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1Abstract—Grey level intensity distribution on thermal
infrared images is estimated in this research. General Pareto
distribution describes grey level distribution better than other
considered statistics. Error of passive ranging distance
estimation based on intensity method is too large at short
distance, because grey level of imaging sensor is saturated.
Suggested modification has a great application in compensation
of the effect of sensor saturation. Experiment on real saturated
infrared sequence demonstrates that distance estimation error
of suggested approach increases around three times slower
compared to the conventional intensity based approach.

Index Terms—Infrared image sensors, image sequence
analysis, grey level intensity, intensity saturation, parameter
estimation, statistical analysis.

I. INTRODUCTION

Optical flow and stereo vision are the most common
techniques used to passively estimate distance to an object.
Both methods are relied on the geometrical principle of
triangulation. In optical flow, the baseline is created due to
the sensor motion, whereas in stereo the distance between
cameras (baseline) is fixed [1]. Number of used sensors
varies from one in optical flow method, through two for
single baseline approach, to three or more for multiple
baseline method and methods exploring the network of
passive sensors. This research is focused on scenarios where
only one passive imaging sensor is available.

A few different approaches for passive ranging using a
single image sensor are known. The methods presented in
[2] and [3] utilize size changes of a target in the image
sequence to compute distance to the target. The approach for
tracking emissive targets by a monocular passive sensor
presented in [4] is based on atmospheric oxygen absorption
in near-infrared spectrum, since research [5] utilizes spectral
attenuation of two oxygen absorption bands in the visible
and near-infrared spectrums for distance to target estimation.

In a recent research [6] two new passive ranging methods
based on intensity and contrast measurements are proposed
and compared with method based on object size
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measurement in [7]. It is shown in [6] that error of distance
estimation based on contrast method is less than that of the
produced by size changes based method. Moreover, intensity
based method produces even better results than contrast
method. Real life application of distance estimation based on
intensity measurements, using one [6] or more [8] passive
sensors, is limited by characteristics of used sensors. The
effect of sensor saturation has a significant influence on
distance estimation accuracy at relatively short distances
[6]–[9]. After extracting the target’s pixels from the
background, level of pixel intensity is bounded with
threshold from one side. Maximal pixel intensity that can be
measured causes another limit, known as sensor saturation.

Target tracking approach with two passive infrared
sensors suggested in [8] cannot be used in cases where the
distance between the sensors and the target is less than the
value determined by the maximum output power of the
sensors (saturation limit). It is well known that influence of
sensor saturation effect increases as distance from the target
to the sensor decreases. Research [9] overcomes saturation
from atmospheric propagation model estimation by it fusion
with object surface measurements and target motion
analysis.

The main goal of this research is enhancement of distance
estimation based on intensity measurements when sensor
operates in saturation conditions. Relevant literature does
not include many reports on the phenomenon of saturation
using single sensor, such that this paper is deemed to be a
modest contribution to the important field of passive
ranging.

Since the distance estimation is based on target’s intensity
measurements, it is essential to determine intensity in both
cases, normal conditions and sensors saturation. The first
case is solved in [6], and this research addresses the second,
more complicated case. It is expected that the mean target’s
intensity in the saturation can be estimated more correctly
with suggested method based on object’s statistics
knowledge and relevant measurements in saturation than by
conventional methods based on measurements.

Another important topic this research is deal with, is to
find distribution fitting the target’s statistic the best, and
estimate their parameters in saturation. Using the Quantile-
Quantile (QQ) plots of the real infrared video sequence of a
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target, which is moving smoothly toward the sensor, the
same statistical distribution of the target’s pixels is verified
before sensor saturation occurred. Eight commonly used
statistical distributions are considered. Coefficient of linear
correlation between real data quantiles and appropriate
theoretical distribution quantiles on the QQ-plot is used as
quality criterion for distribution fitting, and it is found that
General Pareto (GP) distribution satisfied established
criterion with the highest rank.

The GP distribution parameters can be determined by
various methods [10], [11]. This research suggests a
procedure for the estimation of GP distribution parameters,
and an estimation of the average of the target’s grey level in
saturation. It is shown that, relying on target statistics in
normal operation conditions and relevant measurements in
saturation, significant improvement of distance estimation
can be achieved. The quality of suggested method is tested
on real infrared sequence, and a relative error of distance
estimation in saturation is up to ten percent smaller than
error of standard intensity approach.

