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Abstract—This paper presents a novel method for detecting 

and classifying faults in dynamic control systems empowered 

with DC motors, operating under laboratory conditions. The 

approach employs a convolutional neural network model 

enhanced with an artificial endocrine influence to evaluate the 

condition of the rotating motor shaft by analysing information 

from the vibration sensors mounted on the shaft itself. The 

trained network effectively classifies the level of unbalance in the 

system into three categories based on the vibrations: optimal (no 

unbalance), first and second degree of unbalance. To validate 

the efficiency of the proposed model, its performance was 

compared with the performance of deep learning algorithms 

commonly recommended for time-series classification: default 

convolutional neural network, fully convolutional neural 

network, and residual network. The new model was shown to 

perform classification tasks with the highest accuracy, proving 

to be an efficient fault diagnosis tool with a viable potential to be 

applicable in industrial predictive maintenance processes. 

 
Index Terms—Convolutional neural network; Time-series 

classification; Artificial endocrine gland; Fault diagnosis; 

Vibration analysis. 

I. INTRODUCTION 

In the era of rapid growth and development of artificial 

intelligence technologies, there is a common trend of 

minimising dependence on human interference for proper 

system functioning. This tendency is present not only because 

of economic benefits of the higher system autonomy but also 

to prevent severe damage to the system due to professional 

incompetence and work injuries in operating environments. 

Bearing that in mind, some of the latest trends in the control 

systems domain are affected by this urge to design 

autonomous systems capable of preventing the occurrence of 

undesirable conditions and circumstances.  

Demands for system autonomy within the Industry 4.0 

environment have created the growing need for the 

development of intelligent approaches for fault detections and 

disturbance classifications.  

Approaches in this field are mostly based on machine 

learning (ML) methods that have found their massive 

application in the domain of system maintenance, providing 

the means for early fault detection, malfunction diagnosis, 

and maintenance scheduling based on smart prognosis to 

avoid unnecessary check-up costs. One of the significant 

advantages that intelligent malfunction diagnosis methods 

can provide is incipient fault detection [1]. This is possible 

due to the ability of intelligent models to gain insight into 

hidden patterns in signals by analysing previous behaviour of 

the system [2]. When faults are detected in their incipient 

stage, timely maintenance actions can prevent further fault 

deterioration, which could not only downgrade the system 

performance, but also lead to serious and irreparable damage 

on the system. Also, traditional diagnosis does not possess the 

capacity to adjust to sudden variations in the condition of the 

system, which can be achieved by employing intelligent 

diagnosis methods [3]. In addition, intelligent fault detection 

and diagnosis are the crucial components that form the basis 

of self-healing control [4]. According to the authors in [4], the 

self-healing methodology ensures that if a fault occurs in one 

part of the system, the general health and performance of the 

system are not affected by the given circumstances. This is 

achieved by selecting the right control strategy to deal with 

disturbances in the system. To achieve high autonomy of the 

system through self-healing approaches, it is imperative to 

implement a reliable fault diagnosis system [4]. Finally, 

traditional procedures that rely on the human factor are slow 

and often unreliable, in contrast to intelligent solutions [5]. 

When analysing the industrial environments and optimal 

operations within them, the focus should be on the vital 

components included in their work. One of the most common 

components of any industrial setup is certainly an electric 

motor. Recognising the importance of early detection, 

identification, and repair of motor faults is key to optimising 

the operations of the entire system. Motor fault detection can 

be accomplished through various signal analyses, including 

current, vibration, acoustic [6] and speed signal analysis [7], 

[8]. For example, bearing fault detection based on speed 

signal data acquired using a hall sensor is considered by the 

authors in [8]. Other research focussing on vibration analysis 

for fault detection can be found in [9]–[15]. The diagnosis of 

stator faults based on vibration signals was investigated in 

[9]. Papathanasopoulus, Giannousakis, Dermatas, and 

Mitronikas [10] considered vibration analysis for diagnosis of 

misalignment of brushless DC motor (BLDC) and breakdown 

faults. One of the drawbacks of vibration monitoring is the 

need to employ special sensors, which leads to an increase in 
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overall implementation costs [11]. The main issue of applying 

vibration analysis is not only the high cost of accelerometers, 

but also the fact that distinguishing the exact source of faulty 

vibration can be a complicated task, since the vibration signal 

is usually influenced by other sources in the system. In 

general, analysing the current signal is a cost-effective option. 

Stator current analysis, for instance, has been shown to 

provide insight into the motor health. However, it may not be 

as effective in detecting minor or early faults most of the time. 

The discussed fault detection methodologies are strongly 

correlated with the maintenance approaches of the system, 

where many researchers focus their attention on the analysis 

and application of the sensed current signals for the diagnosis 

of malfunctions [1], [16]–[18]. To overcome characteristic 

issues that arise when only one type of signal is analysed, 

several papers discuss effective approaches for fault detection 

and identification based on both current and vibration signals 

[19]–[21]. For example, the authors in [19], [20] applied 

feature fusion. These approaches, where both current and 

vibration signals are analysed, proved to be useful for fault 

diagnosis as they allow the detection of mechanical and 

electrical defects and damages. Similarly, Suawa, Meisel, 

Jongmanns, Huebner, and Reichenbach [6] used vibration 

and sound signals for fault detection of BLDC motors. Unlike 

in [19], [20] where feature fusion was applied, the authors in 

[6] focussed on data fusion, which requires less expertise, but 

still improves the performance of the diagnostic algorithm. 

