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Abstract—Due to improper setting of operating parameters, 

cigarette machines are subject to a high unqualified production 

rate. For this reason, in this study, a multiobjective optimisation 

(MOP) method based on the metaheuristic intelligence 

optimisation is proposed in this study. First, to eliminate 

interference parameters, the random forest (RF) is used to 

analyse the parameter importance of the cigarette machine and 

select the most important operation parameters for the 

multiobjective optimisation. Second, an artificial neural 

network (ANN) optimised by the grey wolf optimiser is designed 

to establish a mirror model of the cigarette machine to fast 

calculate the machine output quality factors, including the rod 

break rate, single cigarette weight, and circumference index. 

Lastly, an improved multiobjective grey wolf optimisation 

algorithm is used to optimise these three quality factors 

simultaneously to obtain the optimal operating parameters of 

the cigarette machine. A machine swarm (including four 

cigarette machines) in the real world is used to evaluate the 

developed optimisation method, and the testing results 

demonstrate that the proposed multiobjective optimisation 

method is able to improve the three quality factors by at least 

50 %, which greatly reduces the unqualified rate of cigarettes. 

 
Index Terms—Multiobjective optimisation; Machine swarm; 

Production quality control; Artificial intelligence. 

I. INTRODUCTION 

Despite the huge effort that has been made to encompass 

the concept of multiobjective optimisation (MOP) on 

production machines [1]–[4], the real-world application of 

this optimiser over a cigarette machine swarm has not yet 

been clarified. Currently, the standardised parameter and 

monitoring system for the cigarette machines is being 

implemented using the digital midline technology, which will 

be used to control the quality of the cigarette production [5]. 

A set of machine maintenance strategies will be established 

to reduce common equipment failures and maintain product 

quality stability. However, optimising a group of machine 

operation parameters is not yet considered in the current 

monitoring system. If the machine operation parameters are 

not in the best setting, the initial production quality will be at 

a low level, and consequently, the monitoring system will not 

perform its desired function. Hence, it is critical to find the 

optimal machine operation parameters for high-performance 

control of the production quality; however, the MOP for a 

single cigarette machine has not been found in open literature; 

no more to say the optimisation of a machine swarm. 

Motivated by this, this study attempts to solve the MOP for a 

cigarette machine swarm in engineering practice. 

The first step in a MOP problem is to identify the input 

features of the model [6]. This is because in a real-world 

machine there are more than 60 operation parameters in a 

cigarette machine, while not all of them are informative. 

Generally, one should select the most presentative ones from 

all operation parameters. There are many feature selection 

algorithms in the open literature; for example, K-means [7], 

principal component analysis [8], singular value 

decomposition [9], Pearson correlation [10], mutual 

information [11], trees [12], and many others. Among these 

existing popular feature selection methods, random forest 

(RF) [13] is very suitable for real-time implementation 

because of the fast computation time and simple parameter 

setting. More importantly, RF can directly quantify the 

degree of importance of the original features, making the 

feature selection much more transparent and understandable. 

As a result, it is reasonable to use the RF for the selection of 

cigarette machine parameters. 

A simplified model of the system of interest is essential for 

the multiobjective optimiser. This is because during 

optimisation searching, it always requests the computation 

cost as minimum as possible. In each iteration of the 

optimisation search, the optimiser needs to recall the system 

model. If the model is too complex, then the computation for 

calculating the search fitness result will be extremely huge. 

To simplify the mathematical model of the system, many 

order reduction methods [14] have been proposed; besides, 

the surrogate modelling technique with Gaussian processing 

[15] has been widely applied. However, most existing model 

reduction methods either scarify the model accuracy (e.g., 

order reduction methods) or increase the model computation 

cost. Recently, artificial neural network (ANN) surrogate 

modelling demonstrates promising potential in system model 

simplification [16]–[19]. Once the ANN surrogate model has 

been well trained, it will remain super high accuracy of the 

model outputs with very few computation efforts. However, 

during the ANN training process, the optimal ANN 

parameters are usually difficult to obtain. Metaheuristic 
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intelligence optimisation, e.g., the grey wolf (GW) optimiser 

[20], can participate in the ANN training to search for the 

optimal ANN parameters. The original GW cannot well 

handle the trade-off between the local/global searching and 

population diversity. The latest research suggests that a 

suitable search strategy may enhance the balance of this issue. 