The rest of paper is organized as follows. Section II
describes the posed problem. Section III is dedicated to the
QQ-plot analysis of the intensities of the target’s pixels on a
real infrared video sequence. Section IV deals with the
choice of distribution fitting target statistics. The procedure
for the estimation of GP distribution parameters; estimation
of the average of the target’s grey level in saturation and
their verification through the experiment on real infrared
sequence are described in Section V.

II. SENSOR SATURATION PROBLEM

The application of intensity based method on the real
infrared sequence is studied. The sequence is recorded using
the Dual Observer Passive Ranging System (DOPRS) that is
designed for tracking a single airborne target. The system
utilizes two thermal cameras and calculates distance by
triangulation method.

In this research, sequence from one camera is used, while
the distance obtained from the DOPRS is used as the
reference distance in analysis and comparison of results. The
reference distance to the target in the analysed image
sequence is determined with an absolute error of less than
five meters. Figure 1(a) shows the first, Fig. 1(c) the 150th

and Fig. 1(e) the 350th frames of the analysed infrared
sequence. Scene intensity in infrared image is represented on
grayscale image among the 256 levels of grey. Target in
Fig. 1(e) has a significant amount of white pixels, indicating
the saturation of the sensor.

The original approach suggested in [6] does not produce
acceptable distance estimation when target is close to the
sensor as a consequence of target intensity saturation.
Probability of the target pixels intensity in the ith frame is
defined as
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where 1,2,...,i N , G(i) denotes histogram of the target’s

pixels intensity at the ith frame over the 256 bins and N is
the total number of frames in the sequence. The threshold-
for the detection and segmentation of the object in all frames
is determined by the method of Tsai [12]. The results of
detection and segmentation in first, 150th and 350th frames
are shown in Fig. 1(b), Fig. 1(d) and Fig. 1(f), respectively.

a) b)

c) d)

e) f)
Fig. 1. Target in: a) the first, c) the 150th and e) the 350th frames in IR
sequence. Target after detection and segmentation in: b) the first, d) the
150th and f) the 350th frames.

Fig. 2. Probability (1)p of the target pixels intensity of the first frame.

Figure 2 shows probability of target pixel intensity (1) as
a function of the intensity level in the first frame of the
analysed sequence. It may be noted that the vector p(1) is
equal to zero when the pixel intensity is less than 69, which
is the threshold value for the current frame ((1) = 69).
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Figure 3 presents the results of the applying (1) on the 350th

frame. In addition to p(350) values are zero when pixel
intensity is less than 136 ((350) = 136), a high value of
probability can be noted at the upper limit of the range, as a
result of saturation of the sensor.
The result of applying (1) to the whole sequence of images is
a probability matrix

(1) (2) ( 1) ( ), ,..., , ,T T T T
N N   TP p p p p (2)

which means that the matrix PT size is 256  N. The matrix
PT is illustrated in Fig. 4, and it can be noted that threshold
parameter increases from the first frame ((1) = 69) to the
350th frame ((350) = 136), and high probabilities in matrix PT

(bright pixels in Fig. 4) move from the lower limit of the
range (Fig. 2) to the upper limit of the range (Fig. 3).
Saturation becomes dominant after the 300th frame, meaning
that intensity of more than 20 percent of the target’s pixel
(white color on p(i) = 255) is measured as upper sensor limit.

Fig. 3. Probability (350)p of the target pixels intensity of the 350th frame.

Fig. 4. Probability matrix PT of the target pixels intensity in the sequence.

III. QQ-PLOT SEQUENCE ANALYSIS

It is assumed that the mean target’s intensity in the
saturation can be estimated on the basis of object’s statistics.
As one target is in the sequence, it is expected that its
intensity has the same distribution function in the entire
sequence, since the parameters of this distribution can
change from frame to frame. 199 QQ-plots from analysed IR
sequence of the target pixels intensities from the frame (i)

versus intensities from the frame (i-1) are shown in Fig. 5,
where i takes values from 2 to 200. The short review of the
QQ-plot technique is presented in [13].

It can be seen that most of the quantiles are close to the
straight line of constant slope (45) throwing the coordinate
origin, indicating the same distribution of target intensity
over the sequence [13]. Deviations from this line imply that
the distribution parameters are changing with time of
sequence, as expected with regard to the target’s intensity
levels shown in Fig. 4.