Finally, in [21], the authors considered and distinguished 

three health states of the motor components: healthy, 

incipient fault, and severe failure state. To analyse motor data, 

the authors applied motor current signature analysis and 

spectral kurtosis [21]. 

It is also important to note that most of the literature 

focussing on motor fault detection considers supervised ML 

models, especially neural networks [7], [15], [18]–[20], [22]. 

For example, in [20], Shifat and Hur did research on motor 

diagnosis of BLDC by applying artificial neural network 

(ANN) for fault classification. The authors considered both 

rotor and stator faults [20]. Another approach using neural 

networks for the diagnosis of BLDC can be found in [7], 

while fault classification was performed by ResNet-101 in 

[15]. Another interesting approach using recurrent neural 

network (RNN) for BLDC motor bearing fault detection and 

identification can be found in [19]. In [22], Abu-Rub, Ahmed, 

Iqbal, Toliyat, and Rahimian explored the detection of 

bearing fault in BLDC using the adaptive neuro fuzzy 

inference system (ANFIS). Similarly, Awdallah and Morcos 

[18] considered BLDC open-switch fault detection, where 

ANFIS was applied to identify and locate the faulty switch. 

In addition, several papers consider the application of CNNs 

for fault detection [1], [12], [13], [14], [17]. For example, 

Municoti, Das, Natarajan, and Srinivasan tackle the issue of 

DC motor monitoring under variable loading conditions and 

noise in [1]. The authors proposed two approaches using 

CNNs: in the first approach, feature extraction was done by 

convolutional layers of CNN, while the second approach 

considered a combination of convolutional and recurrent NNs 

for that task. Another approach can be found in [12], where 

Kim, Jung, Ko, Kong, Lee, and Youn focus on solving the 

malfunction diagnosis task by directly connecting different 

layers of the CNN network, forming a direct connection-

based CNN. The application of 1-D CNNs for feature 

extraction and fault detection in induction motors was 

considered in [13], where multichannel architecture was used 

for vibration analysis. 1-D CNN is also applied in [14], where 

the focus was on unbalance detection, and Mey, Neudeck, 

Schneider, and Enge-Rosenblatt examined the performance 

of 1-D CNN, fully connected NN, hidden Markov, and 

random forest classifier models. Ince, Kiranyaz, Eren, Askar, 

and Gabbouj [17] also proposed the use of 1-D CNN as a tool 

to incorporate both feature extraction and classification 

problems into a ML model for induction motor diagnosis.  

Taking into account the proven efficacy of CNNs for the 

diagnosis of malfunction, this research aims to design an 

enhanced CNN network by incorporating artificial endocrine 

glands [23]–[31] within its structure. Implementing an 

endocrine mechanism in the neural network structure enables 

a better response to the time-varying operating conditions, 

and, therefore, provides improved model performance. By 

producing the right amount of hormones, artificial glands 

influence the output of the network depending on the 

variations in the selected stimulus. This quality can be 

particularly useful for fault diagnosis. The new endocrine 

convolutional neural network (ECNN) model was used for 

the detection and classification of unbalance on the rotating 

shaft of the DC motor based on the vibration signal. The 

performance of the proposed model was compared with the 

performance of the traditional CNN, fully convolutional 

network (FCN), and ResNet models. 

This article is organised as follows. In Section II, a brief 

overview of popular neural network approaches for time-

series data classification is given. The new ECNN 

architecture is introduced in Section III, where its structure 

and way of functioning are described in detail. The data set 

on which the simulations were performed is described in 

Section IV, whereas the simulation results are presented in 

Section V. In Section VI, the simulation results are discussed, 

and a comparison of the performances of different models is 

made. The concluding remarks are given in the last section, 

along with the discussion of future research directions. 

II. NEURAL NETWORK APPROACHES FOR CLASSIFICATION 

OF TIME-SERIES DATA 

Deep learning has proven to be an effective tool for 

addressing time-series classification problems [32]–[34]. 

CNNs are frequently proposed for fault detection tasks and 

time-series classification processes [1], [6], [12]–[14], [17]. 

Such neural networks are suitable for the classification of 

large-scale time-series data characterised by high 

dimensionality. The main characteristic of CNNs lies in the 

fact that they consist of three types of layers, convolutional, 

pooling layers, and fully connected layers, where a data 

vector is expected as an input. Using a CNN reduces the 

number of parameters of the learning model and the 

possibility of overfitting [35]–[37].  

The CNN model was one of the networks used by May, 

Neudeck, Schneider, and Enge-Rosenblatt in [14] and proved 

to perform time-series classification successfully in the DC 

motor vibration data set. Therefore, it was also used for the 

time-series classification task in this study. Although the 

authors in [14] used the model only to determine the absence 

or presence of a fault, it is essential to emphasise that the 
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network’s primary function in this research was to detect 

whether the system runs normally or to distinguish between 

two degrees of unbalance: the first degree where corrective 

control actions would be required, or the second degree, i.e., 

severe unbalance which requires immediate shutdown of the 

system and repair.  

