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Abstract—This paper introduces a decoupled unknown input 

observer (DUIO) for Takagi-Sugeno (T-S) systems, designed 

specifically for the synchronous reluctance motor (SynRM). 

The proposed DUIO method demonstrates enhanced 

robustness and accuracy in state estimation by effectively 

decoupling the influence of unknown inputs from the 

estimation error dynamics. Furthermore, the DUIO exhibits 

superior performance compared to the proportional integral 

observer (PIO) and the proportional multi-integral observer 

(PMIO) presented in previous studies, without the need for 

prior knowledge of the unknown input form or assumptions 

regarding its boundedness. Stability conditions, achieved using 

the quadratic Lyapunov function, are expressed as linear 

matrix inequalities (LMIs), which ensure asymptotic 

convergence of the estimation error. The effectiveness of the 

DUIO method is further validated in various scenarios through 

hardware-in-the-loop (HIL) implementation. This innovative 

approach significantly enhances the accuracy and reliability of 

SynRM state estimations and unknown input detections. 

 
Index Terms—Decoupled unknown input observer; 

Hardware-in-the-loop validation; Synchronous reluctance 

motor; Takagi-Sugeno fuzzy system.  

I. INTRODUCTION 

Synchronous reluctance motors (SynRMs) have gradually 

emerged as potential alternatives to traditional types of 

machines due to their commendable performance 

characteristics and resourceful utilities [1]. SynRMs are 

distinguished by their straightforward design, high 

efficiency, and significant torque density, which all 

contribute to their extensive use in various areas such as 

electric vehicles [2], [3], pump applications [4], [5], and 

industrial applications [6]. With a notable lack of permanent 

magnets and rotor windings, these motors boast improved 

reliability and reduced maintenance requirements, 

demonstrating their integral role in sustainable and energy-

efficient power systems. 

However, with the wide use of these systems, their 

robustness against potential faults and errors became 

prominent. In this regard, observers have played a 

significant role in enhancing the reliability and safety of 

industrial systems. These mathematical constructs have 

allowed for the estimation of both system states and 

unknown inputs (UIs), which could be indicative of faults. 

The importance of observers lies in their ability to swiftly 

detect and diagnose faults, thus minimising system 

downtime and mitigating adverse consequences. Estimating 

these UIs is critical as it facilitates a better understanding 

and control of the behaviours of the system, therefore 

leading to improved efficiency and system longevity [7]–

[9]. 

The historical development of observers has been a 

journey of continuous innovation that goes back to the 

groundbreaking work of Kalman and Luenberger in their 

research papers in [10] and [11]. These seminal works were 

designed for linear systems; however, real-world systems 

often exhibit nonlinear behaviours, which poses a 

substantial challenge to the linear assumption. To address 

this issue, extended observers, such as the extended 

Luenberger observer and the extended Kalman filter, have 

emerged. These were developed in the basis of the 

linearisation method around an operational point, allowing 

them to handle mild nonlinearities. This approach enables 

the principles of the Kalman filter and the Luenberger 

observer to be applied to a broader class of systems. Despite 

their widespread use, these methods can struggle with highly 

nonlinear dynamics or systems that are not well suited for 

linearisation. In response to these limitations, several 

alternative methods have been developed. This paper uses 

the capabilities of the Takagi-Sugeno (T-S) fuzzy model, a 

powerful tool in the analysis of nonlinear systems, to 

estimate the state and UI [12]. The T-S models provide a 

comprehensible, systematic, and efficient approach to 

representation, identification [13], and control of complex 

nonlinear systems [14]. This method, through its linguistic 

rule base and continuous interpolation, provides enhanced 

flexibility and precision and has become a popular choice in 

control system studies [15]. The application of T-S models 

for UI estimation is the cornerstone of this work, which 
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demonstrates the capabilities of observer design in SynRM. 

