑎, and 𝑔𝐿 are the maximal conductivity of the 

potassium, the calcium, and the leakage current of ion 

channels, respectively. 

C. FHN Neuron Model 

The FHN neuron model is obtained by simplifying the HH 

neuron model. Since it has a structure that mimics the 

behavior of a real neuron, its biological accuracy is low. 

There are studies examining the effects of external forced 

current [23]: 
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where 𝑣, 𝑢, and 𝐼 represent the membrane potential of the 

nerve cell, the recovery parameter, and the external current 

applied to the cell membrane, respectively. 𝑎 and 𝑏 are 

scaling parameters, 𝑐 is a constant value. 𝐼𝑒𝑥𝑡  represents 

external forcing current. 

D. HR Neuron Model 

The HR neuron model can generate burst waveforms 

because it has a variable that defines the adaptation current. 

The model is defined by three differential equations [6]: 

 3 ,
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= − − − +  (10) 
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Here, 𝑥, 𝑦, and 𝑧 represent the membrane potential, the 

recovery parameter, and the adaptation current, respectively. 

𝑏 regulates the transition control between bursting and 

spiking and action potential frequency. 𝜀 is the control 

parameter of the frequency of the action potential and the 

number of each action potential in the behavior of the burst. 

𝑠 is the parameter that provides adaptation. 𝑥𝑟𝑒𝑠𝑡 represents 

the resting potential of the system and 𝐼 represents the 

stimulating. 

E. IZ Neuron Model 

The IZ neuron model has the rich dynamics of real neurons 

and has a low implementation cost. The model consists of two 

differential equations [7]: 

 20.04 5 140 ,
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Here, 𝑣 is the membrane potential of the neuron and 𝑢 is 

the recovery variable. 𝑎 defines the time scaling of the 

recovery variable 𝑢 at low values where the recovery is slow. 

𝑏 represents the sensitivity of the recovery variable 𝑢 and the 

threshold level fluctuations of the membrane potential 𝑣. 𝑐 is 

described as the reset value of 𝑣 after an action potential. 𝑑 is 

defined as the reset parameter of 𝑢 after the action potential. 

The parameter 𝐼 indicates the external stimulus currents. 

III. RASPBERRY PI AND NUMERICAL METHODS 

RPi is a digital platform that can quickly run complex 

mathematical expressions, unlike the FPGA and FPAA 

systems, without any memory limitations [24].  

RPi 4 has a 1.5 GHz quad-core ARM Cortex-A72 

processor architecture, which is very fast and highly energy 

efficient. It has a wide RAM bandwidth (2983 MBW) with 

2 GB, 4 GB, and 8 GB LPDDR4 SDRAM options, but the 

4 GB version was used in the study. The RPi, which supports 

OpenGL ES 3.x with its internal image processing unit, 

provides two high-resolution image outputs, 4k and 1080p. It 

also has external data communication at high write and read 

speeds with USB 3.0 support. The Python IDE interface is 

included as standard with the Raspberry Pi OS operating 

system. In this study, the solution of neuron models with 

numerical methods was realized with this interface [25]. 

 
Fig. 1.  Raspberry Pi 4 design and GPIO pin diagram. 

The RPi 4 has 40 GPIO pins with input/output capabilities 

for a wide range of purposes such as serial communication 

pins UART TX-RX, I2C communication protocols, 

EEPROM SDA-SCL, and PWM. These outputs are all 

digital, and the RPi does not have analog output pins [25]. For 

analog output, the MCP4725 12-bit DAC with 6-pin SOT-23 

package is used, which can be easily controlled via I2C. With 

a single supply voltage in the range of 2.7 V–5.5 V, the output 

pitch is 0 V–3.3 V and 0 V–5 V. For the negative values of 

the neuron, a full subtractor circuit was created with the 

LM741 OP-AMP. The MCP4725 has a two-wire I2C™ 

compatible serial interface for standard (100 kHz), fast 

(400 kHz), or high speed (3.4 MHz) mode. It also has a DAC 

that can operate between -40 ℃ and +125 ℃ ambient 

temperature range, ±0.2 LSB DNL and 6 μs fast settling time 

[26]. 

