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Abstract—The Hopfield neural network is suggested for 

dynamic multicast routing in communication network of 

arbitrary topology and under variable traffic conditions. A new 

algorithm takes into account not only the most important 

parameters describing the actual network state (the network 

topology, link and router bandwidths, estimated link delays, 

and the traffic density), but also the history of link/router 

occupancy. The goal of the paper is to find the Pareto optimal 

path for multicast routing case and to avoid possible packets 

loss, due to heavy traffic. The effectiveness of the new routing 

algorithm has been verified under various network topologies 

and traffic conditions.  

 
Index Terms—Dynamic routing, multicast, Steiner tree 

problem, Hopfield neural network.  

I. INTRODUCTION 

Standard communication in computer networking 

comprises the transmission of data from one source (S) to 

single destination (D), which is known as the unicast (i.e., 

point-to-point or S-D pair) transmission. New services for 

entertainment and commercial applications (video-on-

demand, video games, telemedicine, videoconference, triple 

play services, distance learning, multiservice networks, 

distributed databases, etc.) are based on multicasting, when 

one source sends the same content to a group of m 

destinations, (point-to-multipoint transmission or 1S-mD, 

m>1, case) [1]–[5]. Consequently, corresponding routing 

algorithms are known as the unicast or multicast routing. 

Historically, the routing algorithms have evolved from static 

routing, in which “good routes” are computed off-line, to 

more sophisticated dynamic routing, in which the routes are 

computed online, taking the actual traffic conditions into 

account [6], which is very important for ensuring the quality 

of service in IP networks [4], [5].  

Most frequently, routing algorithms are based on the 

shortest path (SP) problem. In the simplest way, the physical 

path length (distances) may be considered, as used in classic 

optimization problem known as the traveling salesman 

problem (TSP). But, similarly as in road traffic, in 
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telecommunications the shortest path is not always the 

optimal solution. Some other measures may be considered 

when determining optimal solution in routing. For instance, 

the number of hops between source and destination node [7], 

the mean transmission delay [8], [9], commercial cost, link 

and/or node bandwidth, average traffic density, the input 

buffer occupancy, etc., [1], [3].   

The problem of finding the shortest path from a single 

source to a single destination has some well-known 

polynomial algorithmic solutions, such as Dijkstra’s [6] and 

Bellman-Ford’s [6], but the problem is computationally very 

hard, particularly in large-scale networks and constrained 

problems. In their well-known paper Hopfield and Tank [10] 

introduced an analog neural network (known as the HNN) 

suitable for solving different constrained and 

computationally hard optimization problems – among others 

the well-known TSP problem. Note that in real 

communication networks, due to particular limitations 

dictated by technological and/or commercial requirements, 

some parameters affecting the routing path are fixed. In this 

case, instead of standard optimization method more 

appropriate is to use Pareto optimization [11]. Moreover, in 

multicast routing, instead of the shortest path, the minimum 

Steiner tree (MST) problem [6] should be resolved for the 

given network. 

In this paper the dynamic multicast routing algorithm, 

which takes into account many different parameters 

describing actual state within the network, such as the 

network topology (including its possible changes), node and 

link bandwidth, traffic dynamics, and link delays, is 

considered. The new algorithm uses Hopfield-like neural 

network for optimizing, in Pareto sense, the cost of the total 

Steiner tree [6], and minimizing the total cost whit regard to 

different network parameters.   

II. HOPFIELD NEURAL NETWORK IN ROUTING 

The first step in the Hopfield approach to the optimization 

problem is to formulate an appropriate energy function E 

which depends on the outputs v={vi} of nonlinear devices 

(cells, or neurons in NN terminology) driven by voltages 
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u={ui}, and synaptic weights Tij. Synaptic weights connect 

neurons and enable collective functioning of the network. 

Indices i and j relate to neurons. The energy function is 

composed by two parts: a term that needs to be minimized 

leading to the optimization of the energy function, and some 

penalty terms (constraints). The role of penalty terms is to 

increase the value of energy function if any of the problem 

constraints is not satisfied. From the energy function the 

dynamical equations describing the network state are derived 

as vu ∂−∂= // Edtd  from which follows that the steady-

state response (u={ui}=const) corresponds to the minimum 

of the network energy. Significant advantage of Hopfield 

approach is that the neural network can be realized by 

standard electronic components: amplifiers, resistors and 

capacitors. Due to intrinsic parallel work of neural network, 

hardware realization of HNN is capable to find near optimal 

solution of the TSP problem in a very short time [10].  

