
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 2, 2013

Abstract—OWL-S, one of the most significant Semantic web

service ontologies , provides Web Service providers with a core

ontological framework and guidelines for describing the

properties and capabilities of their web Services in

unambiguous, computer interpretable form. In this work we

present a translation-based approach for modelling the

semantic Web services described in the OWL-S language. This

approach employs Petri net as the fundamental means of

modelling and defines a set of translation rules to map OWL-S

elements into equivalent Petri net representations. They

capture the main aspect of service invocations and the control

flow of the service model. A case study based on a real-world

OWL-S example is also conducted to examine the effectiveness

of the translation-based model.

Index Terms—Petri nets, ontology, OWL-S, effectiveness.

I. INTRODUCTION

Web Services are interfaces that describe a collection of

operations that are network-accessible through standardized

protocols, and whose features are described using a standard

XML-based language. Web services in the Semantic Web

are described through ontologies, which represent formally

the service features by using a semantic mark-up language

that follows a logical paradigm.

One of the most used ontologies to specify semantic Web

service compositions is OWL-S (Ontology Web Language

for Services) [1]. OWL-S is a computer-interpretable

semantic mark-up language, where, for the first time,

ontology-based descriptions of service functionality and of

interaction service behaviour coexist. Recently, various

research contributions have been proposed in formalization

and functional verification of OWL-S. For example,

researches based on Petri nets [2], [3], process algebra [4]

and other formal models [5] are introduced to capture the

behavioral patterns of the service ontologies and verify

formal and functional properties (e.g., deadlockfreeness,

boundedness, interface compatibility, and liveness).

However, there are still many limitations in the

abovementioned models, e.g., the incomplete modelling of

the process model, the absence of modelling service

grounding, and the absence of modelling timeout in the

Manuscript received March 19, 2012; accepted May 22, 2012.

This work was supported partly by the Natural Science Foundation of

China (No.61103036).

atomic process, .etc.

The main objective of this research is the development of

a feature-completed formal model for describing OWL-S

processes, thus paving the way for analyzing the ontology-

based services by exploiting the formalization and reasoning

power of Petri nets. This approach is based on a set of

translation rules to map OWL-S elements into equivalent

Petri net representations. They capture the main aspect of

service invocations, the behavioural patterns for

atomic/composite processes, and the control flow of the

service model.

To illustrate the effectiveness of the framework, we

conduct a case study based on a real-world OWL-S

application, where the OWL-S document is translated into

an equivalent Petri net representation.

II. OWL-S

OWL-S is defined as a W3C standard to provide a

computer-interpretable description of the services, service

access and service composition using OWL ontologies.

Building upon SOAP (Simple Object Access Protocol) and

WSDL (Web Service Definition Language), the OWL-S

services can be dynamically executed on the Web.

OWL-S models the upper ontology for services from three

perspectives: Service Profile, Service Grounding, and

Service Model. The Service Profile provides a high-level

description of the service entity and its provider for

advertising, requesting and matchmaking. The Service

Grounding defines the mapping from abstract representation

to concrete specification, which specifies the details of how

to access the service such as message formats, serialization,

transport, and addressing. The Service Model serves as the

control flow model of service interactions and the process

template of service compositions. The Service Model is

modelled as a workflow of processes, including atomic,

simple and composite processes. Each composite process

holds a control construct, which can be implemented using

the sequence, parallelism, choice, and repetition patterns.

The construct can contain each other constructs recursively.

III. MODEL TRANSLATION OF OWL-S

In this section, we introduce the translation rules for

OWL-S. Because the syntax of OWL-S is too vast, we

restrict the translation into a subset (OWL-S elements such

Modelling of Ontology-based Service

Compositions using Petri Net

Yunni Xia
1
, Xiang Zhang

1
, Xin Luo

1
, Qingsheng Zhu

1

1
Department School of Computers, Chongqing University,

Chongqing 400030, P.R. China, phone: 86-23-65008071

xiayunni@yahoo.com.cn

http://dx.doi.org/10.5755/j01.eee.19.2.3474

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 2, 2013

as input-binding, output-binding, data manipulation, boolean

condition evaluation, preconditions and results are

abstracted away and omitted), which describes the control

flows of the activity executions and message exchanges.