Since neuron models are defined in continuous time, their 

digital structure cannot be realized directly on both RPi 

microprocessors. These neuron models must be transformed 

into discrete time with various discretization methods. One-

step and multi-step methods are generally used to discretize 

ordinary differential equations. These numerical solution 

methods start from an initial point and then take a short step 
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in time to find the next point. This process continues with the 

next steps to construct the solution space. One-step methods 

(RK4 and RKN) refer only to the previous point and its 

derivative to determine the current value. They also take some 

intermediate steps to get a higher order, but then discard all 

previous information before taking a second step [27]. Multi-

step methods (Adams-Bashforth (AB) and Adams-Moulton 

(AM)) try to gain efficiency by storing and using information 

from previous steps rather than discarding it. As a result, 

multi-step methods refer to the previous points and their 

derivative values [28]. The predictor-corrector methods are 

based on estimating the solution of differential equations 

using the explicit formula and then correcting the estimated 

value using another implicit formula. Generally, AB is 

chosen as a predictor, and AM is selected as a corrector [28]. 

The expressions of numerical solution methods are given in 

the Appendix A. 

In light of this information, RK4, RKN, explicit four-step 

AB, implicit three-step AM, and predictor-corrector ABM 

numerical methods are preferred to show that various 

discretization methods can be performed on RPi in this study. 

The RPi microprocessor can easily perform numerical 

solution methods which have various calculation difficulties. 

In addition, the numerical methods are compared in terms of 

design flexibility, simulation speed, simulation accuracy 

(with both spike and burst), and achieving dynamical 

behaviors of the neuron models. In this way, it has been 

determined which methods are more suitable for the 

numerical solution of neuron models. 

Mean absolute error (MAE) and normalized root mean 

squared error (NRMSE) were calculated using 

implementation results. MAE is the average of the absolute 

differences, whereas MSE is the average of the squared 

differences between simulation and implementation results. 

NRMSE facilitates comparison between simulation and 

implementation of neuron models with different scales. MAE 

and NRMSE are formulated as follows: 
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IV. RESULTS 

In this section, the implementation of HH, ML, FHN, HR, 

and IZ neuron models on RPi is explained using numerical 

methods RK4, RKN, AB, AM, and ABM. Various neuron 

dynamic behavior examples were obtained according to 

parameters determined. Each instance of each neuron model 

was performed with five different numerical methods. In 

addition, waveforms were obtained with both MATLAB 

simulation and the oscilloscope. For simplicity and 

intelligibility of the paper, not all waveforms are presented, 

but four states are specified for each neuron model.  

A. Implementation of HH Neuron Model 

The HH neuron model is implemented on the RPi using 

(1)–(4). Two samples’ dynamics was formed with the 

parameters selected from the HH neuron model and named as 

HH-Sp. Each sample was carried out with the numerical 

methods RK4, RKN, AB, AM, and ABM. The parameters are 

determined from previous studies [2]. The error between the 

MATLAB simulation and RPi implementation after synthesis 

are presented in Table I. The membrane potential waveform 

is also presented in Fig. 2. 

TABLE I. THE ERROR OF THE HH NEURON MODEL BETWEEN 

MATLAB SIMULATION AND RPI IMPLEMENTATION. 

HH Model HH-Sp1 HH-Sp2 Average 

RK4 

MAE 2,1506 2,3079 2,2293 

NRMSE 2,8149 3,3094 3,0622 

Period [s] 1,197 0,954 1,0755 

RKN 

MAE 2,2124 2,2549 2,2337 

NRMSE 3,0609 3,5117 3,2863 

Period [s] 1,261 1,002 1,1315 

AB 

MAE 2,6957 3,9776 3,3367 

NRMSE 3,9879 6,3379 5,1629 

Period [s] 1,198 0,952 1,0750 

AM 

MAE 2,4275 2,2445 2,3360 

NRMSE 3,1864 3,0136 3,1000 

Period [s] 1,319 1,056 1,1875 

ABM 

MAE 3,3559 4,3618 3,8589 

NRMSE 5,1703 6,5923 5,8813 

Period [s] 1,307 1,050 1,1785 
 

Considering Table I, the largest error value was obtained 

when using the AB numerical method. The periods of the 

membrane potential waveforms of the HH neuron model 

based on the AB numerical method are shorter than those of 

the other numerical methods. It is seen that although AB is a 

fast multi-step method, it has large error values while 

implementing the HH neuron.  

        
                                                                (a)                                                                                                                  (b)                                                             

Fig. 2.  Waveforms resulting from the implementation of the HH neuron model on RPi: (a) HH-Sp1 behavior with RK4 method; (b) HH-Sp2 behavior with 

RKN method.

