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Abstract—The study focuses on improving drone landing gear 

dynamics through an innovative auxetic foot design, leveraging 

Spider Monkey Optimization for Model Predictive Control 

adjustment, facilitated by an Arduino-MATLAB interface. The 

auxetic foot design incorporates materials with a negative 

Poisson ratio, which allows the foot to expand and enhance 

energy absorption during landings. This design improves 

stability and safety during the perched landing process. The 

SMO-MPC approach is used to optimise the control of the 

perched landing gear. SMO, inspired by spider monkey search 

behaviour, optimises auxetic foot control input sequences with 

the limits of rotational displacement (theta = 30 deg to -30 deg) 

on the prediction horizon to improve landing gear performance. 

The real-time implementation of SMO-MPC is achieved 

through an Arduino-MATLAB interface on quadcopter drone. 

A comparative analysis is conducted to evaluate the benefits of 

SMO-MPC compared to conventional MPC methods. The 

results show that the SMO-MPC approach with auxetic foot 

design surpasses conventional MPC methods in terms of landing 

performance with 14.6 % improvement in damping force 

control and control of aerodynamic stability with pitch of 

34.16 %, yaw of 16.87 %, and roll of 31.74 %.  

 
Index Terms—Metaheuristic optimisation; Spider monkey 

optimisation; Unmanned aerial vehicle; MPC; SMO-MPC. 

I. INTRODUCTION 

Perched landing with bird-like manoeuvres offers 

advantages such as reduced footprint, enhanced stability, and 

increased manoeuvrability for drones. It allows them to land 

in urban environments with limited space, maintain stability 

under challenging conditions, and navigate through tight 

spaces with ease [1]. Perched landing environments offer a 

range of applications for unmanned aerial vehicles (UAVs). 

These applications include surveillance and security, 

inspection and maintenance of tall structures, environmental 

monitoring, precision agriculture, search and rescue 

operations, filmmaking and photography, and scientific 

research in biology, ecology, and wildlife studies. Perched 

landing UAVs can access elevated perches, enabling them to 

capture high-resolution imagery, collect data, and provide 

valuable aerial perspectives in areas that humans may be 

difficult to reach. These UAVs are used in all industries to 

improve situational awareness, optimise farming practices, 

monitor environmental conditions, aid in search and rescue 

missions, capture unique shots for entertainment purposes, 

and study wildlife behaviour without disturbing natural 

habitats.  

Perched landing for drones presents challenges such as 

precise localisation, sensing and perception, control in 

unstructured environments, wind and environmental 

conditions, dynamic perch movements, and leg design and 

control. These challenges require precise localisation, 

perception techniques, adaptation to uneven surfaces, and 

dynamic perch movements to ensure safe and accurate 

landings. Drones rely on communication and navigation 

systems to control the flight path and landing. Any disruption 

or failure in these systems can make it difficult to control and 

land UAVs. You must avoid obstacles during flight, such as 

trees, buildings, and other UAVs, which can make it difficult 

to control and land them safely [2]. Perched landings require 

leg kinematics, force control, safety, real-time timing, system 

complexity, and validation. Iterative design, rigorous testing, 

and continuous improvement are crucial for successful 

landings [3]. 

To address these challenges, various technologies and 

approaches have been developed to improve UAV stability 

and landing capabilities. For example, some UAVs are 

equipped with sensors and algorithms that can detect wind 

conditions and adjust their flight path to maintain stability. 

Additionally, some UAVs use advanced control systems and 
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machine learning algorithms to optimise their flight path and 

landing trajectory [4], [5]. In addition, some UAVs use 

advanced landing systems, such as parachute landing systems 

or landing gear, to ensure a safe and controlled landing. 

Overall, stability and landing of UAVs are critical challenges 

that must be addressed to ensure safe and efficient UAV 

operations. Advances in technology and innovation will 

continue to improve UAV capabilities and enhance their 

stability and landing capabilities. 