Optimal routing in communication network may be 

considered as the SP problem and can be resolved by HNN. 

For this purpose instead of physical distances, dij, between 

nodes i and j, some other attributes called the link costs, Cij, 

are associated to links, describing the transmission 

conditions between nodes [12]. The goal is to minimize the 

total cost, C
tot

 

 C
tot

=CSi + Cij + Cjk + ... + CrD ,            (1) 

i.e., to find the “minimal-length path” between the source 

and destination node going through internodes i, j, k, …, r. 

The use of HNN in finding the shortest path between a given 

S-D pair in communication network with n nodes was 

described in several papers. Rauch and Winarske [13] 

proposed a HNN of size n×m, where m<n denotes the 

number of nodes forming the path. The serious limitation in 

their representation is that it requires fixed and a prior 

known number of nodes, m, in the shortest path. This 

drawback was corrected in [14], but for fixed S-D pair. For 

another S-D pair, the neural configuration has to be changed, 

which is hardly impractical. Furthermore, the cost terms in 

the energy function, which correspond to synaptic 

conductances, are quadratic. Consequently, such a solution 

is not appropriate for a real case because, in practice, the 

link conditions (costs) are time varying and, thus, the 

conductances in corresponding neural network have to be 

changed, too. 

Significant improvements in routing using HNN are 

suggested by Ali and Kamoun [12]. For communication 

network with n nodes their computational network uses n(n-

1) neurons – the diagonal elements in the connection matrix 

n×n are removed. The squared matrix corresponds to 

neurons into the HNN, with locations (x,i) relating to rows 

and columns, respectively. 

For solving routing problem Ali and Kamoun proposed 

the energy function of the form 

2

31 2
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µµ
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where terms Cxi denote the link costs from node x to node i, 

the terms ρxi describe physical connection between nodes 

(the value of ρxi is set to 1 if nodes are not connected, and 0 

for connected nodes), while vxi are neurons’ outputs. 

Coefficients µk, k=1,…,5, control the influence of particular 

terms on the energy function. The term associated with µ1 

minimizes the total cost of the route S-D, while other terms 

relate to constraints: µ2 prevents the inclusion of nonexisting 

links into the solution; µ3 determines valid paths, µ4 forces 

the state of the neural network to converge to one of the 

stable states – corners of the hypercube defined by 

vxi∈{0,1}. The state vxi is close to 1 for node belonging to 

the valid path otherwise the state is close to 0. The term 

associated to µ5 is introduced to ensure the source and the 

destination nodes belong to the valid solution (i.e., to the 

shortest S-D path). 

The main contribution in Ali-Kamoun’s paper [12] is that 

synaptic conductances in HNN are constant, given by  

 ijxyiyjxijxy

AK

yx ji
T δδµδδδδµ 43, )( +−−+−= ,         (3) 

where δij are the Kronecker delta, having values of δii=1 and 

δij=0 (i≠j), while the link costs and the information about the 

connection between nodes are associated to bias currents 
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2 2
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 (4) 

In this way their SP algorithm becomes very attractive for 

real time processing, because bias currents may be easily on-

line controlled. Ali and Kamoun [12] successfully applied 

this algorithm to the minimum delay routing problem in 

computer networks under different network topologies and 

link costs. Several modifications and improvements of their 

approach have been introduced by Park and Choi [15], for 

the multicast routing problem. However, as noticed in [16], 

despite the improvements their method still has several 

drawbacks, for instance, multiple convergence points and 

poorer behavior with increasing number of graph nodes. 

III. THE NEW ALGORITHM FOR MULTICAST ROUTING BY 

NEURAL NETWORK 

A. Dynamic Unicast Routing by Neural Network 

For better understanding the new algorithm for dynamic 

multicast routing we will describe, first, similar algorithm 

applied to unicast routing. In [17] we suggested the 

following energy function  
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where the first term, E
AK

 corresponds to that of the Ali and 

Kamoun’s, given by (2), while the new terms are introduced 

for avoiding the packet loss due to heavy and highly variable 

traffic.  