The lowest error on the RPi was obtained by the AM 

method. However, it is the slowest among the five methods 

while solving the HH neuron. The error of the numerical 

methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝐻𝐻 < 𝐴𝑀𝑒𝑟𝑟𝑜𝑟

𝐻𝐻 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟
𝐻𝐻 <
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𝐴𝐵𝑒𝑟𝑟𝑜𝑟
𝐻𝐻 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝐻𝐻 . The order of the numerical methods 

according to the speed of solving HH neuron is 𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝐻𝐻 <

𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑
𝐻𝐻 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑

𝐻𝐻 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑
𝐻𝐻 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑

𝐻𝐻 . According to this 

comparison, RK4 and RKN methods, which are relatively 

fast and relatively have low error, can be preferred to the 

numerical solution method of the HH neuron. However, 

during RPi implementation, low-value distortions occur in 

the waveforms as the membrane potential increases from its 

lowest value to 20 𝑚𝑉. This situation increases, MAE and 

NRMSE. The reason for distortion is that environmental 

parasitic effects cannot be completely prevented during the 

measurement process of the waveform with 𝑚𝑉 amplitude. 

B. Implementation of ML Neuron Model 

The ML neuron is also implemented on the RPi. |The 

parameters are determined from previous studies [9]. Two 

samples were built and named ML-Sp. Each sample was 

carried out with the numerical methods RK4, RKN, AB, AM, 

and ABM. The regular spike condition is presented in Fig. 3. 

The error between the MATLAB simulation and the RPi 

implementation after synthesis are presented in Table II. 

        
                                                                (a)                                                                                                                  (b)                                                              

Fig. 3.  Waveforms resulting from the implementation of the ML neuron model on RPi: (a) ML-Sp1 behavior with RK4 method; (b) ML-Sp2 behavior with 

RK4 method.

TABLE II. THE ERROR OF THE ML NEURON MODEL BETWEEN 

MATLAB SIMULATION AND RPI IMPLEMENTATION. 

ML Model ML-Sp1 ML-Sp2 Average 

RK4 

MAE 1,5676 1,2207 1,3942 

NRMSE 2,5809 1,8516 2,2163 

Period [s] 1,651 1,110 1,3805 

RKN 

MAE 3,9243 2,7229 3,3236 

NRMSE 5,9390 3,9767 4,9579 

Period [s] 1,706 1,155 1,4305 

AB 

MAE 1,9192 1,4184 1,6688 

NRMSE 3,2773 2,3417 2,8095 

Period [s] 1,654 1,112 1,3830 

AM 

MAE 1,9458 1,4647 1,7053 

NRMSE 3,3486 2,4703 2,9095 

Period [s] 1,875 1,265 1,5700 

ABM 

MAE 1,7312 1,4101 1,5707 

NRMSE 2,4287 2,2995 2,3641 

Period [s] 1,873 1,269 1,5710 
 

Considering Table II, the largest error was obtained when 

the RKN method was used. The periods of the membrane 

potential waveforms of the ML neuron based on the RKN 

numerical method are larger than those of the other methods. 

ABM is a relatively slow one-step method with large error 

values for the implementation of the neuron. The ML neuron 

implementation with the lowest error on the RPi was obtained 

using the RK4 method. The error values of the numerical 

methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 < 𝐴𝐵𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 <

𝐴𝑀𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 . The order of the numerical methods 

according to the speed of solving ML neuron is 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 <

𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 . According to this 

comparison, the RK4 numerical method, which is fast and has 

lowest error, can be preferred in the numerical solution of the 

ML neuron. 

C. Implementation of FHN Neuron Model 

The differential equations given in (7)–(9) are used to 

implement the FHN neuron on RPi and the parameter values 

determined according to other studies [29]. Two samples 

were built and named FHN-Sp. Each sample was carried out 

with the numerical methods RK4, RKN, AB, AM, and ABM. 

The regular spike condition obtained at various values is 

presented in Fig. 4 and the error RPi implementation is 

presented in Table III.

        
                                                                 (a)                                                                                                                 (b)                                                               

Fig. 4.  Waveforms resulting from the implementation of the FHN neuron model on RPi: (a) FHN-Sp1 behavior with AB method; (b) FHN-Sp2 behavior with 

AB method.

