
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

1Abstract—Backpropagation (BP) is one of the most widely

used algorithms for training feedforward deep neural networks

(NNs). The algorithm requires a differentiable activation

function and it performs computations of the gradient

proceeding backward through the feedforward deep NN from

the last layer through to the first layer. To calculate the

gradient at a specific layer, the gradients of all layers are

combined using the chain rule of calculus. One of the biggest

disadvantages of BP is that it requires a large amount of

training time. To overcome this issue, this paper proposes a

modified BP algorithm with multiplicative calculus.

Multiplicative calculus provides an alternative to the classical

calculus, and it defines new kinds of derivative and integral

forms in multiplicative form rather than addition and

subtraction forms. The performance analyses are discussed in

various case studies, and the results are given comparatively

with the classical BP algorithm. It is found that the proposed

modified BP algorithm converges in less time to the solution

and thus provides fast training in the given case studies. It is

also shown that the proposed algorithm avoids the problem of

local minima.

 Index Terms—Backpropagation; Local minima problem;

Multiplicative calculus; Neural networks.

I. INTRODUCTION

The backpropagation (BP) algorithm was first proposed

by Werbos in his doctoral dissertation in 1974 [1]. The

thesis introduced the algorithm in the general context so that

it was not widely known and publicised in the neural

network (NN) community until the mid 1980s. The

algorithm was then independently presented by Rumelhart,

Hinton and Williams [2], Parker [3], and Lecun [4], but it

became popularised by Rumelhart and McClelland [5].

After the publication of this study, there was a huge

explosion of scientific work in the field of NNs. Most

multilayer NNs have been trained by the BP algorithm.

Although the BP algorithm has numerous advantages in

many successful applications, there have been some

drawbacks such as the BP needs a lot of training time and

therefore the convergence tends to be significantly slow [6]

and the learning process is stuck at a local minimum [7].

This study addresses a novel solution to overcome the slow

convergence rate problem and avoid local minima problem,

and this paper introduces a modified BP algorithm with

multiplicative calculus. To my knowledge, this is the first

study on the use and application of multiplicative calculus in

Manuscript received 15 February, 2023; accepted 10 May, 2023.

this field.

The proposed algorithm uses the multiplicative derivative

of the activation function in the NN architecture. The

proposed algorithm is the modified BP algorithm that still

performs a backward pass while adjusting the learnable

parameters (weights and biases). The difference from

classical one is the use of multiplicative form of the

derivative in the computations and also the use of new

derivative form on only the last layer not in the hidden

layers.

Some linearly inseparable problems are studied through

shallow NN models with the proposed algorithm, the

performance of the algorithm is analysed in different case

studies, and the obtained results are provided comparatively

with the classical BP algorithm. It is shown that the

proposed modified BP algorithm converges quickly to the

optimal solution compared to the classical one. The initial

values of the adjustable parameters are changed and the

potential local minima convergence is created for the

classical BP algorithm, and then the proposed algorithm is

implemented through the same network and it is indicated

that the proposed algorithm avoids the local minima

problem.

The rest of the paper is presented as follows. Section II

gives an overview of the classical BP algorithm. In Section

III, the multiplicative calculus description is introduced.

Section IV describes the proposed algorithm, and the

performance analyses are discussed in Section V. Finally,

Section VI provides the conclusions of the paper.

II. AN OVERVIEW OF BACKPROPAGATION

In feedforward NNs, when one of the inputs x in the

training data set comes to produce an output y, the initial

information flows to the hidden units in each layer, and this

process is called “forward propagation”. In training NNs,

forward propagation lasts until it produces a cost (or error).

The backpropagation (BP) algorithm simply enables the

information flow from the cost and then propagates back

through the network to compute the gradient [8]. The BP

algorithm to train the feedforward NN is summarised in

Algorithm 1 [9].

As illustrated, the BP algorithm requires differentiable

activation functions to carry out gradient computations. To

implement the computations of the gradient at a specific

layer, the gradients of all layers are merged via the chain

rule of calculus.

