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Abstract—OWL-S, one of the most significant Semantic web 

service ontologies , provides Web Service providers with a core 

ontological framework and guidelines for describing the 

properties and capabilities of their web Services in 

unambiguous, computer interpretable form. In this work we 

present a translation-based approach for modelling the 

semantic Web services described in the OWL-S language. This 

approach employs Petri net as the fundamental means of 

modelling and defines a set of translation rules to map OWL-S 

elements into equivalent Petri net representations. They 

capture the main aspect of service invocations and the control 

flow of the service model. A case study based on a real-world 

OWL-S example is also conducted to examine the effectiveness 

of the translation-based model.  

 
Index Terms—Petri nets, ontology, OWL-S, effectiveness.  

I. INTRODUCTION 

Web Services are interfaces that describe a collection of 

operations that are network-accessible through standardized 

protocols, and whose features are described using a standard 

XML-based language. Web services in the Semantic Web 

are described through ontologies, which represent formally 

the service features by using a semantic mark-up language 

that follows a logical paradigm.  

One of the most used ontologies to specify semantic Web 

service compositions is OWL-S (Ontology Web Language 

for Services) [1]. OWL-S is a computer-interpretable 

semantic mark-up language, where, for the first time, 

ontology-based descriptions of service functionality and of 

interaction service behaviour coexist. Recently, various 

research contributions have been proposed in formalization 

and functional verification of OWL-S. For example, 

researches based on Petri nets [2], [3], process algebra [4] 

and other formal models [5] are introduced to capture the 

behavioral patterns of the service ontologies and verify 

formal and functional properties (e.g., deadlockfreeness, 

boundedness, interface compatibility, and liveness). 

However, there are still many limitations in the 

abovementioned models, e.g., the incomplete modelling of 

the process model, the absence of modelling service 

grounding, and the absence of modelling timeout in the

 
Manuscript received March 19, 2012; accepted May 22, 2012.  

This work was supported partly by the Natural Science Foundation of 

China (No.61103036). 

  

 

atomic process, .etc. 

The main objective of this research is the development of 

a feature-completed formal model for describing OWL-S 

processes, thus paving the way for analyzing the ontology-

based services by exploiting the formalization and reasoning 

power of Petri nets. This approach is based on a set of 

translation rules to map OWL-S elements into equivalent 

Petri net representations. They capture the main aspect of 

service invocations, the behavioural patterns for 

atomic/composite processes, and the control flow of the 

service model.  

To illustrate the effectiveness of the framework, we 

conduct a case study based on a real-world OWL-S 

application, where the OWL-S document is translated into 

an equivalent Petri net representation.  

II. OWL-S 

OWL-S is defined as a W3C standard to provide a 

computer-interpretable description of the services, service 

access and service composition using OWL ontologies. 

Building upon SOAP (Simple Object Access Protocol) and 

WSDL (Web Service Definition Language), the OWL-S 

services can be dynamically executed on the Web.  

OWL-S models the upper ontology for services from three 

perspectives: Service Profile, Service Grounding, and 

Service Model. The Service Profile provides a high-level 

description of the service entity and its provider for 

advertising, requesting and matchmaking. The Service 

Grounding defines the mapping from abstract representation 

to concrete specification, which specifies the details of how 

to access the service such as message formats, serialization, 

transport, and addressing. The Service Model serves as the 

control flow model of service interactions and the process 

template of service compositions. The Service Model is 

modelled as a workflow of processes, including atomic, 

simple and composite processes. Each composite process 

holds a control construct, which can be implemented using 

the sequence, parallelism, choice, and repetition patterns. 

The construct can contain each other constructs recursively. 

III. MODEL TRANSLATION OF OWL-S 

In this section, we introduce the translation rules for 

OWL-S. Because the syntax of OWL-S is too vast, we 

restrict the translation into a subset (OWL-S elements such 
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as input-binding, output-binding, data manipulation, boolean 

condition evaluation, preconditions and results are 

abstracted away and omitted), which describes the control 

flows of the  activity executions and message exchanges. 

This subset is mainly specified by the Service grounding and 

Service model specifications. It captures the control flow 

evolution of the OWL-S workflow, the compositional 

patterns by which the processes are organized, and the 

invocation of external services (from abstract processes to 

the concrete services specified by the WSDL documents). 

 
Fig. 1.  Petri net model of the atomic process. 

The translation starts with the atomic process. The atomic 

process in OWL-S is a description of a service that expects 

one (possibly complex) message and returns one (possibly 

complex) message in response. It is invoked through the 

<perform> construct. It corresponds to an action that a 

service can perform in a single interaction, and it can be 

executed in a single step by sending and receiving 

appropriate messages. The main operation of the atomic 

process is to contact and invoke the partner services through 

the grounding mechanism. The grounding is a mapping from 

the abstract specifications to actual executable services 

(specified by WSDL documents). 

 
Fig. 2.  Petri net model of the <sequence> process. 

According to the discussion above, an atomic process in 

OWL-S can be translated into the Petri net model given in 

Fig. 1. In Fig. 1, the started and completed places indicate 

the initial and completed states of the process, respectively. 

The execution_d timed transition denotes the duration 

needed for the invoked service to complete execution. timer 

denotes the timeout threshold. Because the external services 

are invoked through SOAP messages and the SOAP 

connections are subject to failure (caused by message loss, 

for instance), the soap_f transition is used to capture the 

SOAP failure and it directly marks failed (in gray) to 

indicate the unsuccessful invocation. If no SOAP failure 

occurs and the service execution duration exceeds the 

timeout threshold, a timeout event is triggered and the failed 

place is marked. Otherwise, the timeout transition is 

prevented and the timely place is marked. In this case, the 

execution of the invoked external service can either be faulty 

(by firing the ivk_f transition and marking the failed place) 

or successful (by firing the complete transition and marking 

the completed place). Note that the dte1 and dte2 (dte stands 

for dead-token-elimination) transition ensure that no dead 

token exists when the atomic process normally completes or 

fails.  