Considering Table III, the largest error was obtained when the ABM method was used. The periods of the membrane 
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potential waveforms of the FHN neuron based on the ABM 

method are greater than those of the other numerical methods. 

ABM is a relatively slow one-step method with large error 

values for model implementation. The FHN neuron 

implementation with the lowest error on the RPi was obtained 

by the AM method. However, it is slow in solving the FHN 

neuron. The error values of the numerical methods are 

ordered as 𝐴𝑀𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝐴𝐵𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 < 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟

𝑀𝐿 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟
𝑀𝐿 . 

The order of the numerical methods according to the speed of 

solving differential equations is 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝐴𝑀𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 <

𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑

𝑀𝐿 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑
𝑀𝐿 . According to this comparison, 

the AB method, which is fast and relatively has low error 

values, can be preferred in the numerical solution of the FHN 

neuron. 

D. Implementation of HR Neuron Model 

The next neuron implemented is HR. Two samples, one of 

which was chaotic, were constructed with selected 

parameters and named HR-Sp. Each sample was carried out 

with the numerical methods RK4, RKN, AB, AM, and ABM. 

The burst and chaotic conditions obtained at the various 

values of the parameters are presented in Fig. 5. The error 

values of RPi implementation after synthesis are presented in 

Table IV. 

        
                                                                (a)                                                                                                                  (b)                                                            

Fig. 5.  Waveforms resulting from the implementation of the HR neuron model on RPi: (a) HR-Sp1 (Burst of 4 Spike) behavior with RK4 method; (b) HR-

Sp2 (Chaotic) behavior with AB method.

TABLE IV. THE ERROR OF THE HR NEURON MODEL BETWEEN 

MATLAB SIMULATION AND RPI IMPLEMENTATION. 

HR Model 
HR-Sp1 

(Burst of 4 Spike) 

HR-Sp2 

(Chaotic) 
Average 

RK4 

MAE 0,0347 0,0785 0,05 

NRMSE 2,9527 7,8779 4,5971 

Period [s] 13,910 -- 16,27 

RKN 

MAE 0,0787 0,0499 0,0692 

NRMSE 5,4939 4,6018 5,0564 

Period [s] 14,350 -- 16,785 

AB 

MAE 0,0815 0,0430 0,0556 

NRMSE 7,9339 3,3252 4,9339 

Period [s] 13,690 -- 16 

AM 

MAE 0,0583 0,0635 0,0588 

NRMSE 5,9089 6,4861 5,8892 

Period [s] 15,590 -- 18,345 

ABM 

MAE 0,0889 0,0422 0,0583 

NRMSE 8,9312 3,1453 5,4639 

Period [s] 15,360 -- 17,9325 
 

Considering Table IV, the largest error was obtained when 

using the AM method. The periods of the membrane potential 

waveforms of the HR neuron based on AM method are larger 

than those of the other methods. AM is a slow multi-step 

method with large error values for the implementation of the 

HR neuron. The HR neuron implementation with the lowest 

error value on the RPi was obtained with the RK4 method. It 

is also fast in solving the HR neuron. The error values of the 

numerical methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝐻𝑅 < 𝐴𝐵𝑒𝑟𝑟𝑜𝑟

𝐻𝑅 <

𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟
𝐻𝑅 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝐻𝑅 < 𝐴𝑀𝑒𝑟𝑟𝑜𝑟
𝐻𝑅 . The order of the numerical 

methods according to the speed of solving differential 

equations is 𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝐻𝑅 < 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑

𝐻𝑅 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑
𝐻𝑅 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑

𝐻𝑅 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑
𝐻𝑅 . 

According to this comparison, RK4 and AB numerical 

methods, which are relatively fast and relatively have low 

error values, can be preferred in the numerical solution of the 

HR neuron model. 

E. Implementation of IZ Neuron Model 

The last model which is implemented on the RPi is the IZ 

neuron. The parameter values of the differential equations 

that are given in (13)–(15) were obtained. Two samples were 

formed and defined by the expression IZ-Sp. Each sample 

was carried out with the numerical methods RK4, RKN, AB, 

AM, and ABM. The error between RPi implementation after 

synthesis is presented in Table V. The different membrane 

behaviors are presented in Fig. 6. 

TABLE V. THE ERROR OF THE IZ NEURON MODEL BETWEEN MATLAB SIMULATION AND RPI IMPLEMENTATION. 

