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Abstract—The registration of laser point clouds in complex 

conditions in wilderness scenes is an important aspect in the 

research field of autonomous vehicle navigation. It serves as the 

foundation for solving problems such as environment 

reconstruction, map construction, navigation and positioning, 

and pose estimation during the motion process of autonomous 

vehicles using laser radar sensors. Due to the sparse structured 

features, uneven point cloud density, and high noise levels in 

wilderness scenes, achieving reliable and accurate point cloud 

registration is challenging. In this paper, we propose a semantic-

supervised sparse point cloud registration network (S3PCRNet) 

aiming to achieve effective registration of laser point clouds in 

wilderness large-scale scenes. Firstly, a local feature aggregation 

module is designed to extract the local structural features of the 

point cloud. Then, based on rotation position encoding, a 

randomly grouped self-attention mechanism is proposed to 

obtain the global features of the point cloud through learning. A 

semantic information weight matrix is calculated to filter out 

negligible points. Subsequently, a semantic fusion feature 

module is utilised to find reliable correspondences between point 

clouds. Finally, the proposed method is trained and evaluated on 

both the RELLIS-3D dataset and a self-made Off-road-3D 

dataset. 

 
Index Terms—Wilderness scenes; Laser point clouds; Point 

cloud registration; Semantic supervision.  

I. INTRODUCTION 

With the gradual application of unmanned driving 

technology in various fields, unmanned vehicles are playing 

an increasingly important role in tasks such as mining 

operations, disaster relief, and battlefield transportation. In 

these harsh natural conditions and complex terrain outdoor 

scenes, unmanned vehicles need to have more stable 

environmental perception and autonomous navigation 

capabilities. However, based on image 2D perception and 

information processing, there are limitations that cannot fully 

satisfy the environmental perception requirements of 

unmanned vehicles in complex and varied environments. 

Compared with cameras, LiDAR has stronger environmental 

adaptation capabilities as a sensing sensor, and the processing 

and application of LiDAR 3D point cloud information in the 

field of unmanned vehicle technology is receiving increasing 

attention. Point cloud registration is a crucial link in the 

processing and application of 3D point cloud information, 

and it is also a basic work for tasks such as 3D reconstruction 

[1], perception positioning [2], and pose estimation for 

unmanned vehicles. Currently, research on point cloud 

registration for unmanned vehicles is mainly focused on 

indoor and urban environments. In a wide range of research-

oriented point cloud data sets, numerous researchers have 

achieved outstanding research results and demonstrated 

advanced and robust performance in practical applications. 

In-depth research on point cloud registration methods for 

unmanned vehicles is mainly focussed on laser point cloud 

simultaneous localization and mapping (SLAM), localisation 

and navigation, etc. and mainly includes four methods: 

iterative closest point (ICP) registration, normal distribution 

transformation (NDT) registration, feature-based registration, 

and deep learning-based registration. Represented by ICP [3], 

generalized ICP [4], point-to-line ICP [5], normal ICP [6], 

point cloud registration methods generally reduce registration 

error by iterative optimisation under known correspondence 

relationships. The NDT [7] algorithm is a statistical 

registration method based on the Gaussian distribution, which 

has high efficiency and accuracy in processing large-scale 

point cloud data. A series of SLAM algorithms, represented 

by lidar odometry and mapping (LOAM) [8]–[11], introduce 

line features and plane features in the odometry stage for 

interframe feature registration. Feature descriptor-based 

methods, such as point feature histograms (PFH) [12], fast 

point feature histograms (FPFH) [13], signature of 

histograms of orientations (SHOT) [14], rotational projection 

statistics (RoPS) [15], and fast global registration (FGR) [16], 

construct local structures of point clouds and achieve good 

results in registration tasks with significant pose differences. 

Deep learning-based methods have been a hot topic in recent 

years. Deep learning methods can generally learn strong 

feature representations of point clouds and have a stronger 

generalisation ability. By matching in high-dimensional 

feature space, they can find correspondence relationships and 

improve inlier rates, thereby achieving pose estimation. Since 

PointNet [17] and PointNet++ [18] proposed a deep learning 

network that can solve the problem of unordered 

representation of point clouds, classic point cloud registration 
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networks that directly apply to raw point clouds, such as 

SpinNet [19], D3Feat [20], DeepVCP [21], HRegNet [22], 

Predator [23], PointDSC [24], and GeoTransformer [25], 

have also been continuously proposed. However, currently 

these methods [19]–[25] are mostly studied for structured 

scenes such as cities and campuses, and there is less research 

on point cloud registration in wilderness scenes such as 

mines, mountain roads, and forests. 

In urban and campus scenes, artificial infrastructure such 

as paved roads, road shoulders, walls, buildings, and railings 

are the main elements of the scene, while there are also a large 

number of vehicles and pedestrians. However, in wilderness 

scenes such as forests and grasslands, there are fewer 

structured objects, and the number of vehicles and personnel 

is relatively low. Elements in the scene, such as grass, trees, 

rocks, and poles, are randomly distributed, with few 

structured features. Therefore, from the perspective of point 

cloud features, registration in these scenes is more 

challenging. In comparison to urban and campus scenes, 

natural conditions in wilderness scenes, such as fog, weeds, 

and dust, introduce more noise to the laser point cloud 

information, which in turn affects the extraction of point 

cloud features. Additionally, the denser the point cloud, the 

richer the expression of the scene features. To obtain more 

abundant features in originally sparse wilderness scenes, it is 

often desirable to increase the point cloud density. For 

example, high-density scanning LiDARs may be installed in 

unmanned vehicles or additional radars deployed to achieve 

high-density point cloud acquisition. However, this increases 

the computational complexity of point cloud data processing, 

and wilderness scenes with large-scale point clouds also face 

the challenge of managing the size of the point cloud data. 

The process of feature extraction in point cloud registration 

networks is essentially a process of semantic aggregation. 

