
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 30, NO. 1, 2024 

 

 

Surface Deformation Prediction Model of High and 

Steep Open-Pit Slope Based on APSO and 

TWSVM 

 
Du Sunwen1,2,*, Song Ruiting1,2, Qing Qu3, Zhao Zhiying1,2, Sun Hailing1,2, Chen Yanwei1,2 

1College of Mining Engineering, Taiyuan University of Technology, 

Yingze West St. 79, 030024 Taiyuan, P. R. China 
2Shanxi Province Coal-Based Resources Green and High-Efficiency Development Engineering Center, 

Yingze West St. 79, 030024 Taiyuan, P. R. China 
3Faculty of Mechanical Engineering, Opole University of Technology,  

Opole, 45-001, Poland 
*dusunwen@tyut.edu.cn; songruiting0760@link.tyut.edu.cn; quqingpl@126.com; zhaozhizying@163.com; 

shldezhanghu@outlook.com; 2023521168@link.tyut.edu.cn 

 

 

Abstract—At present, due to the complex and changeable 

geological conditions, the precise deformation prediction 

technology of high and steep slope could not achieve an accurate 

prediction. In particular, the single forecasting model has some 

problems such as poor stability, low precision, and data 

fluctuation. In practice, excavating the complex nonlinear 

relationship between open-pit slope surface deformation 

monitoring data and various influencing factors and improving 

the accuracy of the deformation prediction of high and steep 

slopes is the key to safe open-pit mine production. It proposed to 

introduce the position factor and the velocity factor into a twin 

support vector machine (TWSVM). The adaptive subgroup 

optimisation (APSO) algorithm is selected for parameter 

optimisation. Through the comparative analysis of TWSVM, 

genetic algorithm-TWSVM (GA-TWSVM), and the proposed 

APSO⁃TWSVM, the experimental data show that the mean 

absolute error (MAE) values of the three models are 13.29 %，

8.17 %, and 1.27 %, the RMSE - 47.83 %，6.52 %, and 3.02 %, 

respectively; the prediction time for APSO⁃TWSVM is 

improved by 62.5 % compared to GA-TWSVM. 

 
Index Terms—High and steep slope; Slope surface 

deformation prediction; Twin support vector machine; 

Adaptive subgroup optimisation. 

I. INTRODUCTION 

The surface deformation of the mine slope is a common 

phenomenon in the mining process, but when the slope 

deformation is accumulated to a certain extent, it will cause 

great damage to the mining area, and even geological 

disasters such as cracks, collapses, and landslides [1]. Due to 

the influence of many factors, such as the meteorological 

environment, the geological structure, and the activities of 

artificial mining, the slope deformation prediction model is 

generally a complex and nonlinear model [2]. The open-pit 

slope surface deformation prediction model of is established 

to analyse the coupling relationship between the factors that 

affect slope deformation and the amount of direct 

deformation, so as to predict and warn the main deformation 

of the slope in advance, and to take disaster prevention 

measures in advance to ensure the safety of personnel and 

properties. 

Aiming at the prediction of the surface deformation of the 

mine slope, many experts and scholars have porposed a 

variety of different prediction methods. Currently, open-pit 

slope deformation prediction models mainly include the 

statistical model, the deterministic model, and the artificial 

intelligence model [3]. The artificial intelligence model is 

suitable for the construction of complex nonlinear models, 

which significantly improves the accuracy of slope prediction 

[4]. Artificial intelligence models include the random 

decision forest model [5], the neural network model [6], the 

support vector machine [7], the extreme learning machine [8], 

etc. However, when the random decision forest model has a 

large number of features or contains a large number of 

decision trees, the system is prone to overfitting [5], and the 

neural network model is prone to overfitting and local optimal 

solutions during operation [9]. The SVM model is suitable for 

processing high-dimensional sparse data with a small number 

of samples, but the support vector machine (SVM) model is 

highly dependent on the predictive performance of selected 

kernel parameters [10]. In addition, the SVM prediction 

model also has the problem of slow convergence speed. Time 

is very critical for disaster prevention in short-term 

deformation prediction, so it is also very critical to improve 

convergence speed. 