There are two main categories of UI observers in the 

existing literature. The first category encompasses 

simultaneous state and UI observers, such as proportional 

integral observers (PIO) and proportional multi-integral 

observers (PMIO), which have found broad application in 

various domains. For example, Abdelmalek Azar, and Dib 

[16] proposed the application of PIO for fault-tolerant 

control in doubly fed induction generator-based wind 

turbines. Boukhlouf, Hammoudi, Saadi, and Benbouzid [17] 

used the PIO to estimate the states and the UI in SynRM. 

Despite its widespread use, PIO has a significant limitation: 

It considers the UI to be either constant or with slow 

variation, according to the assumption that the first 

derivative of the UI equals zero. Consequently, when the UI 

variation is rapid, PIO can only deliver moderate results. 

The PMIO, on the other hand, is suitable for the polynomial 

UI form by considering the qth derivative of the UI to be 

zero; this characteristic contributes to enhancing the 

estimation precision of the UIs. The PMIO observer has 

been used recently in [18] to enhance the UI estimation of 

the SynRM. Although PMIO covers a broader class of UIs 

compared to PIO, it faces challenges when the order of the 

polynomial UI exceeds the design limit of the observer or 

when the form of the UI is nonpolynomial. In this paper, the 

second category of UI observer, the decoupled unknown 

input observer (DUIO), is adopted. DUIO separates the UI 

from the state estimation error and estimates them 

independently. Unlike other observers, DUIO does not 

require prior determination of the UI order, hence allowing 

for the estimation of a larger class of unknown signals. The 

comparative studies presented by the authors in [19] 

demonstrated DUIO’s superiority over PMIO. In [20], the 

authors introduced a DUIO for discrete-time uncertain 

systems. They applied this to a DC motor controlling an 

inverted pendulum using a nonquadratic Lyapunov function, 

which offers less conservatism compared to the quadratic 

function. Despite its advantages, the DUIO decoupling 

strategy for SynRM has not been examined, which has 

motivated the authors of this paper to investigate the 

improvement of state and UI estimates compared to both the 

PIO proposed in [17] and the PMIO. 

To validate the proposed method, hardware-in-the-loop 

(HIL) testing is implemented. HIL is a robust validation and 

testing methodology that incorporates real-time simulation 

to combine physical hardware and virtual modelling, thus 

enabling comprehensive analysis and testing of control 

systems. This procedure provides unique advantages, such 

as reducing the development cycle and costs, allowing safer 

and more flexible testing environments, and facilitating 

earlier detection and resolution of potential problems [21]–

[23]. The application of HIL validation in this paper 

reinforces the robustness and reliability of the proposed 

DUIO method in the SynRM framework and opens up new 

avenues for future research and development in this field. 

The key contribution of this work consists in enhancing 

the estimation of UIs in SynRM through the following. 

 Design of an enhanced robust observer for state and UI 

estimation in SynRMs, achieved by effectively 

segregating the influence of the UI from the dynamics of 

the estimation error. 

 Provide a higher accuracy in estimating UIs for 

SynRM, outperforming both the proportional integral 

observer proposed in [17] and the proportional multi-

integral observer applied in [18]. Notably, this observer 

does not require prior knowledge of the form of the UI, 

nor does it assume that the input is bounded compared 

with the previous mentioned observers.  

 The hardware-in-the-loop implementation was 

conducted to evaluate the performance of the proposed 

observer, comparing it with the PIO and the PMIO. 

This paper comprises eight sections, each with a specific 

focus. Section II introduces the mathematical model of 

SynRM. Section III gives the Takagi-Sugeno fuzzy 

representation of the system. The DUIO structure and 

related stability conditions are explained in Section IV, 

while the methodology for UI estimation is discussed in 

Section V. Section VI explores the application of the 

proposed observer on the SynRM, and a real-time 

comparative test of DUIO, PIO, and PMIO is provided in 

Section VII. The article concludes in Section VIII with 

suggestions for future improvements. 