IZ Model 
IZ-Sp1 

(Fast Spike) 

IZ-Sp2 

(Burst of 3 Spike) 
Average 

RK4 

MAE 1,6548 2,1416 1,8982 

NRMSE 6,8243 5,4824 6,15335 

Period [s] 5,792 34,550 20,171 

RKN 

MAE 1,7588 2,5794 2,1691 

NRMSE 6,9163 6,8508 6,88355 

Period [s] 5,894 34,860 20,377 

AB 

MAE 1,5471 3,4937 2,5204 

NRMSE 6,3682 8,1993 7,28375 

Period [s] 5,804 34,890 20,347 

AM 

MAE 1,5293 3,3799 2,4546 

NRMSE 5,1136 8,6370 6,8753 

Period [s] 6,020 35,430 20,725 
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IZ Model 
IZ-Sp1 

(Fast Spike) 

IZ-Sp2 

(Burst of 3 Spike) 
Average 

ABM 

MAE 1,3827 3,9585 2,6706 

NRMSE 5,6117 9,1965 7,4041 

Period [s] 5,982 35,300 20,641 

        
                                                                (a)                                                                                                                  (b)                                                          

Fig. 6.  Waveforms resulting from the implementation of the IZ neuron model on RPi: (a) IZ-Sp1 (Fast Spike) behavior with RK4 method; (b) IZ-Sp2 (Burst 

of 4 Spike) behavior with RKN method. 

Considering Table V, the largest error value was obtained 

when using the ABM method. The periods of the membrane 

potential waveforms of the IZ neuron obtained by the AM 

method are of great value compared to those obtained by 

other methods. AM is a slow one-step method with large error 

values for the implementation of the IZ neuron. The IZ 

neuron implementation with the lowest error on the RPi was 

obtained with the ABM method. However, it is slow in 

solving the IZ neuron. The error values of the numerical 

methods are ordered as 𝑅𝐾4𝑒𝑟𝑟𝑜𝑟
𝐼𝑍 < 𝐴𝑀𝑒𝑟𝑟𝑜𝑟

𝐼𝑍 < 𝑅𝐾𝑁𝑒𝑟𝑟𝑜𝑟
𝐼𝑍 <

𝐴𝐵𝑒𝑟𝑟𝑜𝑟
𝐼𝑍 < 𝐴𝐵𝑀𝑒𝑟𝑟𝑜𝑟

𝐼𝑍 . The order of the numerical methods 

according to the speed of solving differential equations is 

𝐴𝑀𝑠𝑝𝑒𝑒𝑑
𝐼𝑍 < 𝐴𝐵𝑀𝑠𝑝𝑒𝑒𝑑

𝐼𝑍 < 𝑅𝐾𝑁𝑠𝑝𝑒𝑒𝑑
𝐼𝑍 < 𝐴𝐵𝑠𝑝𝑒𝑒𝑑

𝐼𝑍 < 𝑅𝐾4𝑠𝑝𝑒𝑒𝑑
𝐼𝑍 . 

According to this comparison, RK4 and RKN method, 

which is relatively fast and has relatively low error values, 

can be preferred in the numerical solution of the IZ neuron. 

However, on RPi implementation, low-value distortions 

occur on the waveform as the membrane potential increases 

from its lowest value to −50 𝑚𝑉. 

V. DISCUSSION 

In this study, both the implementation of HH, ML, FHN, 

HR, and IZ neuron models and the comparison of the 

obtained results of the RK4, RKN, AB, AM, and ABM 

numerical methods on RPi was made for the first time. 

According to the results presented, the action potential 

patterns of both simulations and implementations were 

matching. It is divided into some categories for comparison 

of these numerical methods, such as achieving the dynamic 

behaviors of the neuron with these numerical methods, design 

flexibility, simulation speed, and simulation accuracy. Thus, 

in Table VI, the performance comparison of the numerical 

methods is summarized instead of the exact results. While 

(+++++) shows high performance, (+++) represents good 

performance, and (++) means average acceptability.  

To determine the performance of RPi in neuron 

implementation, various neuron dynamics behaviors such as 

regular spike, fast spike, burst, and chaotic were formed with 

different parameters. RPi was able to perform all samples 

using numerical methods RK4, RKN, AB, AM, and ABM. 

TABLE VI. A QUALITATIVE COMPARISON FOR NUMERICAL 

METHODS USED FOR IMPLEMENTATION OF NEURON ON RPI. 