Also, Fawaz, Forestier, Weber, Idoumghar, and Muller 

[32] performed a comparative analysis of the performances of 

the most commonly used neural network structures, from 

simple ones such as multilayer perceptrons (MLPs) to more 

complex structures such as CNNs, echo state networks 

(ESNs), time-wrapping invariant ESNs (TWIESNs), fully 

convolutional networks (FCNs), multiscale CNNs (MCNNs), 

time Le-Net (t-LeNet), multichannel deep CNNs 

(MCDCNNs), time-CNNs, residual networks (ResNets), and 

encoders for time-series classification. The results of their 

research showed that FCN and ResNet architectures stood out 

in comparison to other approaches and have proven to be the 

most efficient tools when it comes to time-series 

classification. FCNs were first used for semantic 

segmentation in the work by Long, Shelhamer, and Darrell 

[33], while Wang, Yan, and Oates [34] proposed the 

application of FCNs for time-series classification. For this 

purpose, FCNs are used for feature extraction. According to 

the authors in [34], the most significant characteristic of FCN 

lies in the fact that there are no local pulling layers in the 

network structure. Instead, the global average pooling layer 

is applied to the output of the last convolution block. 

Therefore, there are no changes in the length of a time-series 

through the convolution layers [32]. The FCN architecture 

proposed in [34] was used in the simulations for this research. 

The structure consists of three convolutional layers followed 

by a global pooling layer and a softmax layer. The 

convolutional layer is the first layer of each convolution 

block. Its outputs are fed into the batch normalisation layer, 

which is followed by the rectified linear unit (ReLU) 

activation layer [34]. The FCN architecture is presented in 

Fig. 1. [34]. 

The ResNet structure is somewhat similar to the FCN, 

though much deeper, since no local pooling layers are 

implemented. It consists of three residual blocks, each 

containing three convolutional blocks described previously 

[32]. The outputs of the last block are fed into the global 

average layer followed by a softmax layer. The network 

outputs are equal to the number of target value classes. 

ResNet’s most distinctive trait lies in the fact that shortcut 

connections, linking the input and output, are added in each 

residual block. In this way, the effect of the vanishing 

gradient is weakened [32]. The idea behind this network is to 

enable adaptation to the residual mapping rather than directly 

learning the base mapping. This approach facilitates the 

optimisation and training of extremely deep networks by 

focussing on learning residual functions. The structure 

proposed in [34] was applied for the classification task in this 

study as part of the Simulations section (Section V) and is 

presented in Fig. 2. 

 
Fig. 1.  FCN structure. 

 
Fig. 2.  ResNet structure.
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Considering that CNN, FCN, and ResNet architectures 

have been shown to possess characteristics of crucial 

importance when it comes to time-series classification, it can 

be concluded that these models are appropriate benchmark 

models when it comes to evaluating the performance of new 

neural network models for some specific classification task. 

Taking into account that, in this study, we compared the 

performance of the traditional CNN [14], FCN [34], and 

ResNet [34] models for the classification of complex time-

series data with the performance of the newly proposed 

endocrine convolutional neural network (ECNN) which will 

be explained in detail in Section III. 

III. DESIGN OF ENDOCRINE CONVOLUTIONAL NEURAL 

NETWORK 

The implementation and design of neuroendocrine models 

and the concept of applying endocrine mechanisms in soft 

computing were inspired by the way biological neural and 

endocrine systems interact to regulate hormonal status in 

blood and, therefore, maintain optimal functioning of the 

human body [23]–[31]. Just as the endocrine system regulates 

biological processes in the body by producing a required 

concentration of hormones as an answer to received 

information, endocrine neural networks employ artificial 

glands to incorporate this mechanism and adapt to time-

varying behaviours or operating conditions [29]. Such a 

network contains one or more glands that react to changes and 

disturbances present in the system [31]. Depending on the 

signal received, the glands produce an adequate hormonal 

response in the form of a numerical value. The glands output 

or endocrine factors are used as external parameters 

commonly incorporated into one of the layers of the network, 

where they are applied to achieve hormonal influence [27] 

affecting the appropriate coefficients of network weights 

[28].  

The novel ECNN structure is presented in Fig. 3 and 

possesses an improved learning ability compared to 

traditional CNNs by incorporating an environmental stimulus 

δ for activating artificial glands. The manner of work of 

ECNN will be described through the following subsections. 

 
Fig. 3.  ECNN structure.

A. CNN Foundation 

The CNN structure employed for the classification of DC 

motor vibration data by the authors in [14] was used as the 

base for the ECNN network proposed in this study. The input 

size of the network corresponds to the window length, which 

aligns with the data collected over one second of recording. 

The network architecture comprises an input layer followed 

by a series of convolutional blocks. Each block structure 

commences with a convolutional layer. The output values 

from the convolutional layer underwent batch normalisation 

and served as input signals to the leaky rectified units. To 

down-sample the input representation, a max-pooling layer 

was employed as the final layer within each block. Following 

the convolutional blocks, two fully connected layers were 

incorporated with rectified linear units (ReLU) applied 

between them. The second fully connected layer represents 

the output layer. To mitigate overfitting, the dropout 

technique was implemented during the training process, 

featuring a dropout layer placed before the last fully 

connected layer. Finally, the network has three outputs with 

integrated softmax activation functions. 