II. MATHEMATICAL MODEL OF SYNCHRONOUS 

RELUCTANCE MOTOR 

The mathematical model of the synchronous reluctance 

motor in the rotational 𝑑 − 𝑞 reference is given by the 

following [24]: 
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where 𝑉𝑠𝑑 and 𝑉𝑠𝑞 represent the direct and quadrature stator 

voltages, respectively; while 𝑖𝑠𝑑 and 𝑖𝑠𝑞 correspond to the 

direct and quadrature stator currents. 𝜔 refers to the 

electrical angular speed, and 𝑇𝐿 denotes the load torque. The 

remaining parameters are defined in Section VI. 

By defining 𝑥(𝑡) = [𝑖𝑠𝑑 𝑖𝑠𝑞 𝜔], 𝑢(𝑡) = [𝑢𝑠𝑑 𝑢𝑠𝑞], 
and 𝑑(𝑡) = 𝑇𝐿(𝑡), the state-space representation of the 

dynamical model of the SynRM is as follows: 

 
         

     

,

,

x t A x x t Bu t Ed t

y t Cx t Gd t

  


 

 (2) 

where 𝑥(𝑡)   ∈   ℝ𝑛: the state vector, 𝑢(𝑡)   ∈   ℝ𝑛𝑢: the 

known input vector, 𝑑(𝑡)   ∈   ℝ𝑛𝑑: the UI vector 𝑦(𝑡)   ∈
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III. TAKAGI-SUGENO FUZZY MODEL FOR THE 

SYNCHRONOUS RELUCTANCE MOTOR 

The Takagi-Sugeno (T-S) model provides an effective 

capture of the complex nonlinear behaviours of SynRM 

through a combination of linear models. The proposed 

observer is designed based on this representation, by 

incorporating the sector nonlinearity approach to obtain an 

exact representation of the original nonlinear model. 

The T-S representation of the SynRM model (2) is given 

as follows: 
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where the known matrices are represented by 𝐴𝑖 ∈
ℝ𝑛×𝑛,  𝐵𝑖 ∈ ℝ𝑛×𝑛𝑢 , 𝐸𝑖 ∈ ℝ𝑛×𝑛𝑑 , 𝐶 ∈ ℝ𝑛𝑦×𝑛, and 𝐺 ∈

ℝ𝑛𝑦×𝑛𝑑. Lastly, 𝜇𝑖(𝑥(𝑡)) is identified as the weighting 

functions that verifies the convex sum property described as 

follows: 
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By identifying the premise variables 𝜉1 = 𝑖𝑠𝑞 and 𝜉2 = 𝜔 

as the nonlinear terms present in the dynamic SynRM model 

in (3), the weighting functions can be described as follows: 
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And using the sector nonlinearity approach, the following 

functions are obtained: 
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The limits of these premise variables are: 𝜉1(𝑗) =
[𝑖𝑠𝑑𝑚𝑎𝑥

𝑖𝑠𝑑𝑚𝑖𝑛], 𝜉3(𝑘) = [𝜔𝑚𝑎𝑥 𝜔𝑚𝑖𝑛]. By substituting 

every one by its corresponding limit in a loop, it is possible 

to determine the sub-matrices 𝐴𝑖 , 𝐵𝑖 , and 𝐸𝑖 of the 

multimodel (4) as indicated below:  
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IV. DECOUPLED UNKNOWN INPUT OBSERVER DESIGN 

The Takagi-Sugeno model of the SynRM, as outlined in 

the preceding section, employs unmeasurable premise 

variables. The design of the proposed observer will therefore 

tackle this particular type of system. 