IV. TARGET’S INTENSITY DISTRIBUTION CONSIDERATION

It is assumed that the distribution of the intensity levels of
the target can be described using one of the following
distributions:
 Weibull distribution;
 Birnbaum-Saunders (BS) distribution;
 Gaussian distribution;
 Gamma distribution;
 Nakagami distribution;
 Lognormal distribution;
 Inverse Gaussian distribution;
 General Pareto (GP) distribution [10], [11].

Fig. 5. QQ-plots of the target pixels intensities through the whole IR
sequence, {1,2,..., 200}i .

The real data are fitted on the above distributions using
maximum likelihood method, and as a result two parameters,
describing appropriate distribution, are obtained for each
sequence frame. With the aim of selecting which of the
distributions best fits the real data, the following procedure
is performed:

- QQ-plots of the analysed theoretical distribution against
the real data is done, for first N=200 frames in the video
sequence.

- Linear correlation coefficients ri (i = 1,2,...,N) of points
in QQ-plot are calculated, for all N = 200 frames.

- Mean value – 1:Nr of all N = 200 linear correlation
coefficients for analysed distributions is calculated.

Results of analyses are presented in Table I.
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TABLE I. DISTRIBUTION FITTING RESULTS.

Distribution 1:Nr Rank
Weibull 0.95177 8

Birnbaum-Saunders (BS) 0.97580 2
Gaussian 0.95205 7
gamma 0.97261 5

Nakagami 0.96645 6
lognormal 0.97485 4

inverse Gaussian 0.97579 3
general Pareto (GP) 0.99371 1

On the basis of the given results it can be concluded that
GP distribution the most closely describes the target’s
intensity for established criterion: mean value of linear
correlation coefficients for analysed two hundred frames is
the largest: 1: 0.9937Nr  . As an example, Fig. 6 and Fig. 7.
show a QQ-plots of real data quantiles from one frame
versus theoretically quantiles of GP (the first ranked) and BS
(the second ranked) distributions, respectively, where
straight lines represent a perfect match to distributions. The
QQ-plot in Fig. 6 approximately matches the straight line,
while in Fig. 7 deviations from the line are significant, which
is an additional confirmation of the correctness of the
distribution function choice.

Fig. 6. The QQ-plot of the GPD theoretical quantiles versus real data
quantiles.

Fig. 7. The QQ-plot of the BS distribution theoretical quantiles versus real
data quantiles.

V. EXPERIMENTAL RESULTS

Having previously established that the distribution of
target’s pixel intensity has a GP distribution, the distance to
the target in saturation will indirectly be estimated on the
basis of estimations of the shape parameter k and scale

parameter  of the GP distribution (Appendix A), and the
measured values of the threshold . It is assumed that the
sensor saturation occurs when more than 20 % of the target’s
pixels have a maximum pixel intensity level, which in the
analysed sequence occurs after 289 frames. The GP
distribution parameters k and  can be determined by
various methods [10], [11], depending on their range. The
ranges of estimated parameters are:   [ 1.4, 0.06]k    ,

  [31, 180]  and   [68, 139]  . Since the relevant
literature utilizes two different notations for the cumulative
general Pareto distribution (GPD) function (sign of the shape
parameter), notation used through this research is given in
the Appendix A.

In [6] to estimate the distance to the target, average of the
target’s grey level (intensity) is used. In order to preserve
information about the intensity mean it is more convenient to
use the method of moments (MOM) instead of the maximum
likelihood method to estimate parameters of the GP
distribution. Figure 8 shows estimation of shape parameter
k̂ to the frame when sensor enters the saturation (grey
circles). Parameter k̂ data are fitted as a linear polynomial
function based on estimations before the sensor saturation
arises, and as a result, prediction ˆPk is obtained (full line),
with the determination coefficient 2

ˆ 0.79
k

r  .

Estimations of scale parameter ̂ before sensor saturation
are shown with grey circles in Fig. 9. Parameter ̂ data are
fitted as a quadratic polynomial function based on
estimations before the saturation occurred, and prediction
ˆ P of scale parameter is obtained as a result (full line), with

the determination coefficient 2
ˆ 0.96r  .