The twin support vector machine (TWSVM) is a derivative 

of the support vector machine. Compared to the support 

vector machine model, it not only has higher training speed, 

but also has better generalisation ability [11]. Since the 

TWSVM model is affected by parameters, the parameters 

must be optimised by combining the genetic algorithm [12], 

the particle swarm algorithm [13], the artificial fish swarm 

algorithm [14], and other search algorithms to improve the 
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convergence speed and recognition accuracy of the model 

algorithm. Therefore, it is necessary to establish the 

combination prediction model strategy and make full use of 

the advantages of various models to improve the slope 

prediction accuracy. At present, the TWSVM model has been 

widely used in materials, machinery, electric power, and 

other fields, but it has not been used much in surface 

deformation prediction of open-pit slope, dam body, bridge, 

and other structures. In TWSVM, penalty factor and kernel 

function are the two most important parameters [15], which 

affect the computing power and the modelling effect of the 

model. Therefore, parameter optimisation of these two 

parameters is very critical, and it is necessary to use 

intelligent algorithms for parameter optimisation to improve 

the prediction effect [16]. 

Among commonly used parameter optimisation 

algorithms, the particle swarm optimisation (PSO) algorithm 

has a fast running speed, high prediction accuracy, and is easy 

to implement, but it is easy to fall into local optimal solutions, 

so it needs to be improved. Based on the particle swarm 

optimisation algorithm, the adaptive particle swarm 

optimisation (APSO) algorithm was proposed by introducing 

the position factor and the velocity factor [17]. Its operating 

mechanism is to reinitialise the particles before they fall into 

the local optimal solution, establish the APSO-TWSVM 

prediction model, and perform prediction verification and 

comparative analysis with the field measured data. 

II. DESCRIPTION OF THE PROPOSED APPROACH 

A. Influence Mechanism of Meteorological Factors 

The rainfall event in mine area is an important factor that 

affects slope stability. On the one hand, surface runoff is the 

main external force of mine slope breakage. The grinding 

pressure of the surface runoff will corrode the slope surface, 

erode the slope foot, and form a channel network. On the 

other hand, rainfall infiltration increases pore water pressure 

and decreases the cohesion and damping force of the soil. 

Therefore, rainfall can induce slope slide. The action 

mechanism of rainfall on slope land surface is shown in Fig. 

1. The influence of rainfall events on slope deformation in 

mining area is so great that we mainly monitor the influence 

of rainfall events on slope deformation from two aspects, one 

is the rainfall monitoring data and the other is the rainfall 

duration monitoring data [18]. 

 
Fig. 1.  The mechanism of action of rainfall on the slope landside.  

In addition, temperature is also an important factor that 

causes the deformation of the mine slope. The pore effect of 

the rock mass increases and the bonding strength of the rock 

mass decreases with increasing temperature. As a result, the 

rock strength, elastic modulus, elongation at break, and peel 

strength all decrease. The effect mechanism of slope regional 

temperature on slope land surface is shown in Fig. 2. 

  
Fig. 2.  The mechanism analysis of temperature influencing factor on slope 

landside. 

Rainfall and temperature can be used as important 

indicators of mine slope deformation and landslide. In 

addition to these two indexes, some other meteorological 

factors also have a strong influence on the deformation of the 

mine slope, such as atmospheric pressure, relative humidity, 

and artificial mining disturbance. All these will be used to 

predict the deformation of the mine slope in this work [19]. 

B. Twin Support Vector Machine 

The difference between twin support vector machine 

(TWSVM) and SVM is that SVM only builds a classification 

hyperplane for two types of training samples, while TWSVM 

searches for a pair of unparallel hyperplanes, and requires that 

one type of sample be relatively close and the other type of 

sample be relatively far away [20]. 

As an upgraded version of traditional classifiers, TWSVM 

has better classification capabilities than SVM, which is 

intended to find two nonparallel hyperplanes to solve two 

small-scale quadratic programming problems, and it is very 

suitable for solving approximate classification problems of 

samples. 

The first step can be taken as the data set of definite 

meaning training,   , | , 1,2, , ,n

i i iT x y x R i m   where 

ix  is the sample data,  1, 1iy     is the sample category, 

and m  is the total sample size: 
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wherein 1c  and 2c  are the penalty parameters, 1w  and 2w  

are the normal vectors of two hyperplanes, 1b  and 2b  are the 

offsets of two hyperplanes, 1

1 ,
me R  2

2

me R are all 1 

vectors, and 1q  and 2q  are the relaxation variables 

representing positive and negative class samples, respectively 

[21]. 