For example, improved grey wolf (IGW) with a new 

dimension learning-based hunting (DLH) search strategy 

[21]. However, to our knowledge, the selection of RF, the 

IGW-optimised ANN surrogate model, and the MOP based 

on IGW have not been adequately integrated for cigarette 

machines [22]–[27]. It is worth investigating the parameter 

optimisation of a cigarette machine swarm using these 

mentioned techniques [28]–[30], especially for using hybrid 

intelligent techniques [31]–[34]. 

This study aims to optimise the operation parameters of a 

cigarette machine swarm by appropriately integrating the RF 

selection, IGW-optimised ANN surrogate model, and IGW-

based multiobjective optimiser. The RF is used to select the 

most informative parameters of cigarette machines to train a 

surrogate recurrent neural network (RNN) model of the 

cigarette machine. The RNN outputs are the three quality 

factors (i.e., the rod break rate, the single cigarette weight, 

and the circumference index). The IGW is adopted to 

optimise the parameters of the RNN model using a buckle of 

training data sets acquired from field tests. Then, the well-

trained RNN model is used for the MOP of the machine 

swarm parameters to achieve a good balance between the 

three quality factors using the IGW optimiser. The results of 

the field tests demonstrate the effectiveness of the MOP 

method developed. The present method has already been used 

in real-world practice. 

The organisation of this study is as follows. Section II 

describes the MOP procedure of the proposed method and 

Section III illustrates the field test results. Section IV draws 

the conclusions of this study. 

II. PROPOSED METHOD 

 Importance of Each Parameter 

Figure 1 shows an overview of the proposed method for 

optimising operation parameters of a machine swarm.  

 
Fig. 1.  Overview of the proposed method for optimisation of operation 

parameters. 

In a single cigarette machine, there are 62 operation 

parameters, as listed in Table I. To remove useless 

parameters, the RF is used to evaluate the importance of each 

parameter and select the most informative parameters. Then, 

the selected parameters are used as the input of the RNN 

surrogate model of the cigarette machine. Historical data sets 

from real-world machines are used to train the RNN to 

establish a map connecting the input parameters and the three 

output quality factors (i.e., the rod break rate, the single 

cigarette weight, and the circumference index). The IGW is 

adopted to optimise the RNN model parameters during the 

training process. Then, the well-trained RNN model helps the 

IGW optimiser in the MOP process by providing super-fast 

responses to any trials of inputs during the IGW searching. A 

set of optimal operation parameters is obtained after the IGW 

optimisation to achieve a good balance between the three 

quality factors.  

 RF Selection 

In Fig. 1, RF is a method that combines random node 

optimisation and bagging and uses a decision tree process to 

construct a forest of unrelated trees. For more details on RF 

refer to the work in [22]. The RF workflow is described 

below. 

1. Define the training number N and the feature number M. 

2. Define the selected feature number m (<<M). 

3. Use bootstrap sampling to build the training sets. 

4. Randomly select m features from M features in each 

node to calculate the best splitting method. 

5. Grow each tree without pruning. 

TABLE I. OPERATION PARAMETERS OF A SINGLE CIGARETTE 

MACHINE. 

No. Parameter No. Parameter 

1 
VE needle roller start-up 

correction 
32 VE weight control system 

2 
VE setpoint bulking 

chute light barriers 
33 

VE suc. tape adj. upper 

warning limit 

3 
VE stop after bulking 

chute empty 
34 

VE suc. tape adj. lower 

warning limit 

4 
VE stop after bulking 

chute choke-up 
35 

VE suc. tape adj thread. pos. 

front 

5 
VE fluid. bed trough tob. 

thick. control 
36 

VE suc. tape adj thread. pos. 

rear 

6 
VE fluid. bed trough 

pressure start val. 
37 VE weight deviation scale 

7 
VE fluid. bed trough 

pressure end value 
38 VE/SE tobacco rod length 

8 
VE admixed air flap start 

val. uncontr. 
39 

VE end-densing drive offset 

front 

9 
VE admixed air flap end 

value uncontr. 
40 

VE end-densing drive offset 

rear 

10 VE air-jet fan speed 41 
SE rod circumference 

setpoint 

11 
VE steep-angle conveyor 

prop. factor 
42 

Diameter/circumference 

display 

12 

VE interface type 

bulking chute 

photosensor 

43 
ODM no. of meas. cyc. to 

stop 

13 
VE motor type needle 

roller drive 
44 

ODM min. circumf. warning 

limit 

14 VE suction air control 45 
ODM max. circumf. warning 

limit 

15 
VE suct. rod conv. vac. 

pressure 
46 

ODM min. circumf. stop 

limit 

16 
VE suct. rod conv. 

vacuum pres. control KP 
47 

ODM max. circumf. stop 

limit 
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No. Parameter No. Parameter 