Whether it is through multilayer perceptron (MLP), 

convolution, or graph model network to hierarchically extract 

local or global features of point clouds, the aim is to discover 

features that have meaningful distinctions in a reasonable 

spatial dimension for each point and gather points of the same 

type into a cluster. Although networks such as DeepVCP, 

HRegNet, Predator, GeoTransformer, NgeNet [26], etc. have 

different methods, they all adopt multilayer network 

structures in the point cloud feature extraction stage and 

perform coarse matching when semantic features are clearly 

represented. The only difference is that they complete coarse 

matching without semantic label supervision. Due to the 

stability of features derived from line segment labelling, the 

authors in [27] believe that high-level semantic features are 

more suitable for point cloud registration of real LiDAR 

scans. They proposed self-supervised line labels to segment 

point clouds and extract features. SARNet is a point cloud 

registration network that explicitly proposes semantic 

enhancement. Compared to urban and highway 

environments, wilderness environments have unstructured 

boundaries, uneven terrain, strong textures, and irregular 

features. 

To apply in wilderness scenes with less prominent 

structural features and more noise in harsh weather 

conditions, we propose a semantic-supervised point cloud 

registration network. Large-scale point clouds in large scenes, 

such as 128-line LiDAR single-frame point clouds reaching 

more than 230,000 points, have redundant information in the 

feature expression. Deep compressed point cloud registration 

(DCPCR) [28] uses deep learning methods to extract feature 

characteristics of the point cloud, generate compressed 

feature maps of the point cloud, and achieve a balance 

between reducing computational complexity and improving 

the accuracy of the point cloud registration. To adapt to the 

practical application of point cloud registration in wilderness 

scenes, we design a semantic-supervised sparse point cloud 

registration network (S3PCRNet) to enhance the registration 

accuracy and recall rate. 

The main contributions of this paper are as follows. 

1. Based on KPConv, a residual block is designed to 

extract strong structural features from local spatial features 

to address the problem of sparse structured features in 

wilderness scenes. 

2. To utilise limited computational resources and increase 

the density of point clouds involved in self-attention 

calculations, a randomly grouped self-attention module is 

proposed. A rotation position encoding method is also 

introduced to enhance the model’s ability to aggregate 

contextual information from point clouds. 

3. By introducing an explicitly expressed semantic-mixed 

feature matching module, unstable points in point cloud 

matching are removed, and stable features are 

strengthened. This allows one to obtain reliable 

correspondences from the matched point clouds. 

II. MODELS AND METHODS 

 Backbone Network 

Unlike point cloud classification and object detection 

tasks, for the registration network of low-overlap-rate 

outdoor large-scale point clouds, excessive attention to global 

features is not necessary during the feature descriptor 

extraction stage. This is because aggregating global features 

from nonoverlapping parts can be detrimental to subsequent 

feature matching tasks. 

The backbone network is designed as shown in Fig. 1. 

Inspired by the local spatial encoding in RandLA-Net [29], 

we focus on designing a residual block for aggregation of 

local features based on local spatial encoding and KPconv 

kernel points in the point cloud feature extraction stage. This 

aims to better extract robust geometric structural features of 

point clouds in online and surface-feature-scarce outdoor 

scenes. In the global context aggregation step, the self-

attention mechanism of the Transformer model is employed. 

However, since the self-attention mechanism requires high 

computational power and memory consumption, to reduce 

computational complexity, firstly we apply voxel filtering 

after obtaining the initial point cloud. In the local feature 

extraction stage, the point cloud is downsampled to less than 

20,000 points and then the point cloud is randomly grouped. 

The same self-attention calculation is performed for each 

group. After obtaining the global contextual features, they are 

merged. Then, cross-attention calculation is introduced to 

establish prominent correspondences between the source 

point cloud and the target point cloud, followed by pose 

estimation. 

First, the source point cloud P and the target point cloud Q 

undergo feature extraction through the local feature 

aggregation residual block and then they are downsampled to 
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P′ and Q′, respectively. During the downsampling process of 

multilayer feature extraction, the point cloud quantities of P' 

and Q' are controlled to be around 2000, according to 

practical considerations. The point cloud decoder is then 

applied to obtain the superpoint semantic confidence matrix. 

In the global context aggregation stage, irrelevant items in the 

scene are first removed based on semantic features. This 

process yields superpoints P and Q from the point cloud. 

Then, the superpoints are randomly grouped for self-attention 

operations, resulting in salient features of the superpoint point 

clouds. 

In the feature matching stage, a semantic hybrid feature is 

constructed. Overlapping point cloud prediction is performed 

through cross-attention, and a correspondences weight matrix 

is computed. This enables the establishment of reliable point 

correspondences. Finally, singular value decomposition 

(SVD) is performed to obtain the spatial transformation of the 

point cloud. 

 Point Cloud Feature Encoder 

Initial Feature Acquisition: Considering the influence of 

outdoor environments and weather conditions, we believe 

that the intensity and colour information of point clouds in 

real scenes are unstable, while extracting structural 

information from the three-dimensional spatial coordinates of 

point clouds is more robust. Taking the source point cloud P 

as an example, we first process it through a simple MLP 

module to obtain the high-level feature 𝐹 = {𝑓𝑖 ∈ 𝑅𝑑|𝑖 =
1,2⋯ , 𝑛}  of the point cloud. This initial MLP module 

consists of a linear layer, a batch normalisation layer 

(BatchNorm), and an activation layer (ReLU) 

  1 2 3, , ,..., , .N d

nF MLP p p p p F R    (1) 

The point cloud feature encoder consists of multiple layers 

of local spatial-convolutional feature residual blocks and 

downsampling layers. To improve the computational 

efficiency of large-scale point clouds, inspired by the work in 

[29], we adopt random sampling for the first two 

downsampling layers. In the last two layers, where the point 

cloud density is relatively sparse, weighted farthest point 

downsampling is employed. The introduction of weights 

ensures a better distribution of samples in different regions, 

and selecting samples with higher weights makes the 

sampling results more representative. Each downsampling 

layer performs pooling operations to maintain the number of 

output points. 