The term with µ6 relates to the traffic conditions. Each 

link x-i is characterized by its capacity, Kxi, meaning by 

maximal data flow – the maximal number of data units per 

second (i.e., the bandwidth). On the other hand, each link 

has the actual data flow in particular direction, i.e., the 

traffic density, Gxi, expressed also in terms of data units per 

second. For reliable traffic the condition Kxi ≥ Gxi must be 

satisfied, otherwise packets exceeding the input buffer will 

be lost. For avoiding this effect we introduce the difference 

(Kxi−Gxi), which represents the link capacity margin 

 Mxi = (Kxi − Gxi), (6) 

i.e., the free space in link capacity. The routing policy has 

to find a path with enough free space in link capacity (high 

value of Mxi). If Gxi approaches to Kxi this link may be 

overloaded and thus the HNN should distimulate this link to 

be included into the final path. For that reason the term 

(1−Mxi) is used in the energy function (5).  

Next parameters characterizing the links are their delays, 

τxi. The term associated with µ7 is introduced to minimize 

total delivery time of packets on the final path, for a given S-

D pair. By minimizing this term an overall throughput in the 

network is increased and thus the network efficiency as well. 

The last parameter in the energy function (5), which is 

controlled by µ8, we are calling as the statistics of link 

occupancy. Corresponding parameter, Sxi, depends on the 

history of links occupancy in previously determined routes. 

Our assumption is that if some of the links are frequently 

used in past the probability of its overload in future 

increases. Data describing the link occupancy are recorded 

and parameters Sxi are calculated in inverse sense regarding 

to occupancy: greater occupancy - smaller Sxi (approaching 

to zero), while rarely used links have Sxi close to unity. By 

using terms (1−Sxi) in energy function (5) frequently used 

links are distimulated to be included in the final path, in 

order to avoid the possible packet loss.  

Except the optimization process for finding the final route 

under different conditions, as described above, we can apply 

even some crisp logic determining permitted paths under 

additional constraints, as follows. This crisp logic relates to 

the node connectivity matrix ρρρρ={ρxi} associated to the 

constant µ2 in (2). As noted before terms ρxi describe 

network topology having values ρxi=1 or ρxi=0 (for non-

existing and existing links, respectively). But, we can 

assume even some virtual node connectivity in order to 

avoid possible packet loss due to heavy and changeable 

traffic. For instance, if in some time periods the traffic 

density exceeds the node capacity, i.e., if Mxi≤0, the term ρxi 

will be temporarily set to ρxi=1, irrespectively of the physical 

node connection. Furthermore, we can consider the maximal 

allowed link delay, τmax. Such a parameter may be important 

in some cases, for instance, for real-time video streaming 

with guaranteed QoS. If the transmission time (delay) τxi 

through some particular link exceeds τmax this link may be 

temporarily excluded form the path by setting ρxi=1. Finally, 

if it is necessary to hardly exclude the link x-i from the final 

path, network administrator can externally set the value 

Sxi=0, producing ρxi=1. The described crisp logic can be 

expressed by 

 max1, if 0 0,

as initially, otherwise.

xi xi xi
xi

M Sτ τ
ρ

 ≤ ≥ =
= 


    (7) 

After forming the energy function, the bias current in our 

algorithm is defined as: 
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or, more precisely 
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By embedding (5)–(9) into the network state equations the 

following expression, suitable for computer simulation, is 

suggested in [17] 
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(10)

 

The term iii CR=τ  in (10) denotes the cell’s time constant 

which provides the network dynamics. 