Modified Backpropagation Algorithm with

Multiplicative Calculus in Neural Networks

Serkan Ozbay

Department of Electrical and Electronics Engineering, Gaziantep University,

27310 Gaziantep, Turkey

sozbay@gantep.edu.tr

http://dx.doi.org/10.5755/j02.eie.34105

55

https://deepai.org/machine-learning-glossary-and-terms/chain-rule
https://deepai.org/machine-learning-glossary-and-terms/chain-rule

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

Algorithm 1. Standard BP algorithm framework.

Given the training data set

   , , , inputs target values x s t s

1. Initialise the weights, including biases.

2. Take one input from the training data set  ,x t and obtain the

network output, y.

3. Calculate the error, e, of the network output to the target and the

delta,  of the output nodes.

 e t y and  = δ φ v e

Note that v represents the weighted sum, φ represents the activation

function, and  φ v represents the first derivative of the output

 .y φ v

4. Propagate the output node delta, ,δ in the backward direction and

then calculate the deltas of the consecutive left nodes.
() k T

e W δ and  () () ()k k k
δ v e

5. Repeat the previous step up to the layer which is on the immediate

right of the input layer.

6. Update the adjustable parameters according to the following rule.

 ij i jw αδ x and     ij ij ijw new w old w

Note that α represents the learning rate.

7. Repeat the stages explained in the previous steps for each training

data point.

8. Continue updates until the network parameters are adjusted

accordingly and the NN is properly trained.

III. MULTIPLICATIVE CALCULUS

There are two main tools in calculus: the derivative with

differentiation operation and the integral with integration

operation. The process of finding a derivative is called

“differentiation” and the process of finding an integral is

called “integration”. Those two operations are fundamental

and essential operations of calculus. The differentiation and

integration are infinitesimal versions of the subtraction

operation and addition operation on numbers, respectively.

The close connection between the derivative and the integral

was first observed independently by Newton and Leibniz in

the second half of the 17th century [10].

It is known that many physical quantities in nature are of

an exponentially varying type. As an alternative to classical

calculus, multiplicative calculus was proposed for

exponentially varying functions [11]. Multiplicative calculus

introduces new kinds of derivative and integral forms in

division and multiplication forms rather than addition and

subtraction. This alternative calculus was extensively

described in [12]–[14], with use on real-valued functions

[15], and its extension to complex-valued functions [11],

[16].

The multiplicative derivative of a function f (x) 

symbolised by
d

f (x)
dx




 or *f (x) is given by (1)

1
*

*

* 0

()
() () lim .

()

h

h

d f x h
f x f x

f xdx 

 
   

 
 (1)

Similarly, the multiplicative integral of a function

f (x)  represented by
b

dx

a
f (x) or

b dx

a
f (x) is

defined as in (2)

   () () () .
b bbdx dx

aa a
f x f x exp ln f x dx   (2)

In these definitions,  indicates the positive real

numbers and ln(f(x)) represents the natural logorithm of the

given function. It is known that the classical derivative

denoted by
d

f (x)
dx

 or f (x) of a function f (x)  is

defined as following [(3)]

0

() ()
() () lim .

h

d f x h f x
f x f x

dx h

 
  (3)

Comparing the multiplicative derivative equation with

this classical definition of derivative, we observe that the

difference f(x + h) – f(x) is replaced by the ratio
f (x h)

,
f (x)



and also the division by h is replaced by raising the

reciprocal power 1/h.

Additionally, the multiplicative derivative and the

classical derivative are related by (4) and (5):

1

*

0 0

() () () 1

() () ()

()
() lim lim(1

()

() ()
) ,

()

h

h h

f x f x h f x

f x h f x h f x

f x h
f x

f x

f x h f x

f x

 

 
 

 

 
   

 

 
 (4)

  * ()
() () .