17 
VE suct. rod conv. 

vacuum pres. control Tn 
48 

SE seam gluing acceleration 

offset 

18 
VE suct. air fan speed 

uncontrolled production 
49 

SE seam gluing initial glue 

feed 

19 
VE suction air fan speed 

at standstill 
50 

SE seam glue quantity corr. 

factor 

20 VE densed end geometry 51 
SE minimum seam glue 

quantity 

21 VE trimmer height front 52 
SE automatic glue supply 

system fitted 

22 VE trimmer height rear 53 
SE seam sealer start-up 

temperature 

23 
VE trimmer plate height 

front 
54 

SE seam sealer production 

temperature 

24 
VE trimmer plate height 

rear 
55 SE garniture tape overspeed 

25 
VE menthol spraying 

fitted 
56 SE garniture temperature 

26 VE tobacco rod weight 57 
SE seal. ch. height adj. calib. 

pos. front 

27 
VE suc. tape adj. start 

offset front 
58 

SE seal. ch. height adj. calib. 

pos. rear 

28 
VE suc. tape adj. start 

offset rear 
59 SE diameter control system 

29 
VE suc. tape adj. prod. 

pos. front 
60 

SE front seal. chamber adj. 

start offset 

30 
VE suc. tape adj. prod. 

position rear 
61 

SE rear seal. chamber adj. 

start offset 

31 VE IXM 62 
SE sealing chamber version 

rear 

 

When using RF to judge the operation parameters, a cost 

function must be provided. In this study, there are three 

factors available; to avoid conflict between different factors, 

this study uses the single cigarette weight (SW) as a cost 

function because this factor is the most widely used one in the 

industry. The cost function is then expressed as 

 ( ) 0.02 .f SW g  (1) 

Equation (1) means that each cigarette weight must be less 

than 0.02 g. 

The training data sets were collected using 100,000 

cigarette production under the condition of factory setting of 

machine parameters. The number of random forests was set 

to 500. The RF assessment results are shown in Fig. 2. Figure 

2 provides the first 21 most important parameters of the 

machine among the 62 parameters. As can be seen from the 

figure, each parameter has a certain influence on the 

performance of the quality of the cigarettes, among which the 

parameter no. 1 (i.e., the VE needle roller start-up correction 

in Table I) is of the highest importance, which is 4.43. In 

addition, the importance of parameter no. 10, parameter no. 

18, parameter no. 7, and parameter no. 21 in Table I is more 

than 1.0, which are 3.11, 1.98, 1.86, and 1.20, respectively. 

The results indicate that these five parameters with the 

highest importance values could significantly affect machine 

production quality. The effects of parameter nos. 22, 23, 24, 

53, 54, 60, 61, 48, 35, 33, 34, 36, 56, 15, 27, and 28 on the 

performance of the machine are gradually weakened. The 

remaining 41 parameters in Table I do not have an obvious 

effect on the performance of the machine production process. 

  
Fig. 2.  Importance of machine operation parameters 

Furthermore, the influence of these five main operation 

parameters (no. 1, no. 10, no. 18, no. 7, and no. 21) on the 

performance of the machine production ability is investigated 

in depth. In the test, the other 57 parameters are kept as 

factory setting values, and only these five parameters change 

their setting values in the production process. The results are 

shown in Figs. 3–7.

 
Fig. 3.  Influence of operation parameter no. 1. 

 
Fig. 4.  Influence of operation parameter no. 10.

 
Fig. 5.  Influence of operation parameter no. 18. 

 
Fig. 6.  Influence of operation parameter no. 7.
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Fig. 7.  Influence of operation parameter no. 21. 

Figure 3 shows the performance of the machine production 

recorded by changing the operation parameter no. 1. The 

factory setting value of the parameter no. 1 is -10. At this 

moment, the corresponding production quality factor SW is 

0.023 g, which indicates a small gap from the required target 

value of 0.02 g. By continuous correction of the parameter no. 

1, it is found that when the value is between -25 and -20, the 

SW requirement can be met. 