 RK4 RKN AB AM ABM 

To achieve the 
dynamic behaviors 

of the neuron 

+++++ +++++ +++++ +++++ +++++ 

Design flexibility +++++ ++++ ++++ +++ ++ 

Simulation speed +++++ ++++ +++++ ++ ++ 

Simulation accuracy 
(with spike) 

+++++ ++++ +++ +++++ ++ 

Simulation accuracy 

(with burst) 
+++++ +++++ ++++ ++ +++ 

 

However, the design flexibility of numerical methods is 

different. RK4 and RKN are easy to design because they do 

not keep the previous information in memory and use the 

current information. For the AB numerical method to solve 

the differential equation, the first four terms must be known 

in advance. It gradually predicts other terms based on these 

terms, which can be determined using methods such as RK4 

or RKN. The design of the AB is relatively more difficult, as 

additional methods are used. The AM numerical method, on 

the other hand, has an algorithm that corrects previously 

known terms and creates new terms. That is, unlike the AB, 

all terms must be known beforehand. Therefore, the AM 

numerical method consists of two stages: determining the 

terms using RK4 or RKN and correcting the determined 

terms. This complicates the design of the AM method. In the 

ABM numerical method, the predictive method AB is used in 

determining the terms, and the AM method is used in the 

corrective stage. The ABM is the most difficult method to 

design, as the AB and the AM are used together. The 

difficulty of designing numerical methods directly affects the 

simulation speed. The RK4 method is the fastest as it finds 

the new term in four steps with random starting points. 

Another method that finds the new term in four steps is AB. 

Although the first four terms must be known beforehand, it is 

faster than the five-step RKN method. Step 5 had a negative 

effect on the simulation speed. AM and ABM are the slowest 

methods, where all terms need to be known beforehand.  
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TABLE VII. SCORING TABLE FOR THE PERFORMANCE OF 

NUMERICAL METHODS IN NEURON MODEL REALIZATION ON 
RPI.  

Speed (Scoring from 1 to 5) 

 HH ML FHN HR IZ Average 

RK4 4 5 4 4 5 4,4 

RKN 3 3 3 3 3 3 

AB 5 4 5 5 4 4,6 

AM 1 1 1 1 1 1 

ABM 2 2 2 2 2 2 
 

Error (Scoring from 1 to 5) 

 HH ML FHN HR IZ Average 

RK4 3 4 2 5 1 3 

RKN 4 1 3 3 2 2,6 

AB 1 2 4 4 3 2,8 

AM 5 5 5 1 4 4 

ABM 2 3 1 2 5 2,6 
 

Overall (Speed + Error (Scoring from 2 to 10)) 

 HH ML FHN HR IZ Average 

RK4 7 9 6 9 6 7,4 

RKN 7 4 6 6 5 5,6 

AB 6 6 9 9 7 7,4 

AM 6 6 6 2 5 5 

ABM 4 5 3 4 7 4,6 

 

The speed and error values of the numerical methods are 

compared. Table VII has been prepared to understand which 

numerical method gives better results in the realization of the 

neuron model on RPi. Here, scores were made between 1 and 

5, with the best result being 5 points and the worst result being 

1 point. Considering the average values, the numerical 

methods that solve the neuron models in the fastest way are 

RK4 and AB. The numerical methods that solve with the 

highest accuracy are RK4 and AM. However, it should be 

noted that while AM is best at achieving spike behavior, it is 

worst at achieving burst behavior. When speed and error are 

considered together, it is understood that RK4 and AB are the 

best numerical methods for the realization of neuron models 

on RPi, with a score of 7,4 (The order of performance here is 

as follows: 2–4 very bad, 4–5 bad, 5–7 good, 7–10 best). 

Another preferred method is RKN. AM and ABM are not 

suitable methods to realize neuron models on the RPi. 

VI. CONCLUSIONS 

Researchers have proposed various neuronal models that 

mimic neural activity for a better understanding of brain 

structure. They differ from each other by various features 

such as membrane dynamics richness, biological accuracy, 

and complexity of their expressions [1]–[7]. Different 

platforms have been developed for digital and analog 

realization of the models [8]–[16]. These platforms have the 

following disadvantages: 

1. VLSI platforms do not have the flexibility to be 

reconfigurable. The design needs to be recreated to apply 

the parameter change to the platform. In addition, with 

reduced transistor area, it becomes more sensitive to noise 

and is highly affected by changing environmental 

conditions [13].  