Different types of landing gear are used depending on the 

size, purpose, and intended operating environment of the 

drone. Retractable or adjustable landing gear allows for 

unobstructed shots or videos with increased aerodynamic 

efficiency which is discussed by Huang in [6]. Liang, Chin, 

Sun, and Wang [7] implemented skid landing gear in UAV 

because of its lightweight and suitability for confined spaces. 

Campi, Cruciani, Maradei, and Feliziani [8] studied the 

dynamics of fixed landing gear in larger drones for rough 

terrains and found that landing of UAVs on flat surfaces is 

stable than on rough terrains. Articulated landing gear used 

by Ni, Yin, Wei, Zhong, and Nie [9] offers flexibility and 

shock absorption on uneven surfaces, whereas the sprung 

landing gear proposed by Bauer [10] absorbs shocks and 

protects sensitive equipment such as a camera mounted on the 

UAV. 

The limitations of landing gear depend on factors such as 

drone size, weight, control of gyroscopic moments, landing 

velocity, damping force and altitude, land surface 

complexity, and wind velocity. The landing gears of the 

quadcopter reveal various studies aimed at optimising design, 

materials, and structure to improve performance. Some 

studies by Cheng and Matsuoka focussed on stability and 

impact resistance, while others proposed deployable systems 

to absorb impact forces and reduce damage [11]. Jia, Jizhen, 

Xiaochuan, and Yazhou [12] explored landing gear designs 

and models for UAVs, covering configurations, materials, 

shock absorption mechanisms, and modelling techniques. 

Chu, Guo, and Xing [12] discussed the design and 

development of a foldable system for a quadrotor UAV that 

evaluated performance. Chen, Zhao, Zhang, and Zhu [14] 

proposed a UAV that uses dynamic simulation for optimal 

design and control. Ikura, Miyashita, and Ishikawa [15] 

studied the severity of UAV collisions with UAV structures, 

providing insight into the influence of various parameters on 

the impact force. Muskardin et al. [16] assessed operational 

safety to avoid collision by improving UAV safety 

assessment practices. The paper discusses impact forces 

during landing and the effects of design parameters on overall 

performance. 

From the above survey, there is a need to obtain the control 

stabilities of drones, which involves a metaheuristic landing 

approach like-bird manoeuvres. The auxetic landing gear is 

an innovative type of drone landing gear that uses unique 

mechanical properties with a negative poisson ratio [17]. 

These materials offer potential benefits such as impact 

absorption, load distribution, versatility, weight reduction, 

compact storage, and vibration damping [18]. However, 

research and development is ongoing, requiring careful 

engineering, material selection, structural design, and 

manufacturing processes. Further research is needed to 

evaluate long-term durability, fatigue resistance, and real-

world performance in various environmental conditions and 

operational scenarios.  

Model predictive control (MPC) is a robust technique for 

drone landing control due to its dynamic optimisation, 

handling limitations, real-time modifications, and precise 

landings [19]. Research articles highlight the advantages of 

MPC-based techniques for autonomous and quadrotor UAVs, 

focussing on system dynamics, cost functions, and control 

methods [20]. The use of wind-aware control methods and 

nonlinear MPC for precision landing in wind-disturbed 

conditions is also explored in [21], [22]. Traditional 

optimisation methods face limitations in solving complex 

problems [23]. They can be slow to converge, especially for 

high-dimensional problems, and may converge to local 

optima instead of the global optimum. Computational costs 

can be significant for large-scale problems, making them 

impractical for real-world applications [24], [25]. 

Additionally, traditional optimisation methods struggle to 

handle with nonlinear functions, which can be unstable and 

unreliable. 

To address these limitations, metaheuristic optimisation 

methods such as spider monkey optimisation (SMO) were 

applied to MPC. SMO-based MPC offers advantages such as 

exploring the entire search space, reducing computing time, 

ensuring robustness, and adapting to different optimisation 

issues and control objectives. The proposed work with MPC-

based SMO optimisation for controlling novel auxetic 

landing foot with perched landing mechanism provides an 

effective solution for drone landing control, overcoming the 

limitations of traditional methods and delivering enhanced 

aerodynamics and landing stability in challenging conditions. 