()

f x d
f x exp exp ln f x

f x dx

   
    

  
 (5)

IV. THE PROPOSED ALGORITHM

The proposed algorithm is a modified version of BP for

training neural networks (NNs). The algorithm still makes

backward passes during update processes of adjustable

parameters.

The novelty and improvement of the proposed algorithm

is the use of multiplicative form of the derivative in the

computations rather than the classical derivative. The type

of sigmoid function is selected as the activation function

forms on the layers of NN but the new derivative form is

applied only on the last layer not in the hidden layers. The

sigmoid function is defined by the following formula [(6)]

1

.
1 1

x

x x

e

e e


 
 (6)

The natural logarithm of the sigmoid function is

calculated as given in (7), below

1
() (1)

1 1

(1).

x
x x

x x

x

e
ln ln ln e ln e

e e

x ln e



  
      

    

   (7)

Then the classical derivative for the natural logarithm of

the sigmoid function is evaluated as given in (8) and (9),

below:

56

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

  

1

1 1

(1) ,

x

x x

x

d d e
ln ln

dx dxe e

d
x ln e

dx



  
   

    

   (8)

    
1 1

(1) 1 .
1 1

x x

x x

d d
x ln e e

dx dx e e
     

 
 (9)

Finally, the multiplicative derivative of the sigmoid

function is formulated by (10), below

*

*

1 1 1
.

1 1 1x x x

d d
exp ln exp

dxdx e e e 

    
     

      
 (10)

The proposed algorithm is now described as in Algorithm

2.

Algorithm 2. Proposed algorithm framework.

Given the training data set

   , , , inputs target values x s t s

1. Initialise the weights, including biases.

2. Take one input from the training data set  ,x t and obtain the

network output, y.

3. Calculate the exp raised to the power of t and the exp raised to the

power of y to obtain the error, e, of the output of the network to the

target and the delta,  of the output nodes using the multiplicative

derivative of the sigmoid function.

() () e exp t exp y and
*

* 

 
  

 

1

1
y

d
δ e

dx e

4. Propagate the output node deltas,  in backward direction but now

use the classical derivative of the sigmoid function.
() k T

e W δ and  () () ()k k k
δ v e

5. Repeat the previous step up to the layer that is on the immediate right

of the input layer.

6. Update the adjustable parameters according to the following rule.

 ij i jw αδ x and     ij ij ijw new w old w

7. Repeat the stages explained in the previous steps for each training

data point.

8. Continue updates until the network parameters are adjusted

accordingly and the NN is properly trained.

V. RESULTS AND DISCUSSION

To analyse the performance of the proposed modified

backpropagation (BP) algorithm, various cases of linearly

inseparable problems are examined through some shallow

neural network (NN) models.

 Case I: Training XOR classification task with two input

nodes, one output node, and one hidden layer of two

nodes. The size of the training data set is four.

The XOR, or “exclusive OR”, classification problem is a

classic and common problem in NN research areas [17]. The

two-input XOR problem is shown in Table I.

Minsky and Papert [18] first showed that it was

impossible for a single-layer perceptron network to solve the

XOR classification problem. In this experiment, a shallow

NN with two input nodes, one hidden layer with two nodes,

and one output node is used. The architecture is

demonstrated in Fig. 1. Each node in the hidden layer and

the output layer includes a bias term.

In the first phase of the experiment, the network is trained

with the standard BP algorithm. The sigmoid function is

chosen as the transfer function in each node unit. Next, the

network is trained with the proposed algorithm. The weights

and biases are initially selected as 0.5 for each node as

follows (11)–(14):

0.5 0.5

,
0.5 0.5

hiddenW
 

  
 

 (11)

0.5

,
0.5

hiddenb
 

  
 

 (12)

  0.5 0.5 ,outputW  (13)

  0.5 .outputb  (14)

The learning rate is chosen as 0.2.

TABLE I. TWO-INPUT XOR CLASSIFICATION PROBLEM.

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 1. NN architecture in Case I for