This subset is mainly specified by the Service grounding and

Service model specifications. It captures the control flow

evolution of the OWL-S workflow, the compositional

patterns by which the processes are organized, and the

invocation of external services (from abstract processes to

the concrete services specified by the WSDL documents).

Fig. 1. Petri net model of the atomic process.

The translation starts with the atomic process. The atomic

process in OWL-S is a description of a service that expects

one (possibly complex) message and returns one (possibly

complex) message in response. It is invoked through the

<perform> construct. It corresponds to an action that a

service can perform in a single interaction, and it can be

executed in a single step by sending and receiving

appropriate messages. The main operation of the atomic

process is to contact and invoke the partner services through

the grounding mechanism. The grounding is a mapping from

the abstract specifications to actual executable services

(specified by WSDL documents).

Fig. 2. Petri net model of the <sequence> process.

According to the discussion above, an atomic process in

OWL-S can be translated into the Petri net model given in

Fig. 1. In Fig. 1, the started and completed places indicate

the initial and completed states of the process, respectively.

The execution_d timed transition denotes the duration

needed for the invoked service to complete execution. timer

denotes the timeout threshold. Because the external services

are invoked through SOAP messages and the SOAP

connections are subject to failure (caused by message loss,

for instance), the soap_f transition is used to capture the

SOAP failure and it directly marks failed (in gray) to

indicate the unsuccessful invocation. If no SOAP failure

occurs and the service execution duration exceeds the

timeout threshold, a timeout event is triggered and the failed

place is marked. Otherwise, the timeout transition is

prevented and the timely place is marked. In this case, the

execution of the invoked external service can either be faulty

(by firing the ivk_f transition and marking the failed place)

or successful (by firing the complete transition and marking

the completed place). Note that the dte1 and dte2 (dte stands

for dead-token-elimination) transition ensure that no dead

token exists when the atomic process normally completes or

fails.

Fig. 3. Petri net model of the <choice> process.

The transition of composite processes is also given. All

composite processes are composed of atomic processes. The

<composedOf> property in OWL-S describes the control

flow and the data flow of sub-processes within a composite

process, yielding constraints on the ordering and conditional

execution of these sub-processes. The composite processes

can be implemented by the <sequence>, <split>, <split-

join>, <choice>, <any-order>, <if-then-else>, <repeat-

while>, and <repeat-until> patterns.

We start with the <sequence> process. In this process, a

list of control constructs is executed sequentially. The

equivalent Petri net model of this process is given in Fig. 2.

For simplicity, we assume that there exist only two sub-

processes, namely P1 and P2. The failure mode of <sequence

> is simply implemented by propagating the inner failures of

P1,2 to the level of <sequence> itself through the immediate

transitions from failed1,2 to failed.

The <choice> process stipulates that a single one from a

given bag of sub-processes (specified by the <components>

property) is executed. As shown in Fig. 3, the choice

construct includes two selective branches, P1 and P2. It is

organized by an XOR selective construct. Selecting and

completing either branch would allow the <choice> process

to finish. The failure mode of <choice> is implemented in a

similar way to that of the <sequence> process.

The <split> process stipulates that branches are executed

in parallel. It completes as soon as all of its branches have

been scheduled for execution and dose not wait for the

completion of those branches. The translation of the <split>

process is given in Fig. 4.

Fig. 4. Petri net model of the <split> process.

76

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 2, 2013

Fig. 5. Petri net model of the <split-join> process.

Fig. 6. Petri net model of the <if-then-else> process.

The <split-joint> process also supports concurrent

execution but is intrinsically different from the <split>

process. It consists of the concurrent execution of a bunch of

processes, following a barrier synchronization style. That is,

it completes when all of its sub-processes have completed.

The equivalent Petri net model of the <split-join> process is

given in Fig. 5.

Fig. 7. Petri net model of the <any-order> process.