II. QUADCOPTER MODELLING 

A. Modelling of the Quadcopter Drone 

The system dynamics of the quadcopter was modelled 

using Newton-Euler theory based on the aerodynamic 

stability criterion with state-space representation as second-

order model [26]: 

   1cos sin cos sin sin ,a

f
a r p y r y D

m
    (1) 

   1cos sin cos sin sin ,b

f
b r p y r y D

m
    (2) 

   1cos cos ,c

f
c r p D

m
   (3) 

 2 ,b c r

r r

a a a

I I J l
r py pS f D

I I I


     (4) 

 3 ,c a r

r p

b b b

I I J l
p yr rS f D

I I I


     (5) 

 4 ,a b

y

c c

I I l
y rp f D

I I


    (6) 

where (a, b, c) represent the centre of gravity of the UAV in 

the earth frame; (u, v, w) represent the angular velocity of the 

body frame; the total mass of the UAV, m, is multiplied by 

the acceleration of gravity, g; the arm length of the UAV is 

denoted by l; Ia, Ib, and Ic stand for the moments of inertia; r, 

p, and y signify the roll, pitch, and yaw Euler angles, 
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respectively; Jr stands for the moment of inertia; Da, Db, Dc, 

Dr, Dp, and Dy stand for disturbances; the ith propeller speed, 

Si (i = 1, 2, 3, 4), and the total propeller speed, Sr = S1×S2 + 

S3×S4, are both expressed in m/s.  

B. UAV Landing Gear Model 

Assuming that the UAV uses a perching method to landing, 

we can expect that its entire leg and foot system will behave 

like a flexible body.  Thus, the UAV system's flight dynamics 

are captured using a quadcopter model, as illustrated in Figure 

1, with position and orientation described by the tuple (P, Q) 

and a specific slant angle predetermined. To ignore gravity 

and achieve static equilibrium, we set p = 0 and q = 0. Just 

pretend there is no auxetic dampening and use a linear spring. 

The suspension model for UAV landing gear dynamics is 

described as follows: 

    2 2 ; ,s de q p F F b q p     (7) 

  1 1 ,sF e p u   (8) 

 .F ma  (9) 

 
Fig. 1.  Schematic representation of the dynamical model of the system. 
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where 𝑚1- mass of auxetic foot; 𝑚2 - mass of the frame with 

wings and motor; 𝑒1 - subsuspension of hexachiral structure 

with negative Poisson ration; 𝑒2 - suspension of leg with 

frame; b - damping coefficients. Taking the Laplace trans-

form to find transfer function, 
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The second consideration is with rotary model of the 

auxetic foot during perched landing. Coordinates (𝑟) and the 

orientation are defined; assume linear spring and damper 

parameters are lumped together (Fig. 2): 
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where 𝑘 = 𝑘1 + 𝑘2. 
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b is the damping coefficient of the leg, k is the stiffness of 

the leg, and θ is the angular displacement of the foot. 

Taking the Laplace transform to find transfer function, 
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where J is the polar moment of inertia between the auxetic 

foot and ground, 
𝑑2𝑟

𝑑𝑡2 is the angular acceleration of auxetic 

foot, and 
𝑑𝑟

𝑑𝑡
 is the angular velocity of auxetic foot as shown 

in equation 20. 
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Fig. 2.  Schematic representation of the system landing gear model. 

III. MODEL PREDICTIVE CONTROL 

The specific implementation of a model predictive control 

(MPC) algorithm for landing gear control on a drone will 

depend on the particular system being controlled and the 

desired outcome [27]. However, here is a general outline of 

the steps involved in designing an MPC algorithm for landing 

gear control: 

 The mathematical model of the drone dynamics and the 

landing gear mechanism are developed based on factors 

such as the drone weight, size, and aerodynamics, as well 

as the characteristics of the landing gear, such as its length, 

stiffness, and damping; 

 State and control inputs for the MPC algorithm: The state 

variables include the drone position, velocity, and 

orientation, as well as the position and orientation of the 

landing gear. The control inputs may include the position 

and orientation of the landing gear actuators; 