C. Adaptive Subgroup Optimisation 

The particle swarm optimisation (PSO) algorithm is built 

based on the imitation of the behaviour of birds looking for 

food. Its basic principle is that random particles constantly 

update and iterate their position and speed according to their 

understanding of themselves and their surrounding conditions 

and find the optimal value of the particles, in order to obtain 
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the optimal solution in space [22]. 

The information about the particles is represented by the 

population of particles  1 2, , ,
T

nX X X X  in dimension D 

[17]. The ith particle is represented by 

 1 2, , , ,
T

i i i iDX X X X  
iX represents the particle’s 

position in the search space, its velocity is 

 1 2, , , .
T

i i i iDv v v v  The individual optimal value is 

expressed as  1 2, , , .
T

i i i iDP P P P  The global optimal 

value of the population is  1 2, , , .
T

g g g gDP P P P  

In each iteration, the particle updates its own position, ,iX  

and velocity, ,iv  taking into account both its own best value 

and the overall best value for the search space. The formula 

is as follows: 
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where k is the forward algebra, w is the inertia weight, 1a  and 

2a  are the acceleration constants, and 1r  and 2r  are the 

random numbers between [0, 1]. 

Because PSO algorithms tend to fall into local optimality 

in their operations, we need to optimise the standard particle 

swarm. The optimised particle swarm optimisation algorithm 

is called the APSO algorithm [22]. 

The inertia weight has an important effect on the search 

range of the algorithm. A large inertia weight can enhance the 

global search ability of the algorithm, and a smaller inertia 

weight can improve the local search ability of the algorithm. 

To this end, a linear decreasing inertia weight algorithm was 

proposed; its expression is 

  max max min / ,w w I w w J    (5) 

where maxw  and minw  are the maximum and minimum 

weights, respectively; I is the current evolutionary algebra; J 

is the largest evolutionary algebra. 

The linear learning rate strategy can be carried out in the 

way of first large and then small or first small and then large 

to control the learning factors. Specifically, the strategy of 

starting with a large value and then decreasing will use a 

larger learning rate in the early iterations to accelerate the 

convergence speed of the algorithm and gradually decrease 

the learning rate in the later stage to improve the stability of 

the model. 

While the strategy of starting with a small value and then 

increasing will use a smaller learning rate in the early 

iterations to ensure the accuracy of the model. Then gradually 

increase the learning rate to accelerate the convergence speed 
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where 
1sc  and 

2sc  are the initial values for 
1c  and 

2c  in the 

iteration and 
1ec  and 

2ec  are the final values for 
1c  and 

2c  in 

the iteration. The ranges of 
1c  and 

2c  are [2.5, 1] and [1.5, 

2.75], respectively. 

According to (3), it is known that during the computation 

process, when particle i approaches the global optimum value 

,gP  if the last two terms of (3) approach 0, the velocity of the 

particle basically does not change. From (4), it is known that 

the position of the particle does not change, if at this point the 

global optimum is a local optimum, then the local optimum is 

reached. Therefore, introducing the velocity factor v  and the 

position factor   , 0 ,v    || ||ij ij gid X P   represents the 

distance between the current position of the ith particle in the 

jth dimension and the global optimal position. When the 

particles are iterating, a judgment is made before executing 

the position update and velocity update, if 
ijd   and 

,ijv v  then the position of the particle needs to be updated 

again, which can prevent the particle from falling to a local 

optimum [16]. 

D. APSO-TWSVM Prediction Model 

In this experiment, the proposed adaptive particle swarm 

optimization-TWSVM (APSO-TWSVM) method uses 

meteorological data to predict the deformation of the surface 

of the mine slope. TWSVM inputs are collected 

meteorological data such as the temperature, atmospheric 

pressure, cumulative rainfall, relative humidity, and 

refractive index [23].  

The APSO algorithm and the TWSVM model were used to 

build the prediction model using the following steps. 

Step 1: Collect surface deformation data and open-pit slope 

influencing deformation factors data, select the appropriate 

impact factor, create training and test sets, and normalise 

sample data.  