Local Spatial Feature Aggregate Residual Blocks 

(LSFA_RB): Compared to multilayer perceptron (MLP) 

networks, KPConv demonstrates superior performance in 

extracting local structural features, making it highly favoured 

in the design of point cloud feature extraction networks. 
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Fig. 1.  Backbone network. 

When handling unevenly dense point cloud data, the 

KPConv feature extraction based on spherical neighbourhood 

exhibits advantages over the K-nearest neighbour (KNN) 

based local feature extraction methods. Particularly for 

practical point cloud data in outdoor scenes, starting from the 

second layer of point cloud feature extraction, we design 

residual blocks based on KPConv to aggregate local features 

of the point cloud. Unlike the KPConv-FCNN network, we 

introduce the features extracted by KPConv into the local 

spatial feature encoding, aiming to enhance the expressive 

power of point cloud structural features. As shown in Fig. 2, 

we also design residual blocks for point cloud feature 

aggregation additionally, and local spatial feature encoding 

(LSFE) is shown in Fig. 3. 
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Fig. 2.  Local spatial feature aggregate residual blocks. 

Local Spatial Feature Encoding: To construct a local 

neighbourhood {𝑝𝑖
𝑘, 𝑓𝑖

𝑘} for point pi using KNN search, pi
k 

represents the points in the local neighbourhood of pi, and fi
k 
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represents their corresponding features. In this paper, spatial 

position encoding is applied to the pi points. Unlike the work 

in [64], we consider pi
k as redundant information. The local 

spatial feature encoding designed in this paper mainly 

consists of three parts: pi, the relative position between pi
k and 

pi, the Euclidean distance between pi
k and pi, and the method 

is as follows 

   .k k

i i i i iRPE p p p p p      (2) 

Through the processing of the MLP module, the initial 

feature F is aligned with the feature space, resulting in the 

local spatial encoding feature 𝑟𝑖
𝑘as follows 

  .k

ir MLP RPE
 (3) 

At this point, the dimension of the output local spatial 

feature encoding feature 𝑟𝑖
𝑘 is the same as the dimension d of 

the initial feature F. Subsequently, a 2d feature is obtained by 

combining the local spatial feature with the initial feature, and 

then the neighbourhood feature of the point is derived through 

a shared MLP 

  '

1

1
.

k j j

i i ij
f MLP f r

k 

 
  

 
  (4) 
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Fig. 3.  Local spatial feature encoding (LSFE). 

 Point Cloud Feature Decoder 

After completing the feature encoding of the point cloud, 

we adopt a self-attention mechanism based on rotational 

positional encoding in the global context information 

aggregation module. This mechanism effectively aggregates 

local and global information in point cloud data to obtain 

high-dimensional point cloud features with significance. To 

better extract semantic features from the point cloud, four 

upsampling layers are designed in the decoder section. These 

upsampling layers progressively increase the dimensionality 

of the point cloud data to better preserve the structural 

information of the original point cloud. 

During the process of point cloud upsampling, it is more 

reasonable to maintain the invariance of the original point 

cloud structure. Similarly to the work in [29], we use the 

nearest neighbour method to reconstruct the upsampled 

points. This reconstruction method effectively preserves the 

structural information of the original point cloud and avoids 

data distortion caused by sampling. Meanwhile, a shared 

MLP module is utilised to reduce the dimensionality of the 

features. This module effectively reduces the dimensionality 

of high-dimensional point cloud features, facilitating 

subsequent semantic information extraction. 

In the encoding phase, we preserve the indices of all down-

sampled points in each encoding layer for subsequent 

correspondence of semantic information to the down-

sampled layers of the encoder. This design effectively 

corresponds semantic information to the down-sampled 

layers of the encoder, thereby facilitating the subsequent 

decoding process. Therefore, for each point in the decoding 

layer, we can use the KNN algorithm to find the nearest 

neighbouring points from the points of the previous layer. 

This algorithm effectively matches the points in the decoding 

layer with their neighbouring points, thus better preserving 

the structural information of the original point cloud. 

In the process of upsampling, each point’s feature 

undergoes dimension reduction and is duplicated to its 

neighbouring points. This approach effectively spreads out 

the features of the points, ensuring that the semantic 

information of the original point cloud is preserved more 

accurately. Subsequently, a fully connected network is 

utilised to acquire the semantic features of each point. When 

the maximum value of these features is calculated, semantic 

labels can be determined. This design effectively extracts the 

semantic features of each point, thereby facilitating 

subsequent classification or recognition tasks. 

 Global Feature Context Aggregation Module 

The global feature context aggregation module is primarily 

composed of two components: semantic-agnostic point cloud 

filtering and a random grouping self-attention mechanism. In 

outdoor scenes, semantic-agnostic point cloud filtering plays 

a crucial role in effectively removing unstable point cloud 

data, laying a solid foundation for subsequent processing. The 

random grouping self-attention mechanism aims to 

comprehensively aggregate the global context information of 

the point cloud while maintaining a relatively stable scale. 

This mechanism not only significantly improves the 

computational efficiency of the information aggregation 

process, but also greatly reduces memory consumption, 

providing strong support for large-scale point cloud data 

processing. 

Point cloud filtering. Through point cloud decoding, we 

successfully extract the semantic features of the point cloud. 

These semantic features are obtained by aggregating the 

structural features of the point cloud, reflecting the unique 

properties of the environment. In urban environments, where 

the structural features are more prominent, the robustness of 

point cloud feature extraction is relatively high. However, in 

outdoor environments, the robustness of point cloud feature 

extraction is greatly reduced due to less distinct structural 

features. 