 The objective function for the MPC algorithm: This 

function should specify the desired outcome of the landing 

process, such as minimising the impact force on the drone, 

and should be a function of the state variables and control 

inputs; 

 Set the prediction and control horizons for the MPC 

algorithm, which determine the optimal control input based 

on the predicted system behaviour and the objective 

function. Implement the algorithm by solving optimisation 

problems at each time step. Test and validate the algorithm 

in simulation and real-world conditions, refining the model 

and algorithm as needed; 

 The following is an illustration of the objective function 
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where Ph is the time span predicted, Ch is the time span 

controlled, ai and ci are weighting coefficients, etc. The 

restrictions are as follows, where �́�(𝑡 + 𝑖|𝑡) , 𝑏(𝑡 + 𝑖),
𝑎𝑛𝑑 𝑒(𝑡 + 𝑖) represent the expected output, the desired 

output, and the next control signal, respectively: 

       1 , ,p t f p t e t   (23) 

       , ,q t g p t e t  (24) 

   ,l ue e t e   (25) 

   .l up p t p   (26) 

Here, 𝑒𝑙 , 𝑒𝑢  denote the minimum and maximum 

controllable signals, and 𝑝𝑙 , 𝑝𝑢 the minimum and maximum 

allowable system states. 

IV. SPIDER MONKEY OPTIMISATION (SMO) 

Spider monkey optimisation (SMO) is an optimisation 

technique inspired by the natural world. It involves spider 

monkeys exploring and exploiting search spaces to find the 

best solution. SMO is comparable to other advanced 

algorithms, such as particle swarm optimisation and genetic 

algorithms, in terms of solution quality and convergence time 

[28]. However, it requires refinement and validation to ensure 

its reliability and efficiency for specific optimisation 

problems. 

Spider Monkey Optimisation-Based Model Predictive 

Control (SMO-MPC). SMO can be used with MPC to 

optimise the control parameters of a drone’s landing gear 

system. The goal is to achieve a stable and smooth landing of 

the drone by optimising the control parameters of the landing 

gear system. 

The process of combining SMO and MPC for drone 

landing stability and landing gears can be broken down into 

the following steps: A mathematical model of a drone landing 

system should consider factors such as mass, velocity, 

position, terrain, and wind conditions. Optimise the cost 

function using SMO using control parameters and reflect the 

desired drone behaviour [29]. Initialise a spider monkey 

population with random control parameters to represent 

candidate solutions. 

Initialisation. To optimise for a set of control variables, 

SMO creates a population with uniform distribution in [m and 

c], where m is the number of monkeys and c is the number of 

control variables. The equation is used to initialise each 

monkey 

    min max min 0,1 ,ab b b bSM SM SM SM U     (27) 

where SMmaxb and SMminb represent the maximum and 

minimum values for the monkey in the bth direction, 

respectively, and U(0, 1) is a uniformly distributed random 

number between 0 and 1. 

Local Leader Phase (LLP). At this stage, monkeys update 

their present position based on the knowledge of their local 

leader and group members, a strategy that is mainly used for 

search. The position of the gth local group monkey (ath 

monkey) is updated using the equation below. It is important 

to select an appropriate perturbation rate (pr) because it 

determines the magnitude of the shift from the current 

position 
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where SMab is the bth dimension of the ath monkey, LLgb is the 
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bth dimension of the gth place in the local group leadership 

hierarchy, U(-1, 1) is an arbitrary number in the range of [-1, 

1], SMfb is the bth dimension of the fth monkey selected at 

random within the gth group such that f is not equal to a. 

Global Leader Phase (GLP). Exploitation is the primary 

goal of the global leader phase, during which all monkeys 

update their positions based on what they have learnt from the 

global leader and their fellow group members at the local 

level. The position is updated using the equation represented 
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where GLb stands for the “global leader in dimension b”. 

Equation uses a variable called probabilities (prba) to update 

the location of the ath monkey precisely 
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fita denotes the fitness value of the ath monkey, and the highest 

value among them is denoted by fitmax. Thus, fitter monkeys 

are more likely to have a higher probability of having their 

positions updated. 

