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Introduction 

Speech technologies are widely employed in modern 
telecommunication systems. Received speech signal 
quality [1], spoken word recognition accuracy [2] and 
successful speaker identification correctness [3, 4] strongly 
rely on speech modelling precision. Even modern audio 
coders are based on linear models that are used to simulate 
speech, which in general is non-linear and non-stationary. 
Therefore, non-perfect modelling occurs. 

As majority of real world systems are not linear in 
nature, nonlinear methods for their modelling are required 
and application range of those models is very wide. 
Therefore, in a research literature of a last decade Wiener 
class systems (see Fig. 1), defined as linear time invariant, 
dynamic, causal and stable subsystem followed by static 
nonlinearity, have drawn considerable attention. Several 
possible parametric and non-parametric identification 
procedures of Wiener class system were presented quite 
recently [5, 6, 7].  

In this paper we apply Wiener class system consisting 
of linear dynamic subsystem coupled with a sigmoid 
nonlinearity to speech modelling. Initial experiments are 
performed on a Lithuanian vowel “ū”. Basing on the 
results and observations made, we extend our experiments 
to other vowels taken from different words. The results are 
presented, where the performance of Wiener system model 
is opposed to widely employed Linear Prediction Coding 
(LPC) model. Basing on the found properties Wiener 
system model is proposed to be used for speech prediction. 
Presented experimental simulations demonstrate increase 
of accuracy at selected signal windows thus confirming 
proposed approach. Application of results in 
telecommunication systems could possibly decrease data 
transfer rates, increase speech intelligibility and 
naturalness of speech synthesis. 

Setup for speech signal prediction 

The Wiener system model we use consists of infinite 
impulse response dynamic subsystem in the linear part and 
a sigmoid function in the nonlinear part. The intermediate 
signal of Wiener system model is expressed as 
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here  s k  is an input signal; 1 2 1 2, , ,  and , , ,n na a a b b b   

are dynamic system coefficients; q  is time shift operator; 

n  is order of the dynamic system. The used in Wiener 
system model nonlinearity is defined by 
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here  y k is output signal;  f   is monotonous and 

invertible sigmoid function;   and   are gain and bias of 

sigmoid function, respectively. The sigmoid function 
dependence on these parameters is demonstrated in Fig. 2. 

In order to find parameters of the Wiener system 
model applied to predict signal, a fragment of it is used to 
generate the training dataset. The output signal is advanced 
in time via l  samples in respect to input signal. 

-2 0 2
-1

0

1

 

 

 = 0.5
 = 1
 = 2
 = 4

-2 0 2
-1

0

1

 

 

 = –0.5
 = 0
 = 0.5
 = 1

 a) 0,   varies b) 4,   varies 

Fig. 2. Nonlinear function (2) dependence on values of   and 
 parameters 

 

Fig. 1. Wiener class system representation 
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Identification of the parameters is done minimizing 
Mean Square Error (MSE) between the actual advanced 
signal  s k l  and the estimated value  ŷ k . Parameter 

optimization is done using Levenberg-Marquardt 
algorithm. It is iterative procedure and takes much more 
calculations for identification. However, it can be 
implemented in field programmable gate arrays that can be 
used for acceleration of parameter identification [8]. 

Speech data. The experiments are performed using 
16 bit mono signal quality with 11.025 kHz sampling 
frequency audio records of Lithuanian words “kultūra” and 
“įmonė”. The speech is produced by an adult male 
Lithuanian speaker. The records are done in a non-noisy 
environment. 

Model initialization. 14th order of the LPC model was 
chosen for the comparison purposes. The same order was 
chosen for the linear dynamic part of Wiener system 
model. The initialization of linear dynamic system 
coefficients can be done randomly; however, here the LPC 
coefficients were used. As the bias in signals was removed, 
we set  to 0 as its initial value. Parameter   is set to 

value 2, for tangent to be at 45 degrees at point 0. 