In the representation of higher-level features, we can easily 

select points suitable for scene point cloud registration based 

on semantic features. For example, fences, poles, large rocks, 

curbs, trees, pits, mounds, etc. are stable points suitable for 

point cloud registration. However, moving objects such as 

vehicles, pedestrians, grass, smoke, or points with unstable 

structural features are not suitable for point cloud registration. 

In the semantic representation stage, we adopt the 

following measures: first, unstable points are labelled with an 

ignore tag; second, a semantic mask matrix 𝑀𝑆  is 

constructed. In this way, the points marked with the ignore 

tag will not participate in the subsequent computation of the 

network. This measure helps to improve the accuracy and 

stability of the computation. In this process, we use semantic 

features 𝑆 ∈ 𝑅𝑁×𝐶 as input and set the number of points in the 
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point cloud to N and the number of categories of semantic 

label to C. 

Meanwhile, we assign different weights 𝑊𝑆 based on the 

features of different categories. For prominent structural 

features, such as poles, large rocks, and trees, higher weights 

are assigned; while for other categories, general weights are 

assigned. This weight allocation method can better reflect the 

characteristics of different categories, thus improving the 

accuracy and effectiveness of point cloud registration 

 .S SM S W   (5) 

Design of self-attention module for randomisation groups. 

In outdoor environments, the presence of numerous irregular 

objects such as rocks, mounds of earth, and vegetation leads 

to relatively sparse structural features in point cloud data. In 

this context, the self-attention mechanism in the Transformer 

architecture becomes particularly important. It effectively 

captures the correlation information among sparse structural 

features in the point cloud, accurately extracting the salient 

parts and providing strong support for subsequent 

downstream tasks. 

To better aggregate local features of the point cloud and 

ensure the participation of more points in the next stage of 

computation, we apply downsampling to the point cloud. 

However, it is worth noting that the self-attention module in 

the Transformer has a high computational complexity, 

consuming a large amount of memory during runtime. 

Therefore, measures were taken to strictly control the number 

of points after downsampling before feeding the point cloud 

into the Transformer architecture. 

Taking the point cloud registration experiment on the Kitti 

dataset as an example, SARNet downsamples the point cloud 

to 1024 points. In the superpoint matching experiment with 

GeoTransform, the number of points in the point cloud 

remains within 1000 points. These measures aim to optimise 

computational efficiency and reduce memory consumption, 

ensuring stable operation of the algorithm. 

In the field of point cloud processing, various attention 

mechanisms have been proposed, including sparse self-

attention [30], linear self-attention [31], and local self-

attention [32]. When applying global self-attention to large-

scale point clouds, it results in a high memory consumption 

of O（N2）, where N is the number of input points. Previous 

research [33] used a window-based self-attention mechanism 

to reduce computational complexity and memory 

consumption. This approach divides the three-dimensional 

space into nonoverlapping cubic windows, and each query 

point only considers the neighbouring points within the same 

window. Multiple heads of self-attention operate 

independently within each window, reducing computational 

complexity. However, this approach presents a limitation, as 

points within each window cannot establish associations with 

distant points, leading to information loss, particularly in 

large-scale point clouds. To address this issue, a hierarchical 

sampling strategy is proposed to expand the receptive field of 

self-attention and capture contextual dependencies for distant 

objects. In this paper, we introduce a random grouping self-

attention module. Each attention head operates within its 

respective point cloud group, ensuring that the distribution of 

points within each group remains similar to that of the entire 

point cloud, albeit sparser. The unordered nature of point 

clouds ensures that random grouping does not alter the global 

features of the entire point cloud, and the computational 

complexity can be reduced to O（N2/k), where k represents 

the number of groups. 

As Fig. 4 clearly illustrates, the point cloud of a single 

frame from an outdoor scene was randomly divided into four 

separate groups, each assigned a unique colour. In Fig. 4(a), 

the original point cloud can be seen, while Figs. 4(b), 4(c), 

4(d), and 4(e) represent the resulting subclouds following the 

random grouping. It is evident that, despite the local spatial 

sparsity within each subcloud, the overall distribution 

characteristics of the original point cloud are preserved. In 

this study, self-attention calculations are performed 

independently on each grouped subcloud, followed by feature 

aggregation using a multilayer perceptron (MLP). This 

approach offers a more effective means of emphasising 

salient local features within the global point cloud compared 

to grouping the points into nonoverlapping windows, as 

previously reported in [33] and [34]. 

 
(a) 

 

(b) 
 

(c) 

 

(d) 

 

(e) 

Fig. 4.  Random grouping of point clouds. 

Rotational position encoding. In the Transformer model 

for 3D object detection tasks, the authors in [35] argue that 

the use of three-dimensional coordinates as input features 

eliminates the need for position encoding in the Transformer 

network. Although the input to the Transformer already 

includes the three-dimensional coordinates of the point cloud 

in real-world scenes, the positional information may be lost 

in deeper layers of the network, where higher-level features 

are extracted. Explicit position encoding is an essential 

component of the Transformer network. Unlike in NLP, 

where word embeddings are used for position encoding, in 

point clouds, points and their features exist in a continuous 
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three-dimensional space. Therefore, the transformation of 

three-dimensional coordinate information into sequential 

information presents a challenge. 

The stratified transformer [33] utilises context-relative 

position encoding to adaptively capture element position 

information. It employs three learnable lookup tables to map 

relative coordinates to corresponding position encodings, 

treating the summation of three-dimensional coordinates as 

the sequential position of elements. This approach achieves 

position encoding for deep camera point cloud three-

dimensional coordinates. The team further investigated the 

sparsity distribution of laser radar points in the spherical 

transformer [36]. They designed a radial window self-

attention mechanism to capture long-range information and 

established a spherical coordinate system, particularly 

suitable for sparse distant points. By combining the 

exponentially segmented position encoding method 

developed in the spherical transformer, it achieved good 

results in point cloud segmentation and dynamic object 

feature capture in real-world scenes. 