Step 2: Use the sample training set to train the TWSVM 

model and optimise its parameters with APSO: ① Initialise 

the population, determine the number of cycles of the 

algorithm, the population size, the optimisation range of the 

penalty factor ,C  and the kernel parameter ,  and set the 

initial position of the particles and the initial velocity by 

adopting the linearly decreasing method for the inertia 

weights w and the linearly learning factor 1c  and 2 ,c  

respectively; ② Calculate fitness; ③ Update the velocity and 

calculate the position of the particle according to (3), compare 

ijd  and the position factor ,  the updated velocity ,ijv  and 

the velocity factor .v  If the position of the particle 
ijd   

and the flight velocity ,ijv v  then recalculate the position of 

the particle, otherwise, update the position of the particle 

according to (3); ④ Analyse the comparative fitness value if  

with the optimal fitness value ,bestP  if ,i bestf P  then analyse 

the comparative fitness value if  and the optimal fitness value 

.bestP  If ,i bestf P  then ,best iP f  otherwise, if  remains 

unchanged; ⑤ Analyse the comparison between the optimal 

adaptation value bestP  and the global optimal value ;bestP  ⑥ 

If the end condition is satisfied, then stop the iteration, 
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otherwise, repeat ③～⑥. 

Step 3: The optimal parameters are output and substituted 

into the TWSVM model. 

Step 4: Test set samples are used to train the TWSVM 

model and the accuracy and fitting of the model are compared 

and analysed. 

The flow of the APSO⁃TWSVM prediction model is 

shown in Fig. 3.
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Fig. 3.  APSO-TWSVM predictive model flow.

III. APPLICATION OF THE PROPOSED FORECASTING METHOD 

A. Research area 

The research area is the Pingshuo Anjialing open-pit mine, 

located in Shuozhou City, Shanxi Province, which belongs to 

the low hills of the Pingshuo platform in the Shanxi loess 

plateau, and the whole area is mostly covered by loess. The 

study area belongs to the temperate semiarid continental 

monsoon climate, with dry, cold, and windy spring and winter 

and concentrated precipitation in summer and autumn with 

mild and cool and less wind. Rainfall occurs mainly in 

summer, which is also the high occurrence period of 

geological disasters on the mine slopes. The dip angle of the 

Anjialing open-pit mine is nearly horizontal, no geological 

fault is found in this mine area, and the influence of the 

geological structure on the slope is small. According to the 

geological regulations of the coal mine, the structure of the 

Anjialing open-pit belongs to a simple type.  

 
Fig. 4.  Overview of the monitoring area in the experiments. 

The Anjialing reverse fault and collapse column in the study 

area have little influence on the north slope. Therefore, the 

north slope of Anjialing is selected as the research object. The 

factors considered mainly include the physical geography, 

stratigraphic lithology, geological structure, and geotechnical 

geological characteristics of the study area. The prediction 

model mainly selects meteorological induced factors such as 

rainfall, rainfall duration, temperature and humidity, and 

human factors of mining disturbance, but does not consider 

rock lithology, geological structure, and other geotechnical 

geological characteristics. Figure 4 shows the high and steep 

slope of the Pingshuo Anjialing open-pit mine at the 

experimental site in this paper. 

B. Experiment Scheme and Design 

The experiment was carried out during a one-week interval 

from 3 June to 9 June 2023. During this period, a relatively 

obvious local collapse accident of surface deformation 

occurred on the north slope of the mining area due to rainfall. 

Rainfall data are of great value to verify the reliability of the 

prediction model and algorithm in this paper. As shown in 

Fig. 5, the deformation monitoring data are mainly collected 

by SSR-XT ground-based interference radar, and the data 

format consists of east coordinates, north coordinates, and 

elevation of specific points in the monitoring area. The 

coordinate data obtained by radar monitoring can be used as 

output data of the deformation prediction model. The SSR-

XT ground-based interference radar can achieve the 

measured deformation accuracy of 0.1 mm within a range of 

5 km. It is capable of remote noncontact accurate 

measurement of the monitored object. In view of the 

confidentiality of the measurement data, only part of the 

collected east coordinates are listed. The data on rainfall 

duration, cumulative rainfall, atmospheric pressure, 
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temperature, and humidity collected by the WXT510 

automatic weather station can be used as input data for 

deformation prediction models. The data of artificial mining 

activities are quantified according to the actual mining 

activities at the mining site. One hundred and fifty samples 

were recorded for the evaluation of the forecasting process. 