Local Leader Learning (LLL) phase. Here, the greedy 

selection algorithm is used to determine the new local leader 

(the monkey with the highest fitness). The local limit count is 

increased by one if the local leader position is not updated.  

Global Leader Learning (GLL) phase. During this stage, 

the current global leader is determined through greedy 

selection. The global limit count is then increased by one if 

the new position is not an update from the previous global 

leader position.  

Local Leader Decision (LLD) phase. If the local leader is 

not changed within a given number of iterations (the “local 

leader limit”), then all members of the group will be reset to 

their initial states. Each member of that group can be 

initialised in one of two ways: at random or by combining 

data from the group’s local leader and global leader via an 

equation 

 

   

   

0,1

0,1 .

newab ab gb ab

ab gb

SM SM GL SM U

SM LL U

    

    (31) 

The formula mentioned above demonstrates that an 

upgraded monkey dimension is drawn to a global leader and 

repulsed by a local leader. The fitness of spider monkey is 

evaluated using the MPC algorithm, simulating drone 

landings and controlling parameters. Best-performing spider 

monkeys are validated using heuristics to generate new 

values of control parameters. 

Global Leader Decision (GLD) phase. In this stage, the 

global leader recombines the entire population into a single 

group, then divides it into a smaller number of groups 

(beginning with two, then three, etc.) if the global leader 

position remains unaltered for a certain number of trials (= 

global leader limit). 

Steps 4 and 5 are repeated until the convergence criterion 

is met. Use optimised control parameters in the MPC 

algorithm to control the landing gear system. SMO-based 

MPC improves stability, safety and reduces impact force, 

prolonging the life of the system. 

V. REAL-TIME IMPLEMENTATION 

Quadcopters consist of four rotors, a frame, batteries, and 

a controller (Fig. 3). They are designed to be lifted and 

steerable, with rotors supporting the rotors and components. 

The quadcopter model involves lift, propulsion, and control, 

while dynamic models simulate flying and landing. Perching 

on hind legs requires force control, kinematics, sensing 

(distance between ground d), perception, and control 

algorithms. The leg design must provide enough forces and 

torques to support the robot’s mass, position, and orientation. 

The landing gear foot in this case is shaped of auxetic material 

that functions as a contact module; this is necessary for the 

development of a flexible auxetic foot (rf, lf). The interface 

of the landing gear with the ground is passively stabilised by 

these modules, while the dynamic load of landing (damping 

force Fd) is absorbed by an auxetic foot of hexachiral design. 

Fusion deposition techniques are used to create a 3D 

thermally resistant filament rubber polyurethane with grid 

layers for auxetic landing gear. Furthermore, the designs are 

in accordance with the geometrical characteristics of the 

contact areas (Fig. 4); however, there is always a discrepancy 

between the designed contact module and the actual contact 

surfaces. To reduce the impact difference and improve 

contact stability, the proposed contact module is made of soft 

materials. Similarly, to fractals, auxetic structures are made 

by repeatedly replacing a single edge at progressively smaller 

increments. The wall edges deviate from the vertical plane by 

an amount determined in large part by the oblique angle 
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0 0.5.
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For a first-order, 30 °-angled hexachiral, the wall thickness 

is 

 .
1 2

r

f

t
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The Fi, or mean compressive impact force during landing, 

is calculated by 

 
0.5 1.589.6

.i O oF L t
K

  (34) 

Roll (r), pitch (p), and yaw (y) angles characterise the 

rotating motion of an aircraft or spacecraft. Pitch is the 

attitude angle, while roll is the longitudinal axis rotation. Yaw 

regulates horizontal motion, pitch - vertical. These angles 

describe the three-dimensional orientation and rotation of an 

object. Roll, pitch, and yaw angles (φ, θ, ψ) can modify the 

orientation and horizontal motion of the object. 

Geometry and optimisation calculate leg trajectories, while 

impact-resistant legs have compliance and stabilisation 

systems. Safety features such as detection, avoidance, and 

response to danger are difficult to create.  