Figure 4 shows the performance of the machine production 

recorded by changing the operation parameter no. 10. The 

factory setting value of the parameter no. 1 is 5,600. At this 

moment, the corresponding production quality factor SW is 

0.023 g, which indicates a small gap from the required target 

value of 0.02 g. By continuous correction of the parameter no. 

10, it is found that when the value is between 5,200 and 5,300, 

the SW requirement can be met. 

Figure 5 shows the performance of the machine production 

recorded by changing the operation parameter no. 18. The 

factory setting value of the parameter no. 1 is 5,800. At this 

moment, the corresponding production quality factor SW is 

0.023 g, which indicates a small gap from the required target 

value of 0.02 g. By continuous correction of the parameter no. 

1, it is found that when the value is between 6,400 and 6,500, 

the SW requirement can be met. 

Figure 6 shows the performance of the machine production 

recorded by changing the operation parameter no. 7. The 

factory setting value of the parameter no. 1 is -0.25. At this 

moment, the corresponding production quality factor SW is 

0.023 g, which indicates a small gap from the required target 

value of 0.02 g. By continuous correction of the parameter no. 

1, it is found that when the value is between -0.15 and -0.1, 

the SW requirement can be met. 

Figure 7 shows the performance of the machine production 

recorded by changing the operation parameter no. 21. The 

factory setting value of parameter no. 1 is 12.8. At this 

moment, the corresponding production quality factor SW is 

0.023 g, which indicates a small gap from the required target 

value of 0.02 g. By continuous correction of the parameter no. 

1, it is found that when the value is between 10 and 11, the 

SW requirement can be met. 

From these observations, in Figs. 3–7, it can be seen that 

the quality of production is influenced by multiple 

parameters. It must perform MOP to set the optimal values of 

the machine operation parameters to guarantee production 

quality.  

 RNN Surrogate Model 

As mentioned before, to reduce the computation cost of the 

MOP, one need to establish a surrogate model of the machine 

to fast respond to any input, which avoids extremely heavy 

computations during the MOP process due to recalling the 

complicated machine mathematical model. 

This study adopts the RNN to establish the surrogate 

model. RNN is a new type of feedforward ANN, which means 

that the model parameters and computation complexity are 

within a considerable range. The detailed theory of RNN can 

be found in [23]. The input of the RNN are the five selected 

operation parameters (no. 1, no. 10, no. 18, no. 7, and no. 21), 

and the outputs are the three quality factors (i.e., the rod break 

rate, the single cigarette weight, and the circumference 

index). For the RNN model, the hidden layer number sets 8; 

the active functions use the ReLU function; the Softmax 

function is adopted in the output layer. The IGW is used to 

find the appropriate input layer weight coefficients W, hidden 

layer weight coefficients U, and output layer weight 

coefficients V.  

To effectively train the RNN model, 100,000 training data 

sets collected in different combinations of the operation 

parameters of the cigarette machine were used in this study. 

Training data sets were completed using four cigarette 

machines in 6 months. The maximum optimisation iteration 

was 500. After the IGW-based training, the RNN model 

produced a training error of 0.001, which indicates good 

training accuracy. Then, 1,000 test data sets were used to 

evaluate the RNN model. Figure 8 shows the testing results.  

 
(a) 

 
(b) 

 
(c) 

Fig. 8.  Performance of the RNN model testing: (a) Accuracy of RNN 

prediction on the factor of rod break rate (RBR); (b) Accuracy of RNN 

prediction on the factor of single cigarette weight (SW); (c) Accuracy of 

RNN prediction on the factor of circumference index (CI). 
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As can be seen that, in Fig. 8(a), the predicted output rod 

break rate (RBR) of the RNN model is very accurate because 

the mean root square error (MRSE) between the ground truth 

and the RNN prediction is as small as 0.0482 and the R square 

(R2) of them is 0.9729. In Fig. 8(b), the MRSE and R2 of the 

second RNN output single cigarette weight (SW) are 

respectively 0.0505 and 0.9689. In Fig. 8(c), these two merits 

are 0.0104 and 0.9987. These observations indicate high 

performance of the RNN model. 

 IGW-Based Multiobjective Optimisation 

After obtaining a well-trained RNN model, the MOP can 

be implemented. The IGW method is adopted as an optimiser 

to find a set of suitable values of the five input parameters to 

meet the following constraints: 

 ( ) 1.4 ,f RBR g  (2) 

 ( ) 0.02 ,f SW g  (3) 

 ( ) 0.055 .f CI g  (4) 

To narrow the IGW search range, based on the RF selection 

results in Section II-A, the search ranges for inputs are 

defined in Table II. Table III lists the search results. As can 

be seen in Table III, the IGW continuously searches for the 

suitable combination of the five operation parameters to 

generate the required production quality indexes. With 

increasing optimisation iterations, the RBR and CI gradually 

decrease, while the SW maintains at an acceptable level. 