One hundred and forty-five of the samples were used to train 

the twin support vector machine (TWSVM) and the rest five 

samples were used to test the well-trained. 

The Weather Transmitter (WXT510) is the main actuator 

in the SSR-XT to collect meteorological data. Figure 6 shows 

the WXT510. WXT510 consists of 3 wind transducers, a 

precipitation sensor, a pressure sensor, and a humidity and 

temperature sensor; hence, it can measure six weather 

parameters, including wind speed and direction, duration of 

rainfall, cumulative rainfall, atmospheric pressure, 

temperature, and humidity. Herein, the precipitation sensor 

detects the impact of individual raindrops; then the volume of 

the drops is approximated to be proportional to the impact 

value to calculate the accumulated rainfall. The randomness 

of the wind speed and direction affects the stability of the 

network, so they are not included in the modelling system. 

The sixth factor in the image is the collection of mining data 

during that time period. 

 
Fig. 5.  Overview of the SSR-XT radar. 

 
Fig. 6.  Cutaway view of the WXT510: ① the wind transducers, ② the 

precipitation sensor, ③ the pressure sensor; ④ the humidity and 

temperature sensor. 

C. The Proposed Prediction Approach 

It mainly considers meteorological data and the 

disturbance factors of artificial mining and uses the adaptive 

particle swarm optimization-TWSVM (APSO-TWSVM) 

neural network to predict the slope deformation. The input of 

TWSVM is rainfall, duration of rainfall, temperature, 

atmospheric pressure, relative humidity, and artificial 

disturbance of the mining slope. Due to the strong 

randomness of wind speed and wind direction, wind speed 

and wind direction are not selected as input variables. The 

meteorological data output by TWSVM are the east 

coordinates, north coordinates, and elevation coordinates of 

the monitored location. Figure 7 shows the prediction process 

of this method. 

Testing meteorological data

TWSVM

APSO

Coordinate data

Temperature

Humidity

Optimising

Rainfall 

duration

Cumulative 

rainfall

Atmospheric 

pressure

Mining 

disturbance

 
Fig. 7.  Diagram of the intelligent prediction method. 

IV. THE APPLICATION OF THE PROPOSED PREDICTION 

METHOD 

In this experiment, three kinds of different methods are 

used to perform deformation data prediction analysis 

experiment. They are, respectively, twin support vector 

machine (TWSVM), genetic algorithm-TWSVM (GA-

TWSVM), and adaptive particle swarm optimisation-twin 

support vector machine (APSO-TWSVM). Tables I and Ⅱ 

and Fig. 8 show that the APSO-TWSVM model proposed in 

this paper is significantly superior to other models in terms of 

deformation prediction accuracy.  

TABLE I. THE PREDICTION ERROR USING TWSVM, GA-TWSVM, 

AND APSO-TWSVM PREDICTION METHOD [M]. 

Method Point 1 Point 2 Point 3 Point 4 Point 5 

TWSVM 0.1497 -0.3585 -0.7605 -1.0432 -1.0076 

GA-TWSVM -0.0070 0.2671 0.5595 0.5466 0.6620 

APSO-TWSVM -0.0675 -0.0935 -0.0676 0.0011 0.0888 

TABLE Ⅱ. MAE AND RMSE USING DIVERSE METHODS. 

Method MAE (%) RMSE (%) 

TWSVM 13.29 47.83 

GA-TWSVM 8.17 6.52 

APSO-TWSVM 1.27 3.02 

 

In addition, it also has the lowest prediction error compared 

to other prediction models. From the comparative analysis of 

the prediction data in this experiment, it can be seen that it is 

necessary to use the algorithm to optimise the TWSVM 

model, which greatly improves the prediction accuracy of 

TWSVM. In addition, for the optimisation part of TWSVM, 

APSO can better optimise the TWSVM model, on the one 

hand, optimise its prediction accuracy, and on the other hand, 

optimise its convergence speed. 