B. Dynamic Multicast Routing by Neural Network 

The NN algorithm described by (5)–(10) was successfully 

applied to unicast routing in large networks under different 

traffic conditions [17], [18]. In multicast routing the goal is 

to optimize m paths from the source node S to the set of 

destination nodes: D
m 

={D
1
,D

2
,…,D

m
}. In general, paths S-

D
1
, S-D

2
, ..., S-D

m
 are not independent (several paths may 

share the same links). For the given destination D
m 

it is 

necessary to find relations between partial S-D solutions, S-

D
1
, S-D

2
, ..., S-D

m
. First, instead of the unique terms vxi, 

describing output voltages of neurons, we will observe 
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voltages 
m
xiv  corresponding to links belonging to the 

multicast tree from S to D
m
. Furthermore, the new term 

(function) )(vf m

xi , describing the influence of other routes to 

particular path  S-D
j
, j=1,2,...,n, j≠m, has to be used [19] 

 .,
1

1
)( mj

v
vf

j

j

xi

m

xi ≠
+

=
∑

 (11) 

From the new term )(vf m

xi  outputs of the neurons from 

different routes, belonging to the same links in the network, 

try to cooperate to minimize the overall cost associated to 

the constant µ1. In this way, every link that is a part of 

individual paths S-D
1
, S-D

2
, ..., S-D

m
, will be stimulated to 

be included in the final route [19]. Here, we will extend the 

use of this function to minimize additional terms in (5) 

controlled by constants µ6 to µ8.  

The partial energy function corresponding to the S-D
m
 

pair now reads 
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while the overall energy function for the set of all multicast 

routes is given as the sum of partial energy functions 

 .∑=
m

mEE  (13) 

The dynamics of ith neuron now becomes 
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where, for simplicity, we denote the constant KMDS as 
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IV. SIMULATION MODEL AND RESULTS 

By using the algorithm described in previous section we 

derived the simulation model. For n-node network we started 

by initial square matrices n×n describing the link costs 

C={Cij}, network topology ρ ρ ρ ρ={ρij}, and other terms 

introduced in (5-11):  ΚΚΚΚ={Kij}, G={Gij}, T={τij}, and 

S={Sij}. Initially, the matrix ρρρρ was defined according to the 

node connectivity. Parameters in matrices G, T, and S are 

updated dynamically every time when the new route is 

established and may change the terms in matrix ρρρρ according 

to (7). In all simulations we considered the possibility of 

nonsymmetrical link costs and other parameters, i.e., the 

case Cij≠Cji, Kxi≠Kix, Gxi≠Gix, τxi≠τxi, and Sxi≠Six is assumed. 

Identical neuron cells, with τi=τ=1 and the same sigmoid 

transfer function, are used. As usual in NN simulations, 

neurons are initially excited randomly with small input 

voltages close to 0.5. Constants µ1-8, which control the 

impact of particular term on the energy function, are 

determined by following suggestions given in [12], [15]–

[18]. Starting from defined intervals for constants µi in [10], 

[12], we first analyzed stability of energy function for µ1-µ5, 

considering only one input, link costs C. We used suggested 

value for these constants as in [17], [18] and refined them 

empirically. We also used network topology and parameters, 

and final solution based on Dijkstra’s algorithm in [15], to 

additionally modifies constants values. Based on it, we 

iteratively changed constants values until we get final 

shortest route, as Dijsktra’s algorithm found. After that, we 

have included matrices K, G, τ and S, whit their neutral 

values, and again modify all constants µi in order to find 

previously defined shortest path. In our network we used the 

following values µ2=2500, µ3=3500, µ4=480, µ5=3000, for 

constants controlling the constraints, while remaining 

constants, controlling the minimization part of the energy 

function take the values µ1=1500, µ6=1200, µ7=1000, 

µ8=1800. Note that if these constants are equal-valued 

(µ1=µ6=µ7=µ8) all terms will have the same influence on the 

minimization of energy function. Using smaller value 

corresponding term will be stimulated and vice versa. We 

found system is stable if these constants are within the limits 

[600, 2000].  

When we tested our algorithm we started with the unicast 

case. By intensive simulations over a large number of 

randomly chosen different networks (meaning, different 

number of nodes, different node connections, and different 

values of parameters describing other network conditions), 

and for randomly chosen S-D pairs, we found that energy 

function converges very fast to stable state. As an 

illustration, in Fig. 1 depicts the typical plot of energy 

function vs. the number of iterations, k, for 20-node network 

and unicast routing. The saturation of energy function is 

obtained after less than 100 iterations. 