B. Integration of Endocrine Components 

An endocrine factor is introduced into the network in the 

form of environmental stimuli (δ1, δ2, …, δi) where each 

stimulus causes hormonal influence on a network by 

introducing a proper hormone concentration value into the 

weights of the network. The hormone concentration of a 

single gland (Cg) could be expressed as [25] 

 ( 1) ( ) ( 1),g g g gC t C t R t     (1) 

where βg is the decay constant, Rg is the stimulation 

parameter, and the index g represents a specific gland. The 

stimulation parameter can be calculated from 

 ( ) ( ) ,
1 ( 1)

g

g ij ij

jg

R t t X
C t




 
  (2) 

where αg is the stimulation rate, ωij is the weight coefficient, 

and Xij is the input. In addition, index i represents the current 

input of the network, while j is the current hormone. Finally, 
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the output of the neuron f(u) can be presented as [23] 

  
1

.
n

i i g j

i

f u f X C S


 
  

 
  (3) 

Sj of (3) is the hormone sensitivity parameter valued in the 

range between 0 and 1, and n is the number of neuron inputs. 

It could be considered that neurons with a sensitivity value 

close to zero are negligible. In contrast, neurons with a 

sensitivity value close to 1 will have a significant influence 

on network calculations. At its core, a sensitivity parameter Sj 

defines the influence of a stimulus, which is achieved using a 

specific number of identical artificial glands that are in charge 

of regulating hormone concentrations Cg. This number of 

glands is determined according to the requirements of the 

specific use case, applying the trial-and-error method. 

Commonly, the first trial assumes that one gland is used per 

stimulus, increasing the number of glands linearly until the 

performances improve with a significant ratio. The artificial 

endocrine mechanism of weight update is presented in Fig. 4. 

 
Fig. 4.  Artificial endocrine mechanism of weight update. 

The proposed ECNN network is based on the adaptive 

learning algorithm that operates using the gradient descent 

method [38]. It is more active when external disturbances and 

output signal deviations are strong. When the influence of 

external disturbances is minimised to a specific range, the 

weights become less sensitive to external factors. In general, 

adaptive components are provided by the introduction of 

hormonal influence to the weights of the ECNN dense layer 

network, where the approximation error E of the ECNN can 

be calculated as 

 ( ) ,
net

T

g jE y y W WC S     (4) 

where W = [w1, w2, …, wn]T represents a vector with weight 

reference values, 1 2 , ,  . . . ,
T

nW w w w  
 

 represents a 

vector that contains real weights values, y  is the output 

signal of the system sensed, and 
net

y  is the output signal of 

the system approximated by ECNN. 

C. Neural Network Setup 

1. Selection of the environmental stimulus. ECNN 

environmental stimulus is selected as the motor speed (δ1). 

The recorded speed is presented in Fig. 5. Due to 

significant computation requirements and speed process 

issues, a problem of insufficient memory occurred. For this 

reason, the mean value of the speed signal over one second 

is calculated for each input window.  

 
Fig. 5.  Speed data for the examined data set. 

2. Glands number. The trial began with two artificial 

glands, and the number of glands increased by one in each 

subsequent trial. The networks were empirically tested and 

structures with six glands for the specified stimulus were 

selected. 

3. Artificial endocrine parameters. The stimulation 

parameter (Rg) and the hormone concentration (Cg) are 

determined according to [24]. Furthermore, the sensitivity 

parameter (Sg) was adjusted according to the following 

rule: 

 
 

 .
4000

g

current speed
S  (5) 

The value 4000 was selected from available speed data 

information, where it is shown that the maximal value of 

speed is 4000 rounds per minute (rpm). Additionally, the 

values of the average speed points are in the range of 0 rpm 

to 2500 rpm, implying that the recorded values of 2500 to 

4000 represent outliers caused by poor sensing or recorded 

disturbances. Finally, the Sg parameter will be lower when 

disturbances are not recorded, reducing the influence of 

endocrine components on the network while the motor 

operates optimally. In contrast, larger Sg values (from 

0.625 to 1) will be used when disturbances are sensed, 

influencing a larger amount of hormonal influence on the 

network. 

4. ECNN inputs. An input to each network is the vibration 

signal with 4096 consecutive samples (corresponding to 

the window length) coming from the vibration sensor. 

5. ECNN outputs. The network has three outputs 

corresponding to the appropriate health states of the 
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system, i.e., optimal system performance, faulty 

performance where corrective actions are needed, and 

deteriorating state where immediate system shutdown is 

required along with appropriate maintenance actions. 

6. ECNN: Weights per gland. 128 neurons in the dense 

layer are specified. Since the number of outputs of the 

flatten layer is 9800, and the number of glands is six, that 

means four glands will provoke 209070 neuron weights 

and the following two glands will make an impact on 

209080 neuron weights. In this way, a balanced influence 

of the glands on ECNN will be achieved. 

IV. USE CASE 

To facilitate the simulations, the data set authored by Mey, 

Neudeck, Schneider, and Enge-Rosenblatt [14], which is 

accessible via the Fraunhofer Fordatis database [39], was 

used. This data set encompasses information obtained from 

three vibration sensors placed on a rotating shaft. Data were 

collected under varying rotational speeds and subjected to 

four distinct levels of unbalance, as well as under unbalance-

free conditions. Data acquisition was performed using an 

electronically commutated DC motor that powers a 12 mm 

diameter shaft. This shaft is interconnected with another shaft 

of identical dimensions, measuring 75 mm in length, through 

a coupling mechanism. The latter shaft traverses a roller 

bearing, secured within a bearing block, with the unbalance 

holder affixed directly behind it. Notably, the unbalance 

holder, fabricated by 3D printing, comprises a disc featuring 

axially symmetric recesses into which weights were inserted 

to replicate unbalance effects. Vibration sensors were affixed 

to both the bearing block and the motor mounting, with data 

acquisition conducted using a four-channel system. 