Investigation of single vowel prediction 

The first group of experiments is devoted to see the 
influence of training procedure on future signal error. For 
this reason the MSE of learning, testing and validation 
datasets are observed during the training procedure. The 
length of the datasets is 256 samples. The validation 
dataset window is shifted by 256 samples and testing 
dataset window is shifted by 512 samples to the future in 
respect to training dataset window (see Fig. 3). 

Ten experiments were performed on vowel “ū” from 
the word “kultūra”. The dataset windows were shifted 
10 times by 10 samples more in respect to each other. The 
achieved prediction results are summarized in the Table 1. 
Moreover, in Fig. 4 there are shown two cases of model 
identification process that result: a) in Wiener system 
model perfection on the validation dataset (Experiment 2); 
b) in LPC model perfection on the training dataset 
(Experiment 9). 

Fig. 3. The organization of training, validation and testing 
datasets 
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Fig. 4. Model identification process mean square errors during: 
a) Experiment 2; b) Experiment 9. Notations: solid lines with 
ticks – WS model; dashed lines with ticks – LPC model 

Table 1. Vowel “ū” prediction results comparing MSE of LPC and Wiener system models on training, validation and testing data 

Experiment 
number 

MSE of LPC model, 10-4 MSE of Wiener system model, 10-4 MSE ratio, % 

Training 
dataset 

Validation 
dataset 

Testing 
dataset 

Training
dataset 

Validation 
dataset 

Testing 
dataset 

Training 
dataset 

Validation 
dataset 

Testing 
dataset 

   1* 3.1580 3.5035 5.2116 3.4889 3.8889 5.3594 110.47 111.00 102.83 
   2 9.8749 9.1845 8.9524 6.0930 5.1494 6.5563 61.70 56.06 73.23 
   3 3.4636 4.1196 6.3259 3.1540 3.7607 5.1238 91.06 91.29 80.99 
   4 10.9890 10.2655 9.3263 7.2881 6.1405 7.7170 66.32 59.81 82.74 
   5 3.7918 4.9780 7.4858 3.4041 4.4351 5.8389 89.77 89.09 78.00 
   6 12.3711 12.2119 9.0802 8.0191 7.0434 8.3597 64.82 57.67 92.07 
   7 3.7408 5.1101 5.9357 3.6890 5.1950 5.6210 98.61 101.66 94.70 
   8 15.1792 12.0148 11.2340 9.6602 7.0248 6.5802 63.64 58.46 58.57 
   9* 2.4413 5.4082 3.7638 2.8945 5.5910 4.7122 118.57 103.38 125.19 
 10 17.3411 5.9460 7.9325 8.3421 6.0088 5.6714 48.11 101.06 71.50 
 Average 8.2351 7.2742 7.5248 5.6033 5.4238 6.1540 81.31 82.95 85.98 
 PSD** 5.2969 3.1436 2.1234 2.4327 1.1089 1.09724 22.36 21.18 17.77 
* – two best prediction results; ** – population standard deviation; data in bold – extreme values 

a) 

b) 
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It is worth to notice, that the smallest errors of LPC 
model (Experiments 1 and 9) are never outperformed by 
Wiener system model. This peculiarity suggests an idea 
that chosen nonlinearity do not suites well for vowel “ū” 
signal and no reduction of MSE for the training dataset can 
be possible, as linear dynamic subsystem will always have 
MSE smaller or equal to the LPC model. To confirm this, a 
further investigation should be performed on the choice of 
nonlinearity depending on the initial signal phase in a 
window. 

The results in Table 1 seem to be strongly dependent 
on the initial phase of the speech signal to be predicted. 
Comparing means and population standard deviations of 
both models confirm, that the Wiener system model 
demonstrates more consistent results on testing dataset – it 
outperforms LPC model in 8 experiments. Thus the mean 
of MSE ratio (LPC vs Wiener system models) for the 
Wiener system model are smaller by approximately 18 % 
(training dataset), 17 % (validation dataset) and 14 % 
(testing dataset). 