After the unicast case we tested our algorithm to multicast 

case. We analyzed randomly chosen network topologies 

with different number of routers (up to n = 90) and randomly 

loaded matrices C, K, G, T, and S. As a reference, in Fig. 2 

the mean and standard deviation of iterations before 

saturation is depicted for the case 1S-3D: nodes are 

randomly chosen and randomly repeated 5 times.  

It is evident that our algorithm still converges very fast. In 

the worst case of non-realistic (90-node) network the 

maximal number of iterations was less than 1400 (800 in 
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average), while for reasonable sized network (up to 40 

nodes) the maximal number of iterations does not  exceed 

650. The efficiency of our algorithm was compared with 

already published algorithms for multicast routing. In their 

paper [15] Park and Choi analyzed the network as in Fig. 3 

with 20 nodes and 45 bidirectional links described by their 

normalized costs. The 1S-3D case is assumed: the source 

router is S=2 and destinations are D
3 

={9,15,20}. Park and 

Choi considered only the link cost minimization and 

compared their results with those after applying Dijkstra’s 

SP,  Kruskal's MTS, and Ali-Kamoun's [15]. Their results 

are presented in Table I – first four rows. In our algorithm, 

when minimizing only the link costs (expressed by matrix C) 

the entries in matrices K, T and S, are chosen to be neutral, 

with values of 0.5, while the matrix G is filled by zeros. In 

this case our algorithm found as optimal the routes depicted 

in Fig. 4. Determined routes are exactly the same as obtained 

by closed-form Dijkstra’s SP algorithm and the NN 

algorithm by Park and Choi [15]. Corresponding costs of 

partial routes are listed in the last row of Table I. Note that 

Park and Choi presented route costs in the form 2→9, 9→15 

and 15→20 (left side of columns in Table I). We calculated 

and presented also the costs of routes from the source (node 

2) to individual destinations (9, 15, 20) – right side of 

columns in Table I. 

0 
1000000 
2000000 
3000000 
4000000 
5000000 
6000000 
7000000 
8000000 
9000000 

1 13 25 37 49 61 73 85 97 109 121 133 145 

Value of energy function

Number of iterations

 
Fig. 1.  Typical plot of energy function vs. the number of iterations for 

unicast routing in 20-node network. 

 
Fig. 2.  Mean and standard deviation of iterations before the saturation of 

energy function, for the new algorithm for multicast routing in different 

sized networks. The case 1S-3D is presented. 
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Fig. 3.  20-nodes network, as in [15], used as a test bed. 1S-3D case is 

assumed. Numbers associated to links represent normalized link costs ×10-

4. 

 
Fig. 4.  Optimal multicast route for 1S-3D case (2→{9,15,20}), obtained 

by our algorithm when based only on the link costs. 

TABLE I. COMPARISON OF ALGORITHM EFFICIENCY EXPRESSED BY TOTAL 

LINK COSTS (×10-4) THROUGH DETERMINED ROUTES*.  

Algorithm Connection 

 2→→→→9 
9→→→→15/2→→→→1

5 
15→→→→20/2→→→→20 

Dijkstra 1098 1475/1235 671/1050 

Kruskal MST 1284 1475/1421 671/1236 

Ali - Kamoun 1946 2385/4331 1011/3646 

Park - Choi 1098 1475/1235 671/1050 

Our  algorithm 1098 1475/1235 671/1050 

Note: * Park and Choi considered link costs 2→9, 9→15 and 15→20. 

Additionally, we presented link costs 2→15 and 2→20. 

 

The possibility to find an optimal route is a main 

descriptor of the routing algorithm quality. The second 

descriptor is the execution time (processing speed). We 

compared our algorithm with other algorithms analyzed in 

[15] in terms of the number of iterations before saturation. 

The number of iterations for Ali-Kamoun's, Park-Choi's and 

our algorithm for routes S:2-D:9, S:9-D:15 and S:15-D:20  

are approximately (7000, 3500, 140), (15000, 8000, 185) 

and (6500, 2000, 120) respectively. Our method was 

significantly faster than Ali-Kamoun’s and Park-Choi’s 

methods. In our approach, even for more than 50 randomly 

chosen 1S-3D routing in 20 node network, the average 

number of iterations was less than 200.  