The data sampling rate was set at 4096 values per second. 

The data set was partitioned into five pairs of smaller data 

sets, each pair housing data recorded under varying unbalance 

strengths. Each pair comprises a development data set and an 

evaluation data set. It is important to note that after the 

recording of the development data set, the measurement setup 

was completely reassembled before the recording of the 

evaluation data set to ensure the diversity between the two 

data sets [14]. The first pair of data was recorded during the 

normal functioning of the system, i.e., without unbalance 

influence. The second, third, fourth, and fifth data pairs were 

recorded under the influence of different unbalance sizes with 

45.9 ± 1.4 mm g, 60.7 ± 1.9 mm g, 75.5 ± 2.3 mm g, and 

152.1 ± 2.3 mm g unbalance factors, respectively [14]. 

For the development data set, data acquisition entailed 

increasing the motor voltage from 2.0 V to 10.05 V in 

increments of 0.05 V. Simultaneously, the rotational speed 

ranged from 630 rpm to 2330 rpm. Conversely, the 

evaluation data set was recorded with the motor voltage 

increased from 4.0 V to 8.1 V in 0.1 V increments, 

accompanied by a rotational speed range spanning from 

1060 rpm to 1900 rpm. In both cases, voltage increments 

were introduced every 20 seconds. 

V. SIMULATIONS 

As stated in Section II, the efficiency of the proposed 

ECNN will be evaluated by comparing its performance with 

those of the CNN, FCN, and ResNet models for the time-

series classification task on the previously described data set. 

All simulations were performed in Python. 

A. Data Set 

Due to the large size of the data set, only information from 

the first vibration sensor was used in this research [14]. To 

avoid noisy information during the warm-up phase of the 

system, the first 50.000 values were removed from the data 

set, as recommended by the authors in [14].  

To better understand the data, in Fig. 6, vibration signals 

from the development data sets over time are shown. As it 

was previously stated, the signals were recorded while the 

motor voltage was increased from 2.0 V to 10.05 V. By 

analysing the graph, it can be concluded that the vibration 

amplitude increases with the increasing voltage and rotational 

speed. However, the intensity of vibration differs for each 

unbalance strength. The greatest difference in vibration 

amplitudes can be seen for voltage values between 3.5 V and 

4.5 V, where the vibration measured in the normal health state 

system is significantly less intense compared to the vibration 

measured in the system with different levels of unbalances. 

 
Fig. 6.  Vibration signal for different levels of unbalance over time. 

Table I shows the peak, root mean square value (RMS), 

crest factor, and standard deviation for different degrees of 

unbalance. The peak value represents the highest amplitude 

in each vibration signal and increases with the severity of the 

fault. This does not hold for the first degree of unbalance, 

where the peak value is actually smaller than in the normal 

state.  

The RMS value is calculated using the formula 

  
2

1

1
,

n

i

i

rms a
n 

 
  

 
  (6) 

where sum of ai squared refers to the sum of each squared 

sample of the vibration signal. A similar trend is present for 

the RMS value as it was for the peaks of the signals. Again, 

except for the first unbalance strength, the value of RMS 

increases with higher levels of unbalance.  

The standard deviation represents the measure of distance 

between all values and the mean value of the vibration signal. 

The RMS and standard deviation values are similar, as it can 

be seen in Table I. 

Finally, the crest factor included in Table I shows the peak 

to rms ratio and indicates the intensity of the peaks in the 

signal. The decreasing value of this factor can be an indicator 
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of the degraded health of the component [40]. As can be seen 

from the table, the crest factor is mostly decreasing as the 

severity of the unbalance strengthens, except in the case of 

the third level of unbalance. 

TABLE I. PEAK, RMS, CREST, AND STANDARD DEVIATION OF 

THE VIBRATION SIGNAL. 

 Peak RMS Crest 
Standard 

deviation 

No unbalance 0.10675 0.008411 12.69183 0.008384 
Unbalance1 0.09483 0.007540 12.57652 0.007505 
Unbalance2 0.11995 0.010694 11.21702 0.010678 
Unbalance3 0.12720 0.011009 11.55487 0.010987 
Unbalance4 0.12719 0.013769 9.23705 0.013752 
 

The data was then arranged into windows, each consisting 

of 4096 values per one second. Mey, Neudeck, Schneider, 

and Enge-Rosenblatt [14] conducted a binary classification of 

the data by marking the information from all unbalanced data 

sets with 1, and the information from the normal data set with 

0. 

In this new study, the data was grouped in a different way: 

three states of the systems were distinguished, and multiclass 

classification was performed. This way, a possibility for more 

precise fault diagnosis is provided. Distinguishing the 

intermediate state between the optimal and “problematic” 

system health reduces the need to immediately shut down the 

system every time a fault is detected, which further ensures 

better system productivity. The first state was marked by 0, 

which implies that the system runs regularly. The second state 

is marked with 1 and implies that the first, second, or third 

degree of unbalance is present. To prevent further 

deterioration, corrective actions are required. Finally, the 

third state refers to the presence of an unbalance of the fourth 

degree. It is marked with 2 in the data set and implies that the 

system needs to be shut down immediately to prevent 

complete system deterioration or “hazard”. 