 
Fig. 3.  Petri net model of the <choice> process. 

The transition of composite processes is also given. All 

composite processes are composed of atomic processes. The 

<composedOf> property in OWL-S describes the control 

flow and the data flow of sub-processes within a composite 

process, yielding constraints on the ordering and conditional 

execution of these sub-processes. The composite processes 

can be implemented by the <sequence>, <split>, <split-

join>, <choice>, <any-order>, <if-then-else>, <repeat-

while>, and <repeat-until> patterns. 

We start with the <sequence> process. In this process, a 

list of control constructs is executed sequentially. The 

equivalent Petri net model of this process is given in Fig. 2. 

For simplicity, we assume that there exist only two sub-

processes, namely P1 and P2. The failure mode of <sequence 

> is simply implemented by propagating the inner failures of 

P1,2 to the level of <sequence> itself through the immediate 

transitions from failed1,2 to failed. 

The <choice> process stipulates that a single one from a 

given bag of sub-processes (specified by the <components> 

property) is executed. As shown in Fig. 3, the choice 

construct includes two selective branches, P1 and P2. It is 

organized by an XOR selective construct. Selecting and 

completing either branch would allow the <choice> process 

to finish. The failure mode of <choice> is implemented in a 

similar way to that of the <sequence> process. 

The <split> process stipulates that branches are executed 

in parallel. It completes as soon as all of its branches have 

been scheduled for execution and dose not wait for the 

completion of those branches. The translation of the <split> 

process is given in Fig. 4. 

 
Fig. 4.  Petri net model of the <split> process. 
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Fig. 5.  Petri net model of the <split-join> process. 

 
Fig. 6.  Petri net model of the <if-then-else> process. 

The <split-joint> process also supports concurrent 

execution but is intrinsically different from the <split> 

process. It consists of the concurrent execution of a bunch of 

processes, following a barrier synchronization style. That is, 

it completes when all of its sub-processes have completed. 

The equivalent Petri net model of the <split-join> process is 

given in Fig. 5. 

 
Fig. 7.  Petri net model of the <any-order> process. 

The <if-then-else> process is a control construct 

associated with a Boolean decision. If the condition is 

satisfied, the true branch (i.e., the <then> branch) is selected 

and executed, otherwise the false branch (i.e., the <else> 

branch). The <if-then-else> process is accomplished when 

its selected branch is completed. The equivalent Petri net 

model is given in Fig. 6, where the true/false immediate 

transitions denote the true/false evaluation of the Boolean 

condition. 

 
Fig. 8.  Petri net model of the <repeat-while> process. 

The <any-order> process allows the sub-processes to be 

executed in some unspecified order but not concurrently. 

Execution and completion of all branches are required. As 

shown in Fig. 7, the execution of branches in an <any-

order> process cannot overlap and all branches must be 

executed before the <any-order> process completes. The 

single place and the bidirectional arcs from single guarantee 

that P1 and P2 are not executed concurrently. 

 
Fig. 9.  Petri net model of the <repeat-until> process. 

Both the <repeat-while> and <repeat-until> processes 

support iterative execution. They keep iterating until a 

condition becomes false or true. <repeat-while> tests for the 

loop condition, loops if the condition is true, and otherwise 

executes the nested process. <repeat-until> executes the 

nested process, tests for the condition, exits if it is true, and 

otherwise loops. Thus, <repeat-while> may never execute 

its nested process, whereas <repeat-until> always executes 

the nested process at least once. Fig. 8 and Fig. 9 show the 

Petri net models of the two processes. In these figures, the 

back immediate transition leads the control flow back to the 

beginning, and the skip immediate transition leads the 

control flow out 

IV. A CASE STUDY 

In this section, we conduct a case study to illustrate the 

effectiveness of the translation introduced above. The case 

study is based on the frequently used CongoProcess sample 

given in [6]. The FullCongoBuy process is the uppermost 

composite process of the sample. It is organized by an 

<sequence> process and composed of an atomic process, 

LocateBook, and a composite process, OrderManagement. 

The OrderManagement process implements an <any-

order> process and includes two composite processes, 

namely CongoBuyBook and UserInfoRetrieval. The 

UserInfoRetrieval process implements a sequential process 

and includes two atomic processes, namely LoadUserProfile 

and ValidateUserEmail. The CongoBuyBook process also 

implements a sequential process and includes a composite 

process, BuySequence. The BuySequence process 

implements a sequential process and includes an atomic 

process, PutInCart, and a composite process, 

SignInAndSpecify. The SignInAndSpecify process 

implements a <split-join> process and includes two atomic 

processes, namely SpecifyPaymentMethod and 

ShipmentManagement. Based on the translation rules given 

in the previous section, the sample can be translated to the 

Petri net model given in Fig. 10. 
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Fig. 10.  Petri net model of the FulCongoBuyl process. 

V. CONCLUSIONS 

In this manuscript, we present a translation-based model 

for ontology-based service compositions built on OWL-S. In 

this model, the OWL-S elements are translated into the 

equivalent Petri net representations. This model captures the 

main aspects of service invocation and control flow 

evolutions. A case study based on a real-world OWL-S 

sample is also conducted to examine the effectiveness of the 

model.  
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