After 160 iterations, the final optimal values of the input 

parameters are -25.3, 5,210, 6,396, -0.15, and 10.2, 

respectively. 

TABLE II. SEARCH CONSTRAINS FOR THE FIVE INPUT 

PARAMETERS. 

Input Lower limit Upper limit 

Parameter no. 1 -30 -20 

Parameter no. 10 5100 5400 

Parameter no. 18 6300 6500 

Parameter no. 7 -0.16 -0.9 

Parameter no. 21 9 12 

TABLE III. IGW-BASED MULTIOBJECTIVE OPTIMISATION. 

Iteration Input Value Fitness 

1 

Parameter no. 1 -27.5 

f(RBR) = 1.43 g 

f(SW) = 0.018 g 

f(CI) = 0.053 g 

Parameter no. 10 5,230 

Parameter no. 18 6,450 

Parameter no. 7 -0.13 

Parameter no. 21 11.1 

 

Iteration Input Value Fitness 

40 

Parameter no. 1 -24.7 

f(RBR) = 1.08 g 

f(SW) = 0.016 g 

f(CI) = 0.051 g 

Parameter no. 10 5,268 

Parameter no. 18 6,500 

Parameter no. 7 -0.13 

Parameter no. 21 11.0 

 

Iteration Input Value Fitness 

80 

Parameter no. 1 -23.5 

f(RBR) = 0.88 g 

f(SW) = 0.016 g 

f(CI) = 0.048 g 

Parameter no. 10 5,177 

Parameter no. 18 6,500 

Parameter no. 7 -0.14 

Parameter no. 21 10.6 

 

Iteration Input Value Fitness 

120 

Parameter no. 1 -25.1 f(RBR) = 0.72 g 

f(SW) = 0.017 g 

f(CI) = 0.046 g 

Parameter no. 10 5,205 

Parameter no. 18 6,326 

Iteration Input Value Fitness 

Parameter no. 7 -0.13 

Parameter no. 21 10.3 

 

Iteration Input Value Fitness 

160 

Parameter no. 1 -25.3 

f(RBR) = 0.34 g 

f(SW) = 0.016 g 

f(CI) = 0.041 g 

Parameter no. 10 5,210 

Parameter no. 18 6,396 

Parameter no. 7 -0.15 

Parameter no. 21 10.2 

III. FIELD TEST WITH A MACHINE SWARM 

A group of four machines was used to verify the validity of 

the optimal values of the input parameters in the field test. To 

set the five parameters of each machine as the optimal values, 

Table IV lists a set of machine settings before the field test. 

TABLE IV. MACHINE RESETS BEFORE THE FIELD TEST. 

Location Action 
Factory 

setting 
Correction 

 

Needle 

setting 
0 turns 3 turns 

 

Suction Rod 

Conveyor 

distance to 

VE 

mainframe 

(left) 

140.18 mm 140 mm 

 

Suction Rod 

Conveyor 

distance to 

VE 

mainframe 

(right) 

206.6 mm 207 mm 

 

Suction Rod 

Conveyor 

height (left) 

68.6 mm 68.9 mm 

 

Suction Rod 

Conveyor 

height (right) 

25.2 mm 25.4 mm 

 

Trimmer 

Disc Rear 

height to 

paddle wheel 

(Rear 

Trimmer) 

0.4 mm 0.5 mm 

 

Trimmer 

Disc Rear 

height to 

paddle wheel 

(Front 

Trimmer) 

0.35 mm 0.5 mm 

 

Trimmer 

height to 

Trimmer 

Rail 

0.7 mm 0.3 mm 

 

Then, the parameter resets were completed for the four 

machines, as shown in Fig. 9. In the field test, the machines 

produced 10,000 cigarettes using the optimal parameters and 

another 10,000 cigarettes using the factory setting. Table V 

compares the performance of machine production.



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 5, 2023 

 

 
(a) 

  
(b)

Fig. 9.  Four machines in the field test: (a) The machine swarm used for the field testing; (b) An image of one machine in the field testing.