The execution time is compared also with results recently 

presented in Araujo et al. [16]. They analyzed 40-node 

network and random S-D pairs in unicast routing, and 

compared their results with those of Park and Choi. 

Comparative results are listed in Table II. 

TABLE II. NUMBER OF ITERATIONS BEFORE SATURATION FOR 40-NODE 

NETWORK AND UNICAST ROUTING. 

 

Except the shortest path(s) determination, our algorithm 

successfully responded to dynamic network conditions 

(described by link capacity margins, Mxi=(Kxi−Gxi), and 

statistics of network occupancy, Sxi), and avoided links with 

large delays – according to new terms in energy function (5) 

and (11). Since similar results are not reported yet in 

literature we will present in Fig. 5 only some characteristic 

examples, describing the capability of our method. As a 

reference, the routes when assuming only link costs (as in 

Fig. 4) are depicted as thin solid lines. First, we included 

node bandwidths by randomly loaded matrix K with 
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Number of iteration 7489 1628 480 

n 
0

100

200

300

400

500

600

700

800

5 10 15 20 30 40 50 60 70 80 90 n 

96



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013 

elements within the range [0.45, 1.0]. One solution was 

drawn by wide solid lines in Fig. 5-a. By inspecting the 

matrix K we found the bottleneck was the link 13-12 

(belonging to previous routes to destinations 15 and 20), 

having now the value K13,12=0.46 and thus the algorithm 

avoided this bottleneck finding alternative routes. 

Next example includes the traffic density, by matrix G, 

also randomly loaded with values within [0, 0.8]. One 

solution was drawn by dotted lines in Fig. 5(a). Now for 

links 3-7 and 13-20 the link capacity margins Mxi=(Kxi−Gxi) 

become negative and, according to constraint (7) these links 

are hardly excluded. 

   
                               (a)                                                (b) 

Fig. 5.  Multicast routes 2→{9,15,20} under different network conditions: 

(a) Based on matrices C and K (wide solid lines) and on matrices  C, K 

and G (dotted lines); (b) Based on matrices C, K, G and hardly excluded 

links 12-16 and 11-15 (dots) and with addition of time delay matrix T 

(dash). 

In Fig. 5(b) by dot lines are drawn routes with fixed 

matrices C, K and G as previous when links 12-16 and 11-

15 are hardly excluded, while by dash line are drawn routes 

when delay matrix T is included, with the constraint 

τmax=0.45. The main difference now is in the route 2→9. In 

previous route 2-3-7-10-9 the total delay was 1.101 while 

the new route 2-1-4-8-9 has the delay 0.875. 

V. CONCLUSIONS 

The paper considers the dynamic multicast routing in 

large communication networks. A new algorithm based on 

Hopfield neural network has been proposed. It takes into 

account parameters relevant for such a complex problem. 

Taking into consideration different network topologies, 

including the changeable topology due to unpredictable 

user’s connection to a multicast group, an overall cost 

function is defined. The HNN energy function is derived to 

include different parameters such as link distances (costs), 

bandwidth, estimated link delays, link density and maximal 

allowed link delays. We introduced also the link occupancy 

statistics because it is expected that, if some links are used 

frequently, this link may be overloaded and packets will be 

lost. By minimizing the energy function Pareto optimal paths 

have been found. 

The simulation results are equal and even better to similar 

ones, presented in available literature. Moreover, our 

method is significantly faster than others, which is approved 

through the convergence time, describing by the number of 

iterations before the energy function saturation. 

REFERENCES 

[1] R. A. Santos, A. González, M. García-Ruiz, A. Edwards, L. 

Villaseñor V. Rangel, “Analysis of Topological and Geographical 

Multicast Routing Algorithms on Wireless Ad Hoc Networks”, 

Elektronika ir Elektrotechnika (Electronics and Electrical 

Engineering), no. 2, pp. 23–28, 2008. 