To train the models, 90 % of the data set was used as a 

training set, while the remaining 10 % was used for 

validation. This proportion proved to give better results than 

80:20 or 70:30, which is shown through the trial-and-error 

process, and was therefore applied in this study. To test the 

performance of the models, the whole validation data set was 

used as the test set. 

B. Architectures of NNs 

In this study, the CNN architecture used in [14] was used 

as the initial benchmark model. As proposed in [14], the input 

size of the network is 4096 corresponding to the length of the 

window. The network architecture comprises an input layer 

followed by a series of convolutional blocks; concretely, in 

this research four blocks were applied. Each block structure 

starts with a convolutional layer. The number of filters was 

10, 20, 30, and 40 for the first, second, third, and fourth block, 

respectively. The output values from the convolutional layer 

were normalised through batch normalisation and served as 

input signals to the leaky rectified units. To down-sample the 

input representation, a max-pooling layer was employed as 

the final layer within each block. Following the convolutional 

blocks, two fully connected layers were incorporated, with 

rectified linear units (ReLU) applied between them. The 

number of neurons in the first fully connected layer was 128 

with linear activation as proposed in [14]. The output layer 

consisted of three neurons with a softmax activation function. 

To mitigate overfitting, the dropout technique was 

implemented during the training process, featuring a dropout 

layer placed before the last fully connected layer.  

The FCN model [34] was the second model applied in the 

simulations. The number of inputs is the same as in the CNN 

model. The inputs are fed into the first convolutional block, 

consisting of a 1-D convolution layer with 128 filters 

followed by a rectified units layer with its inputs normalised 

using batch normalisation. The structure of the second 

convolution block differs in the number of filters, which is 

now 256. The last convolution block has the same structure 

as the first one. No local pooling was used between blocks. 

The output of the third block was fed into a 1-D global 

average pooling layer, followed by a fully connected layer 

with three output neurons and softmax activation [34]. 

The ResNet architecture proposed in [34] was also 

employed in this study. The model consists of three residual 

blocks, each consisting of three FCN convolution blocks 

previously described. The network consists of 4096 inputs 

which were normalised using batch normalisation. The 

number of filters in convolution layers in residual blocks is 

64 for the first block and 128 for the second and third blocks. 

The normalised input of each residual block is fed into the 

rectified units layer of the last convolution block along with 

the regular input, enabling direct connection of the input of 

the residual block with the output. No local pooling layers 

were applied, only the global average pooling layer after the 

last residual block [34]. This layer is followed by a layer with 

three fully connected neurons with softmax activation. 

The last model applied in the study was the proposed 

ECNN model. Its architecture is tailored around the basic 

CNN model proposed in [14] with an implemented endocrine 

mechanism. The main difference between the two 

architectures lies in the hidden dense layer, which lies 

between the flatten output of the last convolutional block and 

an output layer. In this layer, a hormonal effect is produced 

by multiplying the weights by a signal from the endocrine 

gland. The preprocessed motor speed signal in rpm was fed 

into the gland as a stimulus. As a consequence of that, the 

glands produce the right amount of “hormones”, which 

affects the weight values. 

C. Simulation Results 

All simulations were conducted with a Lenovo ThinkPad 

L14 Gen3 computer equipped with AMD Ryzen™ 5 PRO 

5675U processors with integrated Intel AMD Radeon™ 

graphics. 

1. CNN results 

To present the simulation results obtained by CNN 

network, the training and validation accuracy curves are 

recorded and shown in Fig. 7. The validation accuracy curve 

is not smooth, especially in the early stages of the training. 

There is a certain consistency in the performance between the 

45th and 55th epoch, only to drop and become unstable again 

until the 80th epoch is reached. The oscillations in the 

accuracy curve become milder after this point. From the 

graph, it can be concluded that the validation accuracy starts 

to converge after the 85th epoch, which means that more than 

90 epochs are needed to stabilise the performance of the 

model. Taking this into account, at least 100 epochs should 
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be executed to ensure that the accuracy of the model achieves 

steady state. The time needed to execute 100 epochs was 

around 3 hours and 40 minutes.  

To evaluate the performance of the model, the test set was 

used further. The accuracy of the test set was 92.05647 %. 

The confusion matrix (Table II) shows that the class “degree 

1” was misclassified the most frequently. A small number of 

members of this class were classified as “degree 2”. This is 

not as problematic as the fact that the model shows a tendency 

to falsely classify some members of the “degree 1” class as 

“optimal”, i.e., in some cases it does not recognise that a fault 

exists, which could lead to potential technical issues and poor 

predictive maintenance. In addition, the model did not falsely 

classify a single member of the “degree 2” class. 

 
Fig. 7.  CNN training and validation accuracy curves. 

TABLE II. CNN CONFUSION MATRIX. 