According to [6], the distance to the target in thi frame is

( 1)
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where D(i) and D(i-1) are distances from the object to the
sensor, and I(i) and I(i-1) are the average grey levels of the
object on two successive frames. Initial range D(1) and a
reliable estimate of extinction coefficient ς are required. For
this experiment, coefficient ς is estimated on the test
sequence preceding the analysed, as suggested in [6], while
initial distance D(1) is taken from DOPRS. Intensity of the
target is presented in Fig 10. Grey line denotes intensity
measured directly from the sequence denoted with x , while
black line identifies intensity estimation based on target
statistics (Appendix A)
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where isat represents ordinal number of the frame at the time
when saturation is detected.

It can be noted that before the saturation occurred,
estimated intensity Î had a good fit to the measured intensity
x , since the estimation of Î is performed on the basis of
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mean and variance of a real signal. In saturation Î and x
diverge, as expected. Distances to the target in the analysed
sequence are calculated based on (3) and intensities Î and x ,
and results with a true distance from DOPRS are shown in
Fig. 11. Distance D(1) from the DOPRS is used for
initialization of (3) in both calculations.

Fig. 8. Shape parameter of the GP target distribution, k̂ -MOM estimated

values, ˆPk -prediction in saturation conditions.

Fig. 9. Scale parameter  of the GP target distribution, ̂ - MOM

estimated values, ˆ P - prediction in saturation conditions.

Fig. 10. Intensity of the target: grey line – direct measurements from the
sequence; black line – calculated values based on GP estimated shape and
scale parameters, and determined threshold.

Relative errors of distance estimation obtained by original

approach [6] and suggested modification are shown in
Fig. 12. Significant improvement of distance estimation is
clearly observable in saturated region (right side in Fig. 12.).
Distance estimation error of GP based approach increases
around three times slower compared to the conventional
intensity based approach. This confirms the assumption that
the distance to the target in the saturation can be estimated
more accurately based on determined object’s statistics and
relevant measurements in saturation than by conventional
method [6] based on raw measurements.

Fig. 11. True and estimated distances.

Fig. 12. Relative errors of distances estimations in the sequence.

VI. CONCLUSIONS

In authors’ recent research [6], two new passive ranging
methods based on intensity and contrast measurements are
proposed and compared with the method based on object
size measurements. It is shown that error of distance
estimation based on contrast method is less than that of the
produced by the size changes based method. Moreover,
intensity based method produces even better results than
contrast method. Error of passive ranging distance
estimation based on intensity method is unacceptably large
at short distances, since grey level of acquisition sensor is
saturated.

This research suggests the extension of the intensity
method for passive ranging using a single camera operating
in normal and saturation conditions, enabling the
significantly better distance estimation at short ranges.
Estimation of the target’s mean value of grey level in non-
ideal conditions (sensor saturation) is based both on
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evaluation of object statistics and image measurements,
instead of using the only image measurements in standard
intensity based approaches. It is found that general Pareto
distribution is fitting real target intensity best, compared to
other distributions analysed in the paper. A simple algorithm
for GP parameters estimation and prediction is suggested
and experimentally confirmed.

Experiment on real saturated infrared sequence verifies
that a relative error of distance estimation is up to ten
percent smaller and increases around three times slower
compared to error of the conventional intensity based
approach. Although the distance estimation error increases
with intensity saturation time, the new approach enables
additional time for target tracking, depending on its speed
and size as well as of used image sensor characteristics.

APPENDIX A
Let X be a random variable. The cumulative GPD

function with location, shape, and scale parameters
( )   , ( )k k  and ( 0)   , respectively, is defined

as

1
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    
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where 0k  and probability density function for the three
parameters generalized Pareto distribution is

1
1( | , , ) 1 .
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In applications when threshold parameter  is known, its
subtraction from signal X allows the use of two parameters
GPD ( 0  ), then (5) becomes
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where 0k  and (6) transforms to
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The mean value and the variance of GPD( ,k  ) have the
following expressions

( ) ,
1

E X
k





(9)

where 1k  .

2

2( ) ,
(1 ) (1 2 )

Var X
k k



 

(10)

where 0.5k  , while the mean value of three parameters
GPD( , ,k  ) is
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where 1k  . The time-honoured and direct MOM is widely
used for estimating the parameters of the two-parameters GP
distribution [10]. The MOM estimates of parameters k and
 are obtained from expressions for the mean (9) and the
variance (10), as follows:
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provided 0.5k  , where x and 2s stand for the sample
mean and the sample variance, respectively [10].
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