Inspired by this, our work proposes rotation position 

encoding based on X-Sin indexing, which avoids the 

computations required for transforming to a spherical 

coordinate system. In addition, the spherical transformer 

directly adds the logarithm of distance and two angles when 

calculating the position of feature elements, without 

considering weight parameters for the three variables. This 

may lead to the collapse of positional information, meaning 

that if the distances in one direction are the same, regardless 

of the differences in the distances and two angles, as long as 

the sum of the three is the same, this method will encode 

different relative positions into the same embedding. In real-

world scenes, point cloud distributions occur in three-

dimensional space, and for static point clouds that constitute 

the main body of the point cloud, they possess rotational and 

translational invariance. Therefore, we propose X-Sin 

indexing rotation position encoding, which can also better 

balance the distribution of laser point clouds with varying 

densities, ranging from sparse to dense. Compared to the 

indexing functions in [33] and [37], the indexing function in 

[36] can better aggregate sparsely distributed point elements 

at long distances. However, all of these methods involve 

relatively complex exponential operations, and specific 

formulas can be found in the references cited. 

Given a point pi = (xi, yi, zi), index encoding should be 

performed separately on  xi, yi, zi. Taking xi as an example, the 

X-Sin index formula is proposed as follows 

 
2

,
2 2 2 2

idx x sin x
     

  

     
         

     
 (6) 

where γ is the range of element xi and β is the range expected 

in this paper. 

Figure 5 shows the representations of the clip function 

[38], exponential function [39], sigmoid function, and the X-

Sin indexing proposed in this paper. It can be observed that 

the X-Sin indexing enables the encoding of sparse points at 

distant locations to relatively closer positions, thereby 

partially balancing the uneven distribution of point cloud 

density. The setting of parameters γ and β allows for flexible 

indexing encoding in this work. For example, a smaller value 

range can be applied to the range of values for the vehicle-

mounted laser point cloud zi. Based on the actual distribution 

of point clouds, we perform indexing encoding separately for 

xi, yi, and zi, which better preserves the three-dimensional 

positional information. 

 

Fig. 5.  Comparison of the different index functions. 

Inspired by Roformer [40] and RDMNet [41], we adopt a 

rotation position encoding method with better extrapolation 

to enhance the applicability of point cloud position encoding, 

as is shown in Fig. 6. The fundamental concept of rotation 

position encoding involves introducing absolute position 

encoding through a rotation orthogonal matrix, allowing the 

model to pay close attention to relative positional 

relationships. RDMNet devised a novel rotation position 

encoding for point clouds to capture superior contextual and 

geometric information, and utilised MLP to derive rotation 

positions. Unlike RDMNet, we utilize the previously 

proposed X-Sin indexing encoding method to better address 

the uneven density distribution characteristics of vehicle-

mounted point clouds. 

When using two feature variables xm and xn as the query 

and key, respectively, with their corresponding indices m and 

n, the rotation position encoding function is denoted by f(.). 

The position encodings for xm and xn are as follows: 

 ,Q

m mq W x  (7) 

 .K

n nk W x  (8) 

The rotation position coding matrices Rm and Rn are 

introduced for qm and kn, respectively, and the rotation 

position embedding formula is as follows: 

  , ,k n n nf k n R k  (9) 

  , .q m m mf q m R q  (10) 

Introduce the value vn in the attention mechanism, and the 

attention enhancement feature zm is calculated using the 

following formula 
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 (11) 
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Taking the query variable qm as an example, where its 

dimension is d, and taking θ as the rotation angle, θ is 

calculated as follows 

    2 1 /
10000 , 1,2,..., / 2 .

i d

i i d
 

 
 (12) 

Then the d dimensional rotational position encoding matrix 

Rm of qm is 
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 (13) 

To improve the efficiency of the calculation, taking the 

embedding formula of the rotation position fq(qm, m) as an 

example, the detailed calculation is as follows 

 

1 1 2

2 1 1

1 /2

/2 1

1

1

/2

/2

.

m m

d d d

d d d

d

d

q cos m q

q cos m q

R q

q cos m q

q cos m q

sin m

sin m

sin m

sin m





















     
     
     
         
     

     
     
     

 
 
 
 
 
 
 
 

 (14) 

In the previous section, we described how a single large-

scale point cloud is randomly partitioned into four groups, 

with N representing the number of point clouds outputted 

from a selected group. To implement the self-attention 

module in this paper, we have designed the following 

diagram. 

RoPE

K : f fW d d V : f fW d d

:i ff N d

Softmax

: fq N d : fk N d : fv N d

:ij N N 

:i fz N d

:Q

f fW d d

RoPE
 

Fig. 6.  The self-attention module for rotational po4sition encoding. 

After grouping the point clouds, the feature vectors are 

denoted as Fl. The attention weights Zl for the randomly 

divided point clouds are calculated using the rotation self-

attention module, where l depends on the number of random 

groups. First, the feature attention residual block (12) is 

established, followed by merging and normalising the feature 

vectors from each group to obtain F′ 

  , 1,2,3,4 .l l lF F Z l    (15) 

Taking the source point cloud P″ as an example, the 

rotation position encodes the self-attention features as follows 

  1 2 3 4 .PF MLP F F F F

     (16) 

 Characteristic-Based Cross-Over Attention 

To improve the performance of point cloud registration and 

facilitate the exchange of feature information between the 

source and target point clouds, this study introduces a feature-

based cross-attention mechanism. The main idea is to perform 

cross-attention calculations on point cloud features to capture 

more comprehensive interaction information between two 

frames of point clouds. To be specific, the rotation position 

encoded self-attention features obtained from the previous 

section are utilised as inputs, and the cross-attention 

mechanism is utilised to connect different subspaces of the 

two-point clouds. Fp" and FQ" denote the self-attention 

features of P" and Q", respectively. The cross-attention 

feature Zp" of P" is calculated as follows: 

  
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j
Q
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   (17) 
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where WQ, WK, and WV are the weights of point cloud 

queries, keys, and values, which are learnable parameters, 

and the cross-attention feature Q" of ZQ" is calculated in the 

same way as ZP". 