CNN 

T
ru

e “optimal” 1665 5 0 
“degree 1” 656 4355 3 
“degree 2” 0 0 1675 

  “optimal” “degree 1” “degree 2” 
  Predicted 

 

2. FCN results 

The second model used in the simulations in this study was 

the FCN architecture proposed in [34]. The training and 

validation accuracy curves are presented in Fig. 8. The 

training curve is smooth and stable, but this is not the case 

with the validation curve. The validation accuracy is pretty 

unstable during the training process, never reaching the 

training accuracy or converging even after 100 epochs. It can 

be noticed that the curves are apart and that 100 epochs were 

not enough for the proper training of the model. On the basis 

of the accuracy curves of the FCN model, it can be concluded 

that the model is not managing to capture the patterns in the 

data in the satisfactory manner. Also, the time needed to train 

the model was around 61 hours and 40 minutes, which is 

almost 16 times longer than the time needed to train regular 

CNN, where the execution of one epoch takes around 40 

minutes. To optimise the process, the authors tried to use a 

smaller number of filters, i.e., parameters that the 

convolutional layer would learn from the input data, by 

employing a shorter window or length of the timeseries. The 

standard window length was equal to the number of samples 

collected in one second: 4096. The network was trained with 

1024, 256, and 128 window lengths, but the performance of 

the model was severely degraded and although the training 

time decreased, it was still long. Bearing that in mind, the 

original window length was used in the end.  

The accuracy recorded of FCN on the test set was 

74.74578 %. By examining the confusion matrix presented in 

Table III, it can be concluded that, again in this case, the 

model shows the tendency to misclassify the members of the 

“degree 1” class more frequently compared to the members 

of the other two classes. Still, the situation is a bit different 

than when the CNN model is applied. The model falsely 

classified 24.0327 % of the members of the “degree 1” class 

as “optimal”, and 17.0523 % as “degree 2”, which means that 

41.085 % of the members were misclassified. Regarding the 

classification of the “optimal” class, only a small percentage 

(0.8982 %) of the class was falsely classified as “degree 1”. 

Interestingly, the model also shows a slight tendency to mix 

up between the “optimal” and “degree 2” classes (1.2574 % 

of “optimal” was classified as “degree 2”, and 0.8955 % of 

“degree 2” as “optimal”, which was not the case with the 

other models. The classification of faulty behaviour as non-

faulty presents a greater issue, since not taking adequate 

actions could lead to further deterioration of the system 

health. 

 
Fig. 8.  FCN training and validation accuracy curves. 

TABLE III. FCN CONFUSION MATRIX. 

FCN 

T
ru

e “optimal” 1634 15 21 
“degree 1” 1205 2954 855 
“degree 2” 15 0 1660 

  “optimal” “degree 1” “degree 2” 

  Predicted 

 

3. ResNet results 

The training and validation accuracy curves are presented 

in Fig. 9. Again, the training curve is smooth, stable, and 

converges to 1. The validation curve is not as smooth as the 

training curve, but is still more stable than CNN and FCN 

validation curves. The curve is noisy for the first thirty epochs 

and starts to converge from that point. Still, there is a 

significant decrease in the validation accuracy around the 45th 

epoch. Between the 40th and 50th epoch there are oscillations 

in the model performance, but the validation accuracy 

becomes steady and stable again after the 50th epoch. There 

are only slight variations in the model accuracy from this 

point until the end of the training. However, a great drawback 

of the ResNet approach is the long training time. Training 
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with 100 epochs took 144 hours or 6 days due to the 

complexity of the network.  

From the accuracy curves, it can be concluded that the 

validation accuracy converges after 50 epochs. Although the 

validation accuracy at the end of the training is 99.97 % and 

99.91 % on the training and validation sets, respectively, the 

model fails to adequately classify the data on the test set and 

has poor test accuracy: 59.98335 %. This leads to the 

conclusion that the ResNet model trained with 100 epochs 

shows signs of overfitting. To address this issue, the training 

was stopped after 35 (the accuracy graphs for 35 epochs of 

training are shown in Fig. 9) and after 60 epochs. In both 

cases, the accuracy was the same as that obtained after 100 

epochs. To find the cause of the low accuracy, the confusion 

matrix was examined. Table IV shows the confusion matrix. 

It can be concluded that the model classifies all samples as 

“degree 1” class, which was the dominant class in the training 

set. This is a huge problem, especially since the model does 

not distinguish between the “degree 1” state that requires 

corrective actions and the “degree 2” state that requires 

immediate shutdown of the system. 

 
Fig. 9.  ResNet training and validation accuracy curves. 

TABLE IV. RESNET CONFUSION MATRIX. 

ResNet 

T
ru

e “optimal” 0 1670 0 
“degree 1” 0 5014 0 
“degree 2” 0 1675 0 

  “optimal” “degree 1” “degree 2” 

  Predicted 

 

4. ECNN results 

The execution for 100 epochs of the ECNN model takes 

almost the same time as CNN: 3 hours and 48 minutes, but it 

shows slightly better performance. The training and 

validation accuracy curves are presented in Fig. 10. The 

accuracy curve shows great oscillations in the performance 

on the validation set during the first 60 epochs of training. 

After that point, the curve is much smoother and starts to 

converge after 75 epochs. By the end of the training, the 

performance is stable, and the validation curve shows high 

accuracy values. The accuracy in the test set was 95.80093 %, 

which is the best accuracy compared to the other models 

applied in this research.  

The related confusion matrix is presented in Table V. 