Investigation of multiple vowel prediction 

The second group of experiments is devoted to 
investigate if the use of sigmoid nonlinearity can give 
advantage on other vowels. For this, prediction errors of 
LPC, Infinite Impulse Response (IIR) and Wiener system 
models in the signal windows shifted to future in respect to 
the training dataset window will be analysed.  

The experiment was performed by identifying the 
parameters of the models from 256 sample size training 
dataset and employing them to predict a 1025 sample size 
signal window consisting of a same training dataset and 
769 future samples, which give us an insight of prediction 
accuracy of 70 ms of the future signal. Six experiments 
were done where vowels from the Lithuanian words 
“kultūra” and “įmonė” were used. To exploit the 
peculiarity the MSE on training dataset of Wiener system 
model was compared with the MSE of IIR model. In case 
the latter was smaller or equal to the one of the Wiener 
system model, the dataset windows are shifted by 
10 samples. The result of each experiment is 1024 sample 
size error vector, which was divided to four equal parts and 
MSE value was calculated for each of the quarter. The 
resulting data can be seen in Table 2. 

The first quarter is actually the data the models were 
trained on. Because of this and additional 14 parameters 

the results of IIR model has to be better than the ones of 
LPC model. Meanwhile, the smaller MSE of the Wiener 
system model were guaranteed by the constraint of the 
experiment (see data in bold). 

The second, third and fourth quarters’ MSE shows 
how well the models perform on future data that have not 
been seen during the training procedure. The ratios of MSE 
between LPC and IIR models are very close to 1 in all 
vowels except “į”. That could mean that the additional 
parameters of a linear subsystem are not very useful for the 
prediction of future signal.  

The Wiener system model performs better than the IIR 
model predicting future samples of all tested vowels with 
an exception of “į”, too. An additional shift of signal 
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Fig. 5. Influence of MSE calculated from 256 samples on time
shift of the window: a) vowel “u”; b) vowel “į” 

Table 2. Six vowel prediction results comparing MSE of IIR, LPC and Wiener system models by the quarters of error vectors 

Vowel 

IIR model MSE / LPC model MSE Wiener system model MSE / LPC model MSE 

1st quarter 
of dataset 

2nd quarter 
of dataset 

3rd quarter
of dataset 

4th quarter
of dataset 

1st quarter
of dataset 

2nd quarter 
of dataset 

3rd quarter 
of dataset 

4th quarter
of dataset 

“u” 0.7976 0.9845 0.9846 0.9917 0.7740 0.8840 0.8577 0.9178 
“ū” 0.7806 0.9604 0.9788 0.9778 0.7048 0.9297 0.9079 0.8906 
“a” 0.8483 1.0001 0.9977 0.9991 0.7830 0.9454 0.9650 0.9949 
“į” 0.8718 0.7263 0.7361 0.7569 0.8269 0.7836 0.7690 0.7710 
“o” 0.4290 0.9557 0.9950 1.0032 0.3938 0.8817 0.8799 0.8491 
“ė” 0.9998 0.9742 0.9935 0.9953 0.9470 0.8702 0.8293 0.8172 

 Average 0.7879 0.9335 0.9476 0.9540 0.7383 0.8824 0.8681 0.8734 
 PSD* 0.1754 0.0939 0.0948 0.0885 0.1705 0.0518 0.0613 0.0722 
* – population standard deviation; data in bold – minimum values comparing corresponding results of IIR vs. Wiener system models 

a) 

b) 



110 

window by 10 samples was tried. It gave smaller MSE 
ratios of Wiener system model than of IIR model and 
confirmed the dependence of the results on initial signal 
phase and not on the vowel. It seems that Wiener system 
model benefits from its sigmoid nonlinearity where 
additional parameters of IIR model gave only marginal 
improvement. The average MSE ratios of a Wiener system 
model are less about 5 %, 8 % and 8 % for the second, 
third and fourth quarters respectively. 