Taking Fp" as an example, we adopt multihead attention 

weight aggregation and residual operation. The calculation 

method is as follows 

   1 2 3 4MLP cat , , .p p Q Q Q Q

crossF F Z Z Z Z
        (20) 

 Selection of Correspondence Relationships 

Semantic features 𝐹𝑆
𝑃" and 𝐹𝑆

𝑄"
are extracted from the 

decoder of the point cloud in this study, and similar to [15], 

they are represented by one-hot encoding based on semantic 

categories. However, unlike [42], this paper explicitly aims to 

incorporate semantic features into mixed high-order features. 

By aggregating the source point cloud P" and target point 

cloud Q" with cross-attention feature and semantic feature, 

Hp" and HQ" are obtained: 

   , ,p p P

cross SH Cat MLP F F
  
  (21) 

   , .Q Q Q

cross SH Cat MLP F F
  
  (22) 
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When processing point cloud data, if it is known that two 

points belong to different semantic categories, it can be 

determined that there is no correspondence between these two 

points. On the basis of this understanding, we can quickly 

exclude points with obviously different semantics by utilising 

semantic information, thereby avoiding unnecessary 

correspondence calculations. This strategy is particularly 

important when dealing with large-scale point cloud data 

because it can effectively reduce computational complexity, 

significantly reduce computation and time costs, and improve 

overall processing efficiency. 

By decoding the point cloud, the semantic category 

confidence levels 𝑠𝑖
𝑝"

 and 𝑠𝑗
𝑄"

 of the source point cloud P" 

and the target point cloud Q" are obtained, and semantic 

correlation matrices 𝑆 ∈ 𝑅|𝑃"|×|𝑄"|  are established 

accordingly. Through dual normalisation operations, 

ambiguous matching is suppressed [24]: 

  2

, ,p Q

i j i js exp s s
 

    (23) 
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Inspired by the superpoint matching modules in [24] and 

[41], we utilise Gaussian correlation matrices 𝐶 ∈ 𝑅|𝑃"|×|𝑄"| 

to measure the similarity between different subspaces of point 

clouds in the process of establishing correspondences 

between two frames. C is computed based on HP" and HQ": 

  2

, ,p Q

i j i jc exp h h
 

    (25) 
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By incorporating explicit semantic confidence and 

constructing a correlation matrix, concurrently with 

calculating Gaussian correlation matrices based on self-

attention features, the correspondence matrix between the 

source point cloud P" and the target point cloud Q" is 

obtained by elementwise multiplication of the two matrices. 

The K elements with the highest values are selected as 

corresponding points between the two frames: 

  ˆ ˆ ˆ ˆ, , ,ij ij ij ij ij ijC c c c s c C s S      (27) 

       , , .i j ijC p q i j topk c   (28) 

 Position Estimate 

By integrating global contextual features and employing 

correspondence point selection based on semantic fused 

features, we successfully achieved highly robust 

correspondences between two frames of point clouds. 

Furthermore, by utilising a random grouping self-attention 

mechanism, the computational complexity is significantly 

reduced, enabling a substantial increase in the scale of 

matching when dealing with sparse point cloud feature 

matching, thus eliminating the need for dense point cloud 

registration. During the pose estimation process, we directly 

perform SVD decomposition on sparse point cloud data to 

calculate the relative spatial transformation between the two 

frames of point clouds. The confidence of the correspondence 

relationship between the two frames of point clouds in C is 

used as the weight matrix W for the SVD decomposition, and 

the final pose transformation is computed using the following 

formula 

    

1

2

,

, .

i
n

i i i
R t

R t argmin w Rp t q



     (29) 

The circle loss function is utilised to supervise the feature 

matching of point clouds in this study. For features HP" and 

HQ", the circle loss function is formulated as follows 

     
1

.
2

feature P QL L H L H    (30) 

For the calculation of L, we consider a point qi in Q″. Let 

Mi denote the set of positive samples of qi in P" and Ni denote 

the set of negative samples of qi in P". We set m and n as the 

upper limit for the number of positive and negative samples, 

respectively. The detailed calculation process is as follows: 
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The method of 𝐿𝑃"(𝐻) is calculated in the same way as 

above. 
The computation method for pose estimation loss in this 

research involves evaluating the L2 norm distance between 

the source point cloud transformed by the ground truth 

transformation and the predicted transformation. 𝑅𝑒𝑠𝑡  and 

𝑡𝑒𝑠𝑡  correspond to the estimated rotation matrix and 

translation matrix of the model, respectively, 

 

1

2

1
R .

i
M

transformation est i iL p test q
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      (35) 

A balanced cross-entropy loss function is utilised, which 

assigns different weights to samples from various classes. In 

this study, the inverse frequency of each class in the training 

set is used as its weight. By doing so, classes with a smaller 

sample count are given greater importance in the loss 

function, enabling better handling of semantic segmentation 

challenges in large-scale point clouds. The mathematical 

formula for the adopted balanced cross-entropy loss function 

is as follows

       
1 1

1
1 1 1 .

N C
lable P lable P

semantic j ij ij j ij ij

i j

L w p log s w p log s
N

 

 

                                        (36)
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For the semantic feature 𝑆 ∈ 𝑅𝑁×𝐶 , N is the number of 

points in the point cloud, and C is the number of semantic 

label categories. 

We introduce three hyperparameters, βf, βt, and βs and the 

learnable parameters of σf, σt, and σs to adjust the optimisation 

training process 
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III. EXPERIMENTAL EVALUATION 

We designed experiments in different field scenarios, and 

analysed the registration accuracy and recall rate of 

S3PCRNet model, mainly including a self-made forest field 

(Off-road-3D) data set and RELLIS 3D field scene data set. 