Let us proceed by examining the following DUIO: 
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The estimation error is given as follows 
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Therefore, the estimation error dynamics is given by 
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By using the change of variable 𝐾𝑖 = 𝑁𝑖𝐻 + 𝐹𝑖 and 

verifying the conditions (13) to (15): 

 0,HG   (13) 

 ,i iN K C   (14) 

 .i iRE K G  (15) 

The error dynamics is then given by 
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Lemma 1: [25] Let Φ(𝑥):  𝑅𝑛 => 𝑅𝑛 be a vector function 

with Φ𝑖(𝑥):  ℝ𝑛 => ℝ its 𝑖𝑡ℎ component. By assuming that 

Φ(𝑥) is differentiable, then there are constant vectors 𝑧1,
. . ., 𝑧𝑛  ∈  (𝑎, 𝑏), 𝑧𝑖 ≠  𝑎, 𝑧𝑖 ≠  𝑏 for 𝑖  =   1, . . ., 𝑛 
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where 𝐸𝑛 is the canonical basis of the vectorial space ℝ𝑛 for 

all 𝑛 ≥ 1 
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Applying the T-S representation, the following form is 

obtained 
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𝒜𝑗 indicates the sub-model corresponding to the 

nonlinear component ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑒𝑛(𝑖)𝑒𝑛(𝑗)𝑇 𝜕Φ𝑖(𝑧𝑗)

𝜕𝑥𝑗
 and 

ℎ𝑖(𝑧(𝑡)) represents its weighting functions, whereas 𝑞 

signifies the total number of sub-models. 

Using the differential mean value theorem described in 

Lemma 1, the term (Φ(𝑥) − Φ(�̂�)) is given by (19); 

therefore, the error dynamics becomes 
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Based on the work presented in [26], the following 

theorem provides sufficient conditions to guarantee the 

asymptotic convergence of the error dynamics (20). 

Theorem 1: The estimation error converges 

asymptotically toward zero with the decay rate 𝛼 if there 

exist matrices 𝑃 = 𝑃𝑇 ∈   ℝ𝑛𝑥×𝑛𝑥 > 0, 𝑀𝑖 ∈   ℝ𝑛𝑥×𝑛𝑦 , and 

𝑆 ∈   ℝ𝑛𝑥×𝑛𝑦 such that the following conditions holds ∀  𝑖 =
  1, . . . , 𝑟 and 𝑗 =   1, . . . , 𝑞:  

     2 ,
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The observer matrices are given by:  
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Proof: Let us define the quadratic Lyapunov function as 
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1 1

.

r q

i ji j

T

j j i j j i

V t t h z t

P PHC PK C P PHC PK C

 
 

 

      
  

 

 (30) 

By using the following change of variables: 

 ,S PH  (31) 

 ,i iM PK  (32) 

coupled with the decay rate expressed as 

   2 ,V t P  (33) 

the inequalities outlined in (21) of Theorem 1 are obtained. 

Integrating (31) with (13), (22) is obtained. Furthermore, 

combining (31) and (32) with (15) results in (23). 

V. UNKNOWN INPUT ESTIMATION 

After completing the state estimation and effectively 

isolating the impact of the UI on the estimation error, the UI 

can be deduced using the estimated state vector. 

In the context of system (3), the UI is present alongside 

its associated influence matrix 
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Therefore, the UI can be deduced using the following 

equation 
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where 𝑊−(𝑡) is left pseudo-inverse of 𝑊(𝑡) that exists if 

the following condition is verified at every instant 𝑡 

    ,drank W t n  (36) 

where 𝑛𝑑 is the dimension of the UI vector, and 𝑊−(𝑡) is 

given in the following equation 
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VI. OBSERVER DESIGN FOR SYNCHRONOUS RELUCTANCE 

MOTOR 

This section outlines the process of determining the gain 

of the DUIO applied to the SynRM. To validate Theorem 1, 

it is necessary to first identify the 𝒜𝑖 terms.  