Figure 9 clearly compares and analyses the entire 

optimisation process of the TWSVM prediction model by GA 

and APSO optimisation algorithms.  
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(a) 

 
(b) 

Fig. 8.  Comparison of (a) forecast results and (b) forecast errors. 

As can be seen in Fig. 9(a), in the prediction process of the 

TWSVM model by the GA optimisation algorithm, the 

prediction model reached the convergence state after about 80 

iterations. However, as can be seen from Fig. 9(b), in the 

prediction process of the TWSVM model by the APSO 

optimisation algorithm, the prediction model reached the 

convergence state after only about 30 iterations. 

When comparing prediction results, it can be seen that 

APSO has unique and larger advantages in optimising 

TWSVM. Hence, the presented APSO-TWSVM model is an 

efficient deformation prediction model of the mine slope. 

 
(a) 

 
(b) 

Fig. 9.  Optimisation convergence curve of (a) GA-TWSVM model and (b) 

APSO-TWSVM model. 

V. CONCLUSIONS 

To improve the prediction accuracy of the surface 

deformation of the open-pit slope, the APSO⁃TWSVM model 

is proposed. The proposed model is faster and more predictive 

than SVM model. Due to the introduction of position factor 

and velocity factor, APSO optimisation algorithm has 

stronger global optimisation ability. In the process of 

establishing the deformation prediction model, the prediction 

accuracy and convergence speed of TWSVM, genetic 

algorithm-TWSVM (GA-TWSVM), and APSO-TWSVM 

are compared and analysed. The APSO-TWSVM model was 

formed by introducing the position factor and the velocity 

factor into the PSO algorithm. Therefore, among the three 

models compared, this model has the best prediction accuracy 

and the fastest convergence speed, and can better perform the 

task of predicting the deformation of the surface of the mine 

slope. Compared to the TWSVM model (13.29 %) and the 

GA-TWSVM model (8.17 %), the mean absolute error 

(MAE) value of the algorithm proposed in this paper is the 

lowest (1.27 %). In terms of convergence speed, compared to 

the 80-step iteration of the GA-TWSVM model, the proposed 

model requires only 30 steps of iteration, and its prediction 

time is improved by 62.5 %. 

Compared to other prediction models, the model has the 

following three advantages. First, because the model fully 

considers the factors that affect open-pit slope deformation, 

including meteorological factors and artificial mining 

disturbance factors, the model has a higher reliability than the 

traditional time series prediction model. Second, due to the 

combination of the APSO optimisation algorithm and the 

TWSVM model, the model has a higher prediction accuracy 

than the traditional model. Third, the fundamental difference 

between the TWSVM and the SVM model is that TWSVM 

solves binary classification problems by solving two sets of 

small quadratic programming, while SVM solves all 

classification problems by solving one large quadratic 

programming, so the predicted convergence speed of 

TWSVM is theoretically four times that of the SVM model. 

Coincidentally, every method has its shortcomings, and the 

TWSVM prediction method proposed in this paper also has 

its limitations and shortcomings, which are mainly reflected 

in that only five factors that affect the deformation of the 

open-pit slope are considered in the modelling process of the 
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prediction method, and the premise of its application is that 

the geological structure of the slope in the applied mining area 

has been verified. The influence of geological structure 

factors on slope deformation is excluded, so its application is 

limited. Often open-pit mine slopes are affected by geological 

structure factors, and the influence data of geological 

structure factors are generally difficult to collect and quantify, 

putting forward higher requirements for the popularisation 

and application of this method. 

From an economic point of view, such a prediction model 

can bring some associated savings to open-pit mines, 

considering that a radar used to monitor open-pit slopes costs 

around 200,000 euros. The traditional monitoring method is 

that one radar can only monitor one specific open-pit slope, 

but the application of this prediction method can apply one 

radar to the monitoring application of two or even three open-

pit slopes. Therefore, this method can save 33 %~66 % of the 

monitoring cost for open-pit mines, and can predict and 

obtain the deformation of open-pit slopes in advance. It 

provides a valuable time and data base for mine to take 

preventive measures in advance. 

VI. FUTURE WORK 

Further work on this research will be carried out in the 

direction of accelerating the practical application of the 

proposed deformation prediction method in the mining 

industry. It’s industrial application will be explored in mine 

accurate deformation monitoring and early warning. 
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