2. Although FPAA platforms are reconfigurable, their 

capacity is limited. For neuron model realization, multiple 

FPAA elements need to be connected in parallel. As a 

result, they become more susceptible to noise [14].  

3. In FPGA platforms, multiplier blocks, computation of 

hyperbolic functions, and propagation delays lead to high 

costs. Even if computational costs are tried to be reduced 

with various approaches, the actual dynamics of the neuron 

is distorted, and the accuracy decreases. In addition, in 

some applications, computational costs become more 

difficult due to the high use of FPGA resources [15]. 

4. Neuron models are mathematical approximations 

defined in continuous time. On FPAA and FPGA 

platforms, continuous time definitions must be converted 

to discrete time. The Euler and Runge-Kutta methods are 

preferred for their simple expressions. However, they 

produce results with a certain amount of error from the 

actual result [14]–[16]. The suitability of other methods 

such as RKN, AB, AM, and ABM to solve neuron models 

with complex dynamics such as burst and chaotic has not 

yet been determined. 

In this study, HH, ML, FHN, HR, and IZ neuron models 

are implemented with the Raspberry Pi 4 (RPi 4) 

microprocessor platform, which has a standard hardware, 

powerful processor architecture, facilitates multi-input 

operations thanks to its high RAM capacity, open source 

code, and has recently attracted the attention of researchers. 

In addition, the suitability of the RK4, RKN, AB, AM, and 

ABM mathematical methods for solving neuron models is 

compared. It has been demonstrated that RPi 4 is capable of 

realizing various neuron membrane dynamics such as spike, 

burst, and chaotic with high accuracy, without any memory 

limitation, with little effect on noise, with the solution 

methods compared. On the other hand, the RK4 and AB 

methods were found to be the most suitable for solving 

neuron models, while the ABM method was relatively 

inadequate; the AM method solved spike dynamics with high 

accuracy, while the AM method solved burst dynamics with 

high error. In light of the results obtained, the scope of the 

suitability of mathematical solution methods for neuron 

models has been expanded, and it is understood that RPi 4 is 

a new digital platform for neuron realization (the code is 

freely available for non-commercial use from: 

https://github.com/vedatburakyucedag/A-Raspberry-Pi-

Based-Hardware-Implementations-of-Various-Neuron-

Models.git). 

APPENDIX A 

In this appendix, the numerical methods RK4, RKN, AB, 

AM, and ABM are described. 

Fourth-order Runge-Kutta (RK4): 

  1 1 2 3 4

1
2 2 ,

6
i iy y h k k k k+ = + + + +  (18) 

 ( )1 , ,i ik f x y=  (19) 

 2 1, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (20) 

 3 2, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (21) 

 ( )4 3, .i ik f x h y hk= + +  (22) 

Runge-Kutta New Version (RKN): 

  1 1 2 3 5

1
2 2 ,

6
i iy y h k k k k+ = + + + +  (23) 

26
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 ( )1 , ,i ik f x y=  (24) 

 2 1, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (25) 

 3 2, ,
2 2

i i

h h
k f x y k

 
= + + 

 
 (26) 

 ( )4 3, ,i ik f x h y hk= + +  (27) 

 ( )5 1 2 3 4

3 1
, 5 32 13 ,

4 32
i ik f x h y h k k k k

 
= + + + + − 

 
 (28) 

Four-step explicit Adams-Bashforth method (AB): 

  1 1 2 3 4

1
55 59 37 9 ,

24
i iy y h k k k k+ = + − + −  (29) 

 ( )1 , ,i ik f x y=  (30) 

 ( )2 1 1, ,i ik f x y− −=  (31) 

 ( )3 2 2, ,i ik f x y− −=  (32) 

 ( )4 3 3, .i ik f x y− −=  (33) 

Three-Step Implicit Adams-Moulton Method (AM): 

  1 1 2 3 4

1
9 19 5 ,

24
i iy y h k k k k+ = + + − +  (34) 

 ( )1 1 1, ,i ik f x y+ +=  (35) 

 ( )2 , ,i ik f x y=  (36) 

 ( )3 1 1, ,i ik f x y− −=  (37) 

 ( )4 2 2, .i ik f x y− −=  (38) 

Adams-Bashforth-Moulton Method (ABM) 

As a first step, the next value is estimated using the AB 

method. This value is then corrected by the AM method. 
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