The <if-then-else> process is a control construct

associated with a Boolean decision. If the condition is

satisfied, the true branch (i.e., the <then> branch) is selected

and executed, otherwise the false branch (i.e., the <else>

branch). The <if-then-else> process is accomplished when

its selected branch is completed. The equivalent Petri net

model is given in Fig. 6, where the true/false immediate

transitions denote the true/false evaluation of the Boolean

condition.

Fig. 8. Petri net model of the <repeat-while> process.

The <any-order> process allows the sub-processes to be

executed in some unspecified order but not concurrently.

Execution and completion of all branches are required. As

shown in Fig. 7, the execution of branches in an <any-

order> process cannot overlap and all branches must be

executed before the <any-order> process completes. The

single place and the bidirectional arcs from single guarantee

that P1 and P2 are not executed concurrently.

Fig. 9. Petri net model of the <repeat-until> process.

Both the <repeat-while> and <repeat-until> processes

support iterative execution. They keep iterating until a

condition becomes false or true. <repeat-while> tests for the

loop condition, loops if the condition is true, and otherwise

executes the nested process. <repeat-until> executes the

nested process, tests for the condition, exits if it is true, and

otherwise loops. Thus, <repeat-while> may never execute

its nested process, whereas <repeat-until> always executes

the nested process at least once. Fig. 8 and Fig. 9 show the

Petri net models of the two processes. In these figures, the

back immediate transition leads the control flow back to the

beginning, and the skip immediate transition leads the

control flow out

IV. A CASE STUDY

In this section, we conduct a case study to illustrate the

effectiveness of the translation introduced above. The case

study is based on the frequently used CongoProcess sample

given in [6]. The FullCongoBuy process is the uppermost

composite process of the sample. It is organized by an

<sequence> process and composed of an atomic process,

LocateBook, and a composite process, OrderManagement.

The OrderManagement process implements an <any-

order> process and includes two composite processes,

namely CongoBuyBook and UserInfoRetrieval. The

UserInfoRetrieval process implements a sequential process

and includes two atomic processes, namely LoadUserProfile

and ValidateUserEmail. The CongoBuyBook process also

implements a sequential process and includes a composite

process, BuySequence. The BuySequence process

implements a sequential process and includes an atomic

process, PutInCart, and a composite process,

SignInAndSpecify. The SignInAndSpecify process

implements a <split-join> process and includes two atomic

processes, namely SpecifyPaymentMethod and

ShipmentManagement. Based on the translation rules given

in the previous section, the sample can be translated to the

Petri net model given in Fig. 10.

77

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 2, 2013

Fig. 10. Petri net model of the FulCongoBuyl process.

V. CONCLUSIONS

In this manuscript, we present a translation-based model

for ontology-based service compositions built on OWL-S. In

this model, the OWL-S elements are translated into the

equivalent Petri net representations. This model captures the

main aspects of service invocation and control flow

evolutions. A case study based on a real-world OWL-S

sample is also conducted to examine the effectiveness of the

model.

REFERENCES

[1] J. Cardoso, A. Sheth, “Introduction to Semantic Web Services and

Web Process Composition”, Lecture Notes in Computer Science, vol.

3387, pp. 1–13, 2005. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-30581-1_1

[2] G. Dai, X. Bai, C. Zhao, “A Framework for Time Consistency

Verification for Web Processes Based on Annotated OWL-S”, in

Proc. of the GCC -IEEE Computer Society, 2007, pp. 346–353.

[3] A. Brogi, S. Corfini, S. Iardella, “From OWL-S Descriptions to Petri

Nets”, in Proc. ICSOC -IEEE Computer Society, 2007, pp. 427–438.

[4] B. Norton, S. Foster, A. Hughes, “A Compositional Operational

Semantics for OWL-S”, in Proc. EPEW/WS-FM -IEEE Computer

Society, 2005, pp. 303–317.

[5] S. Narayanan, K. Sievers, S. J. Maiorano, “OCCAM: Ontology-Based

Computational Contextual Analysis and Modeling”, in Proc. of the

CONTEXT -IEEE Computer Society, 2007, pp. 356–368.

[6] The CongoProcess sample. [Online]. Available:

http://www.daml.org/services/owls/1.1/CongoProcess.owl

78