Since that ∀𝑖 = 1 … 4, the matrices 𝐵𝑖 are identical, as 

well as for 𝐸𝑖, then the value of Φ(𝑥) in (12) can be reduced 

to 
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By defining the limits of the premise variables as: 𝜉1(𝑗) =

[𝑖𝑠𝑑𝑚𝑎𝑥
𝑖𝑠𝑑𝑚𝑖𝑛], 𝜉2(𝑘) = [𝑖𝑠𝑞𝑚𝑎𝑥

𝑖𝑠𝑞𝑚𝑖𝑛], and 𝜉3(𝑑) =

[𝜔𝑚𝑎𝑥 𝜔𝑚𝑖𝑛], and by employing the T-S representation 

along with the sector nonlinearity approach on 
𝜕𝐴(𝑥)𝑥

𝜕𝑥
, the 

terms 𝒜𝑖 can be obtained by substituting every premise 

variable by its corresponding limit in a loop as follows 

 

   

   

   

3 2

3 1

2 1

.

q qs

d d d

d s d

i

q q q

L LR
d k

L L L

L R L
d j

L L L

f
k j

Jm

 

 

 

 
 

 
 

    
 
 
 
  

  

Taking into account the output as 𝑦(𝑡) = 𝜔(𝑡), and using 

a decay rate of 𝛼 = 6.5, Theorem 1 is used to deduce the 

observer gain for the DUIO of the SynRM: 

 

0 0 0.0020

0 0 0.0592 ,

0 0 8.4650

iN

 
 


 
  

18

16

14

9.5410 10

2.9143 10 ,

4.0856 10

iF







 
 

  
   

1...8,i    

 

0

0
,

0

1

H

 
 
 
 
 
 

1 0 0

0 1 0 ,

0 0 0

R

 
 


 
  

  

 3

0.2304 0 0

0 0.0164 0 10 .

0 0 6.8698

P

 
 

 
 
  

  

The motor parameters are given by the following: Rated 

power 𝑃𝑟 = 2.2  [kW], Rated voltage 𝑉𝑟 = 220/380  [V], 
Rated speed Ω𝑟 = 1500  [rpm], Stator resistance 𝑅𝑠 =
1.71 [Ω], Inductance of direct axis 𝐿𝑑 = 0.15 [H], 
Inductance of quadratic axis 𝐿𝑞 = 0.04 [H], Moment of 

inertia 𝐽 = 0.0137 [kg × m2], Number of pair of poles 𝑝 =
2, and Viscous friction  𝑓 = 0.00036 [Nm/rad/s]. 

VII. HARDWARE-IN-THE-LOOP VALIDATION 

This section presents an experimental test conducted to 

validate the effectiveness of the proposed DUIO. The 

evaluation is split into two subsections. The first subsection 

focusses on assessing the effectiveness of the state and UI 

estimation of the proposed observer. The second subsection 

offers a comparative analysis in the context of UI estimation 

of DUIO against PIO, previously introduced in [17], and 

PMIO, proposed in [18]. The UI observer is integrated 

within the indirect field-orientated control strategy that 

manages the operation of the SynRM in these experiments. 

The speed regulator used is of the “IP” type with 𝐾𝑃Ω =
5.7070 and 𝐾𝐼Ω = 156.9792, and the current regulation is 

of the “PI” type with 𝐾𝑃𝑖 = 86.8056 and 𝐾𝐼𝑖 = 989.5833. 

Figure 1 shows the overall HIL architecture employed in 

the experiment. 

 
Fig. 1.  Hardware-in-the-loop architecture.  

This configuration used two Dspace 1104 cards, operating 

with a sampling time of 𝑇𝑠 = 0.0001  (s). The initial card 

was tasked with emulation of both the observer and the 

control circuit. Concurrently, the secondary card was 

exclusively dedicated to the emulation of SynRM. Figure 2 

shows the experimental setup developed within the MSE 

Laboratory. 