A sample of self-made forest field (Off-road-3D) data set can 

be shown as in Fig. 7. Different colours of points indicate 

different categories. 

 

Fig. 7.  Off-road-3D point cloud data. 

The Off-road-3D dataset utilised in this study was 

generated by constructing a wilderness scene using UE4. A 

simulation of an suburban utility vehicle, equipped with a 

128-line LiDAR sensor, was implemented through vehicle 

dynamics modeling. By operating the simulated vehicle in 

diverse off-road conditions, point cloud data of the wilderness 

scenes were collected and subsequently annotated with 

semantic labels, resulting in the creation of the Off-road-3D 

dataset. This dataset encompasses various key terrain 

categories, including forest trails, dirt roads, trees, grass, 

rocks, fences, vehicles, and pedestrians. These categories not 

only possess broad representativeness, but also have 

significant importance in the navigation and decision-making 

processes of autonomous vehicles in authentic off-road 

environments. 

The RELLIS 3D dataset [43] is specifically designed for 

outdoor scenes, utilising annotated point cloud data acquired 

from a 64-line Ouster OS1 LiDAR and a 32-line Velodyne 

LiDAR. The data set encompasses key terrains such as rural 

roads, forests, and shrubbery, with categories including trees, 

grass, vehicles, pedestrians, artificial barriers, and debris 

piles. It serves as an essential resource platform for 

investigating autonomous navigation and scene 

understanding tasks in nonroad environments. 

S3PCRNet, developed in this paper using PyTorch, utilised 

two NVIDIA Tesla V100 (16 GB memory) graphic 

processing units for computational purposes. The training 

process involved the utilisation of the Adam optimiser on the 

experimental dataset. Through examination and analysis of 

the experimental results, the effectiveness and robustness of 

the proposed algorithm were evaluated. 

 Data Enhancement Design 

Data augmentation is a technique that can help models 

better adapt to various scenarios and fluctuations, while 

mitigating the risks of overfitting, thus improving a model’s 

robustness and generalisability. Such techniques encompass 

an array of methods, including but not limited to random 

rotation, translation, scaling, and noise injection, all of which 

serve to increase the diversity of training samples. To ensure 

comparability with SARNet experiments, we adopt data 

augmentation methods similar to those used in SARNet, 

involving random rotation ( [0°, 45°] ) and translation 

([−5, 5]) of point clouds within a given range, as well as 

adding random offsets to vehicles and pedestrians to 

represent unstable moving points. Furthermore, Gaussian 

noise was added to the point clouds during the training 

process. 

 Evaluation Indicators 

The evaluation criteria used in this study are based on 

SARNet, consisting of the relative translation error (RTE), 

relative rotation error (RRE), and registration recall (RR). 

Successful registration is achieved when both RRE and RTE 

are within the predetermined threshold. Specifically, RRE is 

set to be less than 2 , and RTE is set to be less than 0.5 meters 

to meet the requirements of this research. 

 Comparative Experiment 

HRgNet, GeoTransformer, and SARNet have all achieved 

impressive results in registering large-scale point clouds. 

HRgNet is a typical point cloud registration network that 

combines both deep and shallow features. The point cloud 

registration network structure proposed by GeoTransformer 

[25], which utilises geometric attention mechanisms, has 

been widely adopted. On the other hand, SARNet presents an 

innovative semantic-enhanced point cloud registration 

network. This paper considers these three-point cloud 

registration networks to be highly representative, and their 

effectiveness has been validated through experiments 

conducted on the SemanticKITTI dataset of urban scenes. 

The application of models trained on SemanticKITTI for 

point cloud registration in wild environments resulted in 

unsatisfactory outcomes. Consequently, we retrained the 

aforementioned methods on the data set used in this paper and 

compared their performance against our proposed method. In 

the data preprocessing stage, we initially applied voxel 

filtering to the raw point clouds with a voxel size of 0.3. In 

wild environments, vehicles traverse not only asphalt and dirt 

roads but also relatively flat terrain. In such scenarios, 

drivable areas are prioritised due to the presence of obstacles 

like bumps in nonroad areas. LiDAR scans can detect these 

regions and present them in the point cloud. In addition, 

uneven and rough road surfaces exhibit unique features. 

Identifying ground features is crucial in sparsely populated 

outdoor environments. Unlike DeepVCP, we did not 

eliminate ground points from the point cloud. 
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The experiments were carried out on the Off-road-3D 

dataset and the RELLIS-3D dataset. The main focus was on 

evaluating three metrics: RTE, RRE, and RR. 

Based on the experimental data presented in Table I and 

Table II and visualisation results show in Fig. 8, it can be 

observed that the registration performance of the algorithms 

compared in this study is generally better on the Off-road-3D 

dataset than on the RELLIS-3D dataset. This is mainly due to 

the fact that the Off-road-3D dataset contains a higher 

proportion of tree trunks, stones, and other features in the 

scene compared to the RELLIS-3D dataset, which has more 

grassland scenes. The richer structural features in the Off-

road-3D dataset are more conducive to meeting the 

conditions for effective matching. Although SARNet relies 

heavily on confidence in semantic features, its semantic 

segmentation performance drops significantly in off-road 

environments, resulting in poorer point cloud registration 

accuracy on the off-road dataset. Therefore, further 

optimisation is required. On the other hand, HRgNet 

considers both bilateral consistency and neighbourhood 

consistency in point cloud registration, which has certain 

advantages in obtaining corresponding relationships. When 

tested on the outdoor data set proposed in this paper, HRgNet 

achieved good results. GeoTransformer has a unique design 

in geometric feature encoding, which results in relatively 

good performance. In terms of translation accuracy, it 

performs well. Similarly, the proposed S3PCRNet also uses a 

similar method for spatial encoding of geometric structures 

and exhibits good registration performance in outdoor 

environments. 