Simulation and real-world testing are necessary to trust 

robotic leg control algorithms. Lightweight RC servos can 
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control the perched legs of drones, considering landing 

pressures, weight, and range of motion. Real-time sensors 

measure leg placement and force, and failsafe systems and 

emergency stop switches are necessary for safety. Test and 

experimental validation are necessary to ensure stability and 

control settings. 

 
Fig. 3.  Proposed quadcopter drone controller schematics. 

 
Fig. 4.  Schematics and mechanism of the auxetic landing gear.

The real-time drone control mechanism consists of several 

key components and software tools (Fig. 5).  

The ATMega328P controller serves as the central control 

unit, receiving commands and controlling the flight of the 

drone. The NRF24L01 communication module enables long-

range wireless communication between the drone and the 

ground station. The GPSNeo6M GPS module provides 

accurate global positioning data for autonomous navigation. 

The HMC5883L magnetometer determines the drone’s 

heading, while the MPU6050 gyro and accelerometer provide 

orientation and position data. The RC servo with 35 kg torque 

controls the landing gear position, and the BMP180 

barometric sensor measures altitude as shown in Table I. 

MultiWii software facilitates drone control, and MATLAB is 

used to implement model predictive control (MPC) 

algorithms to optimise flight parameters. Together, these 

components and software enable precise control, autonomous 

navigation, stability, and advanced features such as altitude 

hold and waypoint tracking. The integration of MPC 

enhances responsiveness and adaptability, ensuring safe and 
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efficient drone operations. 

 
Fig. 5.  Phtotographic view: Drone with auxetic foot. 

VI. RESULTS AND DISCUSSION 

The SMO algorithm is customised with the following 

settings: Maximum iterations = 1000, population size = 30, 

global leader limit = 125, local leader limit = 150, maximum 

groups = 30, and maximum perturbation rate = 0.21 over 

time. 50 iterations of the optimisation were performed and the 

best result was selected as the optimal parameters of the 

controller. 

TABLE I. OPERATING PARAMETERS AND CONDITIONS. 

Parameters Value 

Drone system 

Motor type Brushless D.C. motor 

No. of motors 4 

GPS GPSNeo6M 

IMU MPU6050 

Magnetic Compass HMC5883L 

Altitude Sensor BMP180 

Auxetic gripper 

Material 
Thermo resistive polyurethane 

rubber 

Type Hexachiral 

Max. negative Poisson’s ratio -0.00247 

Max. deformation (mm) 41.6 

Load cell sensor 

Type S-Bridge type 

Range -200 KN to 850 KN 

Sensitivity 0.1 KN to 1 KN 

Output 4 mA–20 mA 

Displacement sensor 

Type Hall effect 

Range 0 mm–100 mm 

Sensitivity 0.5 V ± 0.1 V 

Output Digital 

Microcontroller for auxetic legs control 

Type AT MEGA 328P 

Bit 8 bit 

Analog inputs 14 channels 

PWM outputs 10 channels 

Programmer Matlab R2021b, MultiWii 

Parameters Value 

Interface software Arduino IDE 

Data rate 115200 bits/s 

Control algorithm SMO-MPC control 

Servo motor at auxetic landing gear 

Type Radio controlled 

Torque 35 kg 

Accuracy 1.8 ° 

Sensitivity 5 ms 

Signal input 
Pulse modulated wave and pulse 

position modulation 

Angular displacement at degrees 0 °–180 ° 

 
Figure 6 displays the rotation angle of a drone in degrees 

over time in seconds, comparing the performance of a 

standard MPC with that of an SMO-enhanced MPC (SM-

MPC). Looking at the past performance, indicated on the left 

side of the dashed vertical line, both systems exhibit 

fluctuations around the target angle, with the standard MPC 

having a maximum overshoot of 20.12 degrees and a 

downfall of 12.34 degrees. The SMO-MPC shows a more 

controlled response with less deviation, implying that the 

SMO tuning has likely improved the MPC's predictive and 

control horizons. The predictive horizon shows the estimated 

future behavior of the drone's rotation angle, with the SM-

MPC predicting a more stable and controlled future response, 

suggesting better anticipation of the system's dynamics and 

potentially more effective control actions to maintain the 

desired trajectory. 