A. Evaluation of Decoupled Unknown Input Observer 

Performance  

The experiment proceeded by using the speed profile 

depicted in Fig. 3, in conjunction with a flux reference set to 

0.8 (Wb). To substantiate the stability of the error 

dynamics, the system’s initial conditions were configured as 

𝑥0(𝑡) = [−1 2 50]. Figures 3 through 6 present the 

outcome of the state estimate. Furthermore, Figure 7 

illustrates the UI profile and its estimation, while its 

estimation error is clearly represented by Fig. 8.  

The results shown in Figs. 3 through 8, along with those 

of Table I, demonstrate the successful estimation by the 

observer of the SynRM states despite disturbances in 

information transmission between the two platforms and 

differences in initial conditions between the system and the 

observer.  

27



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 3, 2024 

 
Fig. 2.  Hardware in-the-loop test bench. 

 
Fig. 3.  Rotor angular speed curve. 

 
Fig. 4.  Direct axis stator current. 

 
Fig. 5.  Quadrature axis stator current. 

 
Fig. 6.  State estimation error. 

 
Fig. 7.  Unknown input estimation. 

 
Fig. 8.  Unknown input estimation error. 

TABLE I. STATE ESTIMATION PERFORMANCE. 

Observer 

performance 

Integral 

Square Error 

Integral 

Absolute 

Error 

Mean  

squared error 

𝑒𝑖𝑠𝑑
(𝐴) 0.0074 0.0588 0.0019 

𝑒𝑖𝑠𝑞
(𝐴) 0.2339 0.4289 0.0585 

𝑒𝑑(Nm) 0.4360 0.3779 0.1089 

 

This effective state estimation, even under varying initial 

conditions, highlights the robustness and adaptability of our 

observer under challenging real-time application conditions. 

A further significant observation, illustrated by Fig. 7, is the 

observer’s ability to adeptly handle the varying nature of the 

UI. Even with these variations, the observer’s estimation of 

this UI was tracked perfectly, with only minor errors that 
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remained within acceptable limits. This strong performance 

in the presence of UI changes significantly emphasises the 

overall reliability of the proposed observer. 

B. Comparative Results 

In this section, a comparative assessment is performed to 

evaluate the performance of the proposed DUIO observer 

against PIO and PMIO observers. The examination is 

centred on the ability of these observers to estimate UI 

under various conditions: slow, fast, and random UI 

variations. The ensuing results will highlight their 

adaptability and effectiveness, thereby offering a more 

comprehensive understanding of their potential utility in 

real-world applications. 

The observer gains obtained from PIO are given by: 
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and those for PMIO of order q = 3 (P3IO), are given by: 
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C. Case 1 (Slow Unknown Input Variation) 

A thorough comparative analysis involving DUIO, PMIO, 

and PIO was conducted under slow variations conditions of 

the UI. Figure 9 represents the actual UI and its 

corresponding estimations. Table II shows the various 

performance criteria for the estimation error. In these 

circumstances, it was found that the proposed observer had 

the best performance and lowest error criterion among the 

three observers.  

 
Fig. 9.  Unknown input estimation (case 1). 

TABLE II. UNKNOWN INPUT ESTIMATION PERFORMANCE         

(CASE 1). 

Observer 
Integral 

Square Error 

Integral 

Absolute 

Error 

Mean  

squared 

error 

PIO 1.6015 0.7519 0.2669 

P3IO 1.5907 0.5422 0.2651 

DUIO 0.4841 0.4198 0.0807 

 

Although primarily designed to estimate UIs with null 

derivatives, the PIO remarkably managed to effectively 

accommodate inputs with slow variations, essentially 

considering their derivatives as null. PMIO markedly 

demonstrated a good fit with this type of UI. Given its 

original design to handle unknown variable inputs, it is 

entirely expected that the PMIO performs well with simpler, 

slower variations. Moreover, the DUIO, although it did not 

consider the form of the UI during its design process, 

demonstrated its robustness and adaptability by providing a 

commendable estimation, thus highlighting the strength of 

its design.  