Similar to the CNN model, the class “degree 1” was 

misclassified more frequently, but to a lower extent than in 

the CNN case. A slightly larger number of members of this 

class was classified as “degree 2” than during the CNN 

simulation. However, the number of falsely classified 

members of the “degree 1” class as “optimal” was 

significantly lower, which shows a great advantage of ECNN 

compared to CNN, as this type of misclassification could 

cause greater problems as the model does not recognise that 

a fault exists and the system continues to work as if its health 

state is optimal. The model did not falsely classify a single 

member of the class of “degree 2”. 

 
Fig. 10.  ECNN training and validation accuracy curves. 

TABLE V. ECNN CONFUSION MATRIX. 

ECNN 

T
ru

e
 “optimal” 1656 13 1 

“degree 1” 302 4677 35 
“degree 2” 0 0 1675 

  “optimal” “degree 1” “degree 2” 

  Predicted 

VI. DISCUSSION 

To summarise, Table VI shows the test accuracies of each 

model after 100 epochs of training, and the time needed to 

execute the training. It is obvious that the CNN and ECNN 

models have achieved a much higher accuracy than FCN and 

ResNet. Also, the time needed to train CNN and ECNN 

models is significantly shorter than the time needed for FCN 

and ResNet models. 

TABLE VI. ECNN CONFUSION MATRIX. 

Model Accuracy Time 

CNN 0.920565 3 h and 40 min 

FCN 0.747458 61 h and 67 min 

ResNet 0.599833 144 h 

ECNN 0.958009 3 h and 48 min 

 

The ResNet model has achieved the lowest accuracy and is 

unable to perform classification on the test set due to 

overfitting issues. The FCN model achieves better accuracy 

from ResNet, but still fails to perform the classification task 

in a satisfactory manner after 100 epochs of training. The 

CNN model achieves a high accuracy of 92.0565 % on the 

test set, while the ECNN model shows slightly better 

performance with 95.8009 % test accuracy.  

The time needed to run CNN and ECNN training was 

similar, with the latter being slower. The CNN network took 

the least time to train, while the FCN training took a 

considerably longer time period to train. The ResNet training 

lasted the longest. The main advantage of the ECNN network 

in comparison to the regular CNN network lies in the fact that 
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better performance and higher test accuracy are achieved with 

an insignificant difference in the time needed to train this 

model compared to CNN. Nevertheless, there are several 

drawbacks regarding the ECNN model development process. 

The choice of endocrine factor can have a significant 

influence on the behaviour of the model; thus, its performance 

could be drastically degraded if this factor is not selected 

properly. Furthermore, since there is no methodology that 

defines the procedures that ensure the right choice of the 

hyperparameter of the environmental stimulus, the selection 

of endocrine factors is based on the trial-and-error process. 

Although the ECNN training phase takes almost the same 

amount of time as the CNN training phase, the trial-and-error 

process of the factor selection is often time-consuming. 

Therefore, designing a reliable ECNN model can take much 

more time compared to the traditional CNN model, but this 

cannot be concluded solely on the basis of the analysis of the 

research results. 

VII. CONCLUSIONS 

The rapid growth and development of AI technologies 

generates a tendency to move toward sophisticated 

maintenance procedures in industrial systems. This 

inclination has an impact on the most recent advances in fault 

diagnosis, leading to strong demands for the design of highly 

intelligent strategies enabling the implementation/application 

of predictive maintenance in industry to reduce the 

requirement for hiring specialised staff.  

This paper provides a contribution in the domain of fault 

diagnosis, proposing a novel intelligent algorithm for fault 

detection in DC motors. In this study, the level of unbalance 

of a rotating DC motor shaft is determined using an intelligent 

diagnostic system. The proposed diagnostic system consists 

of a novel neuroendocrine model: endocrine convolutional 

neural network (ECNN) combining traditional CNN structure 

with artificial endocrine influence through artificial glands. 

The efficiency of the designed model was evaluated by 

comparing its performance with those of the CNN, FCN, and 

ResNet models for the complex time-series classification of 

the vibration signal. Tracking and analysing vibration signals 

is of significant importance for a proper predictive 

maintenance of equipment in industrial environments, which 

motivated the authors to verify the efficiency of ECNN using 

this signal.  

The model has been shown to achieve a high accuracy of 

95.8009 % with a considerably shorter training time in 

comparison to the ResNet and FCN models. Its main 

advantage compared to the traditional CNN lies in the higher 

accuracy obtained with a small/negligible difference in 

training time. With this in mind, the newly proposed ECNN 

model can be used and implemented successfully as a part of 

the diagnostic system. However, it should be noted that, 

compared to the traditional CNN model, developing a reliable 

ECNN model consumes considerably longer time 

considering not only the training time, but also the time 

needed to select endocrine factors.  

The development of a reliable neuroendocrine diagnostic 

system, along with its implementation for predictive 

maintenance and self-healing control, represents the main 

goal/course of our future research. The concept behind self-

healing control lies in the idea that the functionality of the 

entire system remains unaffected by malfunction in a single 

part of the system by choosing an adequate control strategy 

based on the signal from the diagnostic system. This method 

gives opportunity to respond to the demands for greater 

autonomy of the system. The research efforts will be 

orientated towards 3D crane, ABS system, servo systems, and 

two rotor aerodynamic systems. 
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