Figure 7(a) shows the control mechanism of the pitch 

moment during the perched landing. This includes three 

positions with respect to the pitch angle. It could be observed 

that the setpoint for the first position of the auxetic foot during 

perching with 15 deg of angular displacement was controlled 

over a period of time of 14 seconds. The SMO-MPC obtains 

a maximum overshoot of 15.4 deg and a downfall of 

13.23 deg. In the conventional Model Predictive Control 

setup, it has been observed that the maximum overshoot is 

20.12 degrees, with a subsequent decrease of 12.34 degrees.  

The second position of the perched landing relies on 16 to 24 

seconds with 0 deg pitch angle, the maximum overshoot 

observed is 1.8 deg and undershoot is -0.5 deg for SMO-

MPC. In case of conventional MPC, the overshoot and 

undershoot are 19 deg and 1 deg, respectively. In the third 

position, at a time period of 26 to 42 seconds, the highest peak 

recorded for SMO-MPC is -6.23 and lowest peak is -2.69, 

while for conventional MPC, the higher and lower pears are -

7.98 and -1. The results of tracking the pitch angle are shown 

in Fig. 7(a). Some ranges of the reference pitch angle do not 

result in an improved steady-state response. However, 

adjusting the control horizon in MPC Controllers through 

proper training enhances setpoint tracking performance.  

Figure 7(b) shows how well the yaw angle tracking works. 

The tracking performance of SMO-MPC is much improved, 

and the horizons obtained via the SMO-based tuning 

algorithm are robust. The highest peak observed in SMO-

MPC is 1.02 deg, for conventional MPC - 2.7 deg, whereas 

the lowest peak observed in SMO-MPC is -0.23 deg, for 

conventional MPC - -1.32 in the time period of 42 seconds. 

Figure 7(c) illustrates how modifying the control horizon 

gains for the control of the roll angle affects the accuracy with 
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which the roll angle is tracked. Here, the maximum overshoot 

of 0.65 deg and undershoot of -0.2 deg for SMO-MPC is 

recorded. In case of conventional MPC, the maximum 

overshoot observed is 1.98 deg; the undershoot is –0.53 deg 

in the time period of 42 seconds. Variations in parameters 

such as uneven surface cause stabilisation problems even 

while the reference roll angle remains constant. Despite this 

disturbance, the proposed control mechanism works as 

intended.

 
Fig. 6.  Landing dynamic control response. 

 
(a) 

 
(b)

 
(c) 

Fig. 7.  Landing dynamics of drone with a wind velocity of 4.4 m/s and landing velocity of 0.254 m/s: (a) Effects of variation in pitch angle with respect to 

landing time using MPC and SMO-MPC; (b) Effects of variation in yaw angle with respect to landing time using MPC and SMO-MPC; (c) Effects of variation 

in roll angle with respect to landing time using MPC and SMO-MPC.

Based on the data in Fig. 8, it appears that friction forces 

(auxetic grippers) are superior to torsional forces in terms of 

stabilising the system. Better landing stability can be 

achieved by using measures such as adding negative or large 

positive mechanical trail, applying mass balancing to the 

landing systems by adjusting the speed of four motors (M1, 

M2, M3, M4), utilising auxetic dampers (foot of the drone rf, 

lf), and separating lateral and torsional frequencies via lateral 

and torsional stiffness modifications. It is inferred from the 

graph that the damping of landing impact force is higher than 

that of conventional MPC.  The SMO-MPC system exhibits 

a maximum damping force of 79N and a minimum of 70N, 

indicating a narrow force range and consistent performance. 