D. Case 2 (Fast Unknown Input Variation) 

This experiment, precisely configured for situations 

where the variation in the UI is fast, gives insight into the 

distinctive performances of PIO, PMIO, and DUIO. Figure 

10 offers a detailed illustration of both the actual UI and its 

respective estimates, while Table III outlines a range of 

performance criteria related to the estimation error of the UI. 

The PIO, as shown, struggled with fast changes in the UI, 

thus exposing its limitations in these situations. In contrast, 

the PMIO, whose design is fundamentally conceived to 

handle such variations, demonstrated significant adaptability 

and performance. However, there was a noticeable, though 

slight, drop in PMIO performance during the phase when 

the UI moved from a horizontal to a diagonal form. The 

increased derivative at this moment exceeds what the 

observer was originally designed for. Even so, the PMIO 

recovered quickly, managing to reduce the estimation error 

promptly. Under these conditions, the performance disparity 

between these observers became considerably more 

pronounced, a contrast further elaborated in Table III. 

Meanwhile, the proposed DUIO consistently performed at a 

high level, much as in the first experiment. The resulting 

estimates aligned closely with the original UI, despite its 

rapid variation, illustrating once again the effectiveness of 

the DUIO in providing accurate estimates in various 

scenarios.  

TABLE III. UNKNOWN INPUT ESTIMATION PERFORMANCE 

(CASE 2). 

Observer 
Integral 

Square Error 

Integral 

Absolute 

Error 

Mean  

squared 

error 

PIO 0.4610 0.8667 0.1537 

P3IO 0.0535 0.2930 0.0178 

DUIO 0.0120 0.1452 0.0040 

 
Fig. 10.  Unknown input estimation (case 2). 
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E. Case 3 (Random Unknown Input Variation) 

In the third examination performance test, visualised in 

Fig. 11 and quantified in Table IV, the UI displayed an 

unpredictable and random pattern, thereby posing a rigorous 

challenge for the three observers. Both PIO and PMIO 

experienced diminished performance, as the unexpected 

variability in the UI outpaced what these observers were 

initially designed to manage. However, even within this 

complex environment, PMIO maintained a level of 

performance that surpassed PIO, showcasing its resilience 

amidst unpredictable variations. Concurrently, the proposed 

DUIO preserved its consistent high performance and 

remarkable accuracy, deftly managing the random form of 

the UI. This experiment reaffirmed the effectiveness of the 

robust DUIO design, demonstrating its ability to flexibly 

accommodate various forms and fluctuations of UIs. In 

comparison, the constrained performances of PIO and PMIO 

were highlighted, emphasising their limitations when faced 

with scenarios that their specific designs did not account for.  

 
Fig. 11.  Unknown input estimation (case 3).  

TABLE IV. UNKNOWN INPUT ESTIMATION PERFORMANCE 

(CASE 3). 

Observer 
Integral 

Square Error 

Integral 

Absolute 

Error 

Mean  

squared 

error 

PIO 6.0136 2.3199 3.5114 

P3IO 4.1586 1.3628 2.4282 

DUIO 0.0889 0.2012 0.0519 

VIII. CONCLUSIONS 

This work highlights a notable advancement in the 

estimation of UIs applicable to synchronous reluctance 

motors, validated through hardware-in-the-loop 

experimentation. The proposed DUIO showed a significant 

improvement over the previously implemented PIO and 

PMIO in terms of precision under different conditions. The 

capacity of the UI estimation was rigorously tested under 

three distinct scenarios: slow, rapid, and random variations. 

Across all these conditions, the DUIO had best performance 

and lowest error criterion among the other observers, 

consistently demonstrated its superiority, outperforming the 

other observers and proving its robust design, which proved 

adaptable to various forms and fluctuations of UIs. This 

work not only reaffirms the effectiveness of DUIO, but also 

highlights its potential for broader application in similar 

scenarios. Building on this success, future work can delve 

into the design of feedforward and fault-tolerant control 

strategies, aiming to further improve the overall 

performance of the control system.  
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