As can be seen in Table V, with optimised operation 

parameters, each machine is capable of producing high-

quality cigarettes that meet the required standards of the three 

factors. The average quality index values obtained are RBR = 

0.3825, SW = 0.0165, and CI = 0.039. However, without 

optimisation, the machines cannot produce qualified 

production due to the fact that RBR = 1.5775, SW = 0.036, 

and CI = 0.0785. Compared to the results obtained, the RBR 

index is improved by 75.75 % when using the proposed 

method, the SW index is improved by 54.17 %, and the CI 

index is improved by 50.32 %. To highlight the performance 

of the proposed method, Table VI lists the comparison results 

with the popular genetic algorithm (GA) and particle swarm 

optimisation (PSO) based optimisers. 

TABLE V. FIELD TEST RESULTS. 

 Input Value Machine #51 Machine #52 Machine #53 Machine #54 Machine Swarm 

Factory 

setting 

Parameter no. 1 -10 

f(RBR) = 1.67 g 

f(SW) = 0.035 g 

f(CI) = 0.078 g 

f(RBR) = 1.53 g 

f(SW) = 0.041 g 

f(CI) = 0.083 g 

f(RBR) = 1.49 g 

f(SW) = 0.035 g 

f(CI) = 0.072 g 

f(RBR) = 1.62 g 

f(SW) = 0.033 g 

f(CI) = 0.081 g 

f(RBR) = 1.5775 g 

f(SW) = 0.036 g 

f(CI) = 0.0785 g 

Parameter no. 10 5,600 

Parameter no. 18 5,800 

Parameter no. 7 -0.25 

Parameter no. 21 12.8 

IGW 

optimised 

setting 

Parameter no. 1 -25.3 

f(RBR) = 0.41 g 

f(SW) = 0.016 g 

f(CI) = 0.041 g 

f(RBR) = 0.39 g 

f(SW) = 0.017 g 

f(CI) = 0.037 g 

f(RBR) = 0.34 g 

f(SW) = 0.015 g 

f(CI) = 0.040 g 

f(RBR) = 0.39 g 

f(SW) = 0.018 g 

f(CI) = 0.038 g 

f(RBR) = 0.3825 g 

f(SW) = 0.0165 g 

f(CI) = 0.039 g 

Parameter no. 10 5,210 

Parameter no. 18 6,396 

Parameter no. 7 -0.15 

Parameter no. 21 10.2 

 

TABLE VI. COMPARISON OF DIFFERENT METHODS. 

Method RBR SW CI 

GA-based 73.26 %↑ 53.63 %↑ 48.13 %↑ 

PSO-based 74.29 %↑ 53.52 %↑ 47.68 %↑ 

Proposed method 75.75 %↑ 54.17 %↑ 50.32 %↑ 

 

In Table VI, it can be seen that the performance 

improvement generated by the proposed method is better than 

that using the GA and PSO optimisers. As a result, the 

proposed method can solve the MOP problem of cigarette 

machines and is applicable and practicable for real-world 

applications. 

IV. CONLUSIONS 

This paper aims to optimise the operation parameters of a 

cigarette machine swarm by appropriately integrating the RF 

selection, IGW-optimised ANN surrogate model, and IGW-

based multiobjective optimiser. The numerical evaluation 

selected five most important parameters (parameters no. 1, 

no. 10, no. 18, no. 7, and no. 21 in Table I) of 62 machine 

operation parameters. Then the field test demonstrates that, 

compared to the factory setting, the RBR index is improved 

by 75.75 % using the proposed method, the SW index is 

improved by 54.17 %, and the CI index is improved by 

50.32 %. The main conclusions are drawn as follows: 

1. The RF selects the most useful machine parameters, 

which helps the RNN to establish a very accurate surrogate 

model. The RNN model is able to predict the quality 

factors very precisely; 

2. The present RNN-IGW MOP method is capable of 

finding the optimal values of machine operation 

parameters, which significantly improves the production 

quality; 

3. The RBR, SW, and CI indexed have been improved by 

at least 50 % using the proposed method; 

4. The performance improvement of the proposed method 

for each index is better than that using the GA and PSO 

methods. 

It can be seen from the field tests of the proposed method 

for the cigarette machine swarm that the manufacturing sector 

will significantly increase its production quality rate, which 

will definitely reduce production costs and efficiency. As a 

result, the proposed method can be applied to the 

manufacturing sector. The future plan will implement and 

evaluate the proposed method on more machines, as well as 

different types of machines. 
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