In contrast, the conventional MPC shows a wider range, with 

a maximum force of 134N and a minimum of 55N, suggesting 

a less stable control with greater variability in the damping 

force applied. Thus, damping the impact force reduces the 

stress on the internal components of the drone, such as 

sensors, actuators, and electronics, prolonging their 

operational lifespan. It also minimises the risk of payload 

damage and ensures the safety of any cargo or equipment 

carried by the drone. 
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Fig. 8.  Control response of MPC and SMO-MPC during setpoint tracking of 

damping force. 

Model predictive control (MPC) is an optimisation-based 

control technique that helps designers create control 

strategies and tackle complex drone landing dynamics 

objectives and limitations [30]. It offers numerous advantages 

in drone landing dynamics, including handling nonlinear 

aerodynamics, propulsion systems, and external disturbances 

[31]. Utilising nonlinear models, MPC optimises nonlinear 

systems, ensuring accurate and robust landings. It also 

handles limitations on system states, inputs, and outputs, 

ensuring drone safety and practicality during landing. The 

response graph (Fig. 9) shows that the peak time for the SMO-

MPC control is 22 s, the rise time is 5 s, and the settling time 

is 39.45 s. There is less overshoot and more setpoint tracking. 

While the other control response for the MPC control 

indicates a peak time of 28 s, rise time of 10 s, and settling 

time of 55.45 s, the response graph reveals these, 

respectively. However, the new model is based on heuristic 

algorithms that have a precise upper bound and lower bound, 

both of which contribute to the robust stability that was 

previously lacking in the use of basic models by early 

predictive controllers [32]. The control horizon (Ch) (as 

shown in Fig. 6) parameters are selected according to the 

experimental step responses or the system that generates 

marginal stability, which results in stable proportional action.

  
Fig. 9.  Step responses of the SMO-MPC and MPC control. 

It also handles time-varying control, adjusting control 

actions to time-varying dynamics for optimal landing 

performance by prioritising tracking performance and 

minimising cost functions across a prediction horizon (Ph) 

(Fig. 6). It is inferred from the above results that the 

percentage of deviation from the setpoint of MPC for pitch, 

roll, yaw, and damping force is 29.66 %, 1.6, 1.575, and 

86.79, respectively, while the percentage of deviation from 

the setpoint for SMO-MPC is 3.33, 0.27, 0.5, and 79.7, 

respectively (Figs. 7(a)–(c)). Table II shows the optimized 

response outputs of the SMO-MPC with respect to the 

conventional MPC. 

TABLE II. TIME RESPONSE ANALYSIS. 

Controller 

Rise 

Time 

(s) 

Overshoot 

(%) 

Peak 

Time 

(sec) 

Settling 

Time 

(s) 

MPC 10 1.48 28 55.45 

SMO-MPC 5 1.35 22 39.45 

 
The SMO-MPC was found to be robust to model errors, to 

update predictions based on measurable data during runtime, 

making it more resilient to model errors, and enhancing 

landing performance in unpredictable dynamics [20].  

VII. CONCLUSIONS AND FUTURE SCOPE 

The spider monkey optimisation (SMO)-based model 

predictive control (MPC) is a promising approach for 

optimising drone landing gear control, which is crucial for 

ensuring stability, balance, and impact resistance during 

landing. The MPC control involves predicting future 

behaviour and computing control input to optimise the 

performance criterion over a finite time horizon. The SMO 

algorithm, inspired by the social behaviour of spider 

monkeys, provides a global search capability and can escape 

local optima. Implementing SMO in MPC control improves 

landing gear control performance, particularly in complex 

scenarios such as uneven terrain or adverse weather 

conditions. 

The process involves defining the MPC problem, 

implementing the SMO algorithm, simulating the landing 

gear system, evaluating its performance, and optimising the 

parameters of the SMO algorithm.  

This optimisation improves the safety and stability of 
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drone operations. However, the performance of the SMO 

algorithm depends on carefully tuned parameters, and the 

computational complexity of the MPC control algorithm may 

increase, especially for large-scale landing gear systems.  

More research is needed to explore its performance in 

various landing scenarios and optimise parameters for 

optimal performance. SMO-based MPC has potential 

applications in autonomous systems, process control, 

renewable energy systems, aerospace engineering, and 

biomedical engineering. 
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