[2] A. Smiljanic, “Scheduling of Multicast Traffic  in High-Capacity 

Packet Switches”, IEEE Communication Magazine, vol. 40, no. 11, 

pp. 72–77, 2002. [Online]. Available: 

http://dx.doi.org/10.1109/MCOM.2002.1046996 

[3] L. Cikovskis, S. Vdovins, I. Slaidins, “Multipath Routing with 

Adaptive Carrier Sense for Video Applications in Wireless Ad-hoc 

Networks”, Elektronika ir Elektrotechnika (Electronics and 

Electrical Engineering), no. 6, pp. 37–42, 2011. 

[4] L. Narbutaite, B. Dekeris, “Triple Play Services Packet Scheduling 

Performance Evaluation”, Elektronika ir Elektrotechnika 

(Electronics and Electrical Engineering), no. 6, pp. 85–88, 2008. 

[5] M. Stojanovic, V. Acimovic-Raspopovic, “A Novel Approach for 

Providing Quality of Service in Multiservice IP Networks”, Acta 

Universitatis, Series: Electronics and Energetics, no. 17, pp. 261–

274, 2004. 

[6] M. Pioro, M. Deepankar, Routing, Flow and Capacity Design in 

Communication and Computer Networks. Elsevier Inc., 2004. 

[7] A. Kostic-Ljubisavljevic, S. Mladenovic, V. Acimovic-Raspopovic, 

A. Samcovic, “The Analysis of Network Performance with Different 

Routing and Interconnection Methods”, Elektronika ir 

Elektrotechnika (Electronics and Electrical Engineering), no. 2, pp. 

43–46, 2011. 

[8] R. Gedmantas, R. Plėštys, “The Evaluation of Packets Delays in the 

Variable Throughput Rotes”, Elektronika ir Elektrotechnika 

(Electronics and Electrical Engineering), no. 5, pp. 38–41, 2002. 

[9] G. Činčikas, R. Plėštys, “The Influence of Information Delay on 

Packet Transmission Networks for the Service Quality”, Elektronika 

ir Elektrotechnika (Electronics and Electrical Engineering), no. 2, 

pp. 54–57, 2001. 

[10] J. J. Hopfield, D. W. Tank, “Neural’ computations of decision in 

optimization problems”, Biol. Cybern., no. 52, pp. 141–152, 1985. 

[11] D. Fudenberg, J. Tirole, Game Theory. MIT Press, 1991. 

[12] M. Ali, F. Kamoun, “Neural networks for shortest path computation 

and routing in computer networks”, IEEE Trans. on Neural 

Networks, vol. 6, no. 4, pp. 941–953, 1993. [Online]. Available: 

http://dx.doi.org/10.1109/72.286889 

[13] H. Rauch, T. Winarske, “Neural networks for routing communication 

traffic”, IEEE Cont. Syst. Mag., pp. 26–30, 1988. 

[14] L. Zhang, S. Thomopoulos, “Neural network implementation of the 

shortest path algorithm for traffic routing in communication 

networks”, in Proc. of the Int. Joint Conf. Neural Networks, 1989. 

[Online]. Available: http://dx.doi.org/10.1109/IJCNN.1989.118375 

[15] D. C. Park, S. E. Choi, “A neural network based multi-destination 

routing algorithm for communication network”, in Proc. of the Int. 

Conf. Neural Networks, Anchorage, USA, 1998, pp. 1673–1678.  

[16] F. Araujo, B. Ribeiro, L. Rodrigues, “A neural network for shortest 

path computation”, IEEE Trans. Neural Networks, vol. 5, no. 12, pp. 

1067–1073, 2001. [Online]. Available: 

http://dx.doi.org/10.1109/72.950136 

[17] N. Kojic, I. Reljin, B. Reljin, “Neural network for optimization of 

routing in communication networks”, FACTA Universitatis, Series: 

Electronics and Energetics, vol. 2, no. 19, pp. 317–329, 2006. 

[Online]. Available: http://dx.doi.org/10.2298/FUEE0602317K 

[18] N. Kojic, I. Reljin, B. Reljin, “Neural network for finding optimal 

path in packet – switched network”, in Proc. of the 7th  Seminar 

NEUREL, 2004, pp. 91–96. 

[19] C. Pornavalai, G. Chakraborty, N. Shiratori, “A neural network 

approach to multicast routing in real-time communication networks”, 

in Proc. of the ICNP 95, 1995, pp. 332–339. 

97