TABLE I. COMPARISON OF DIFFERENT REGISTRATION 

METHODS (OFF-ROAD-3D DATA SET). 

Method 
Off-road-3D 

RRE (deg) RTE (m) Recall (%) 

SARNet 0.27 0.22 81.2 

HRgNet 0.24 0.14 82.1 

GeoTransformer 0.22 0.09 84.7 

S3PCRNet 0.21 0.12 85.6 

TABLE II. COMPARISON OF DIFFERENT REGISTRATION 

METHODS (RELLIS-3D DATA SET). 

Method 
RELLIS-3D 

RRE (deg) RTE (m) Recall (%) 

SARNet 0.31 0.27 71.3 

HRgNet 0.26 0.23 76.5 

GeoTransformer 0.25 0.15 78.6 

S3PCRNet 0.25 0.21 79.1 

Fig. 8.  Comparative experiment results.

 Ablation Experiment 

In this study, extensive ablation studies were conducted to 

gain a better understanding of the various modules of our 

method. 

Local feature aggregation module: To validate the 

effectiveness of the local spatial feature aggregate residual 

blocks (LSFA-RB) module, it was replaced with the 

KPEncoder [44] module in GeoTransformer. The LPFA-RB 

module has a spatial position encoding function, which 

provides a greater advantage in extracting local structural 

features compared to the KPEncoder module, which is shown 

in Table III. 

TABLE III. ABLATION STUDIES ON RELLIS-3D DATA SET. 

Model RRE (deg) RTE (m) Recall (%) 

KPEncoder 0.37 0.23 77.9 

LSFA-RB 0.25 0.21 79.1 

 

The random grouping self-attention mechanism, a 

significant concept presented in this study, was contrasted 

with the conventional multihead self-attention mechanism 

(MSA). When the MSA was applied under the same 

computational complexity, the maximum number of points 

for point cloud matching was limited to 1024. However, with 

the random grouping self-attention mechanism, the number 

of points in point clouds increased to 4096 at a similar level 

of memory consumption, allowing the self-attention 

calculation in denser point clouds and enhancing the 

expression of features. In this study, comparative experiments 

were conducted by downsampling point clouds to 1024, 

2048, and 4096 points, respectively. The comparative 

experimental results are shown in Table IV. 

TABLE IV. ABLATION STUDIES ON RELLIS-3D DATA SET. 

Model RRE (deg) RTE (m) Recall (%) 

MSA（1024） 0.35 0.33 75.7 

MSA（2048） 0.29 0.28 76.3 

RGSA（1024） 0.36 0.35 72.7 
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Model RRE (deg) RTE (m) Recall (%) 

SGSA（2048） 0.27 0.25 77.4 

SGSA（4096） 0.25 0.21 79.1 

 

Rotation position encoding based on the X-Sin index: The 

X-Sin index is a key method for balancing the uneven density 

of laser point clouds and enhancing model robustness. It 

greatly reduces the computational cost and parameter 

quantity of large-scale point cloud sequences. Compared to 

the exponential piecewise indexing function (PIF) mentioned 

in [37], the X-Sin index offers more flexibility in adjustment 

and provides finer granularity for sparser point clouds in 

distant areas. The comparative experimental results are 

shown in Table V. 

TABLE V. ABLATION STUDIES ON RELLIS-3D DATA SET. 

Model RRE (deg) RTE (m) Recall (%) 

PIF 0.25 0.24 78.3 

X-Sin 0.25 0.21 79.1 

 

Semantic supervision: In the stage of semantic fusion 

feature matching, this study begins by aggregating semantic 

features and introduces the confidence of semantic features 

when calculating the correspondence matrix. To validate the 

effectiveness of semantic supervision, we performed 

comparative experiments with ablation. The experimental 

results, which are shown in Table VI, indicate that 

aggregating semantic features and incorporating semantic 

feature confidence can significantly improve the performance 

of the model in point cloud registration tasks. 

TABLE VI. ABLATION STUDIES ON RELLIS-3D DATA SET. 

Model RRE (deg) RTE (m) Recall (%) 

Without SS 0.29 0.19 70.7 

With SS 0.25 0.21 79.1 

 Limitations 

To mitigate the impact of diverse weather conditions in 

real-life settings on point cloud data, this paper disregards the 

intensity information of the laser point cloud and instead 

extracts semantic information from the structural features of 

the point cloud. Therefore, the accuracy of semantic 

information determines the effectiveness of semantic 

supervision. Accurately segmenting point clouds in outdoor 

environments poses a significant challenge and demands a 

more diverse point cloud segmentation data set. To address 

this issue, this study developed the Off-road-3D data set and 

incorporated semantic confidence information into the 

semantic mask matrix, assigning higher weights to reliably 

segmented tree trunks, vehicles, personnel, and rocks while 

categorising unreliable segments such as road surfaces, grass, 

and low-lying objects into other classes. 

IV. CONCLUSIONS 

In this paper, we propose a sparse point cloud registration 

network tailored for large outdoor scenes. The key concept of 

this network is to extract semantic features from the point 

cloud through enhanced structural information extraction and 

to explicitly guide correspondence selection in point cloud 

registration. To achieve this objective, we innovatively 

designed the local spatial feature aggregation module, the 

random grouping self-attention mechanism module, and the 

semantic fusion feature matching module. Training and 

optimisation were performed on the RELLIS-3D data set and 

a custom Off-road-3D data set, and the effectiveness of the 

proposed method was validated through ablation 

experiments. However, it is important to note that point cloud 

registration in large outdoor scenes presents greater 

challenges compared to urban environments. Classical 

learning-based point cloud registration methods exhibit 

significant decreases in registration performance and fail to 

achieve the registration recall rate and precision observed in 

urban environment data sets such as KITTI and Nuscenes. 

Therefore, in future work, we will continue to enrich outdoor 

environment data sets and optimise network designs to 

enhance point cloud registration performance and meet the 

requirements of more downstream tasks. 
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