In Fig. 5 the change of MSE is depicted shifting error 
calculation window in time. In Fig. 5a it can be clearly 
seen that the MSE of the Wiener system model is higher in 
comparison of both other models at a time region of about 
7 ms. At that time, the models had to predict signal 
consisting of about 13 ms of training signal and 7 ms of 
future signal. The advantage of Wiener system model can 
be clearly seen starting from the shift about the 10 ms until 
the end of the data. In Fig. 5b the MSE of vowel “į” 
modelling is shown. The Wiener system model 
outperforms the LPC model. However, the IIR model gives 
better MSE during all the modelling of the signal. Thus, 
sigmoid nonlinearity does not give an improvement in this 
case and a different type of nonlinearity might be needed 
to archive that [5–7]. 

Conclusions 

1. For vowel prediction LPC model could be replaced 
by Wiener system model. Experiments with six Lithuanian 
vowels on average gave more than 13 % improvement in 
MSE of prediction. The average of MSE for vowel “ū” 
prediction with the Wiener system model were smaller by 
approximately 18 % for the training dataset, 17 % for the 
validation dataset and 14 % for the testing dataset. 

2. A nonlinearity employed in Wiener system model 
plays a major role on the performance of the system in 
comparison with LPC and IIR models. Badly chosen 
nonlinearity can limit short-term prediction capabilities as 
confirm results of two experiments with vowel “ū” or 

impact long-term prediction as show experimental results 
with vowel “į”. 

3. The use of Wiener system model instead of IIR 
model improves MSE of long-term prediction of five 
Lithuanian vowels on average by more than 5 %. 

A further investigation of Wiener system model should 
be performed on the choice of nonlinearity taking into 
account the initial speech signal phase to be predicted. 
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errors of prediction with the Wiener system model are smaller approximately by 18 % for the training dataset, 17 % for the validation dataset 
and 14 % for the testing dataset in comparison to Linear Prediction Coding model. Additional experiments with 6 different Lithuanian vowels 
on average showed more than 13 % improvement in MSE of prediction with the Wiener system model. Moreover, the use of Wiener system 
instead of IIR model showed improvement in MSE of long-term prediction for five Lithuanian vowels on average by more than 5 %. 
Application of results in telecommunication systems could possibly decrease data transfer rates, increase speech intelligibility and naturalness of 
speech synthesis. Ill. 5, bibl. 8, tabl. 2 (in English; abstracts in English and Lithuanian). 
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Straipsnyje nagrinėjamas Vinerio klasės sistemos, sudarytos iš begalinės impulsinės reakcijos dinaminės posistemės ir sigmoidinio 
netiesiškumo, taikymas lietuvių kalbai modeliuoti. Pristatyti skirtingų „ū“ balsio pradinių signalo fazių tyrimai. Gauti rezultatai patvirtina 
Vinerio sistemos modelio pranašumą, palyginti su tiesinės prognozės kodavimo modeliu, – Vinerio sistemos modelio mokymo duomenų aibių 
vidutinė kvadratinė klaida yra mažesnė apie 18 %, patikros – 17 % ir testavimo – 14 %. Papildomais eksperimentais su šešiais balsiais 
parodoma, kad Vinerio sistemos modelio taikymas vidutiniškai sumažina prognozės vidutinę kvadratinę klaidą ne mažiau kaip 13 %. Be to, 
Vinerio sistemos modelio taikymas vietoj begalinės impulsinės reakcijos modelio vidutiniškai ne mažiau kaip 5 % sumažina penkių balsių 
ilgalaikės prognozės vidutinę kvadratinę klaidą. Gautus rezultatus pritaikius telekomunikacijų sistemose, potencialiai galima būtų sumažinti 
duomenų srautus, padidinti šnekos suprantamumą ir sintezuotos šnekos natūralumą. Il. 5, bibl. 8, lent. 2 (anglų kalba; santraukos anglų ir 
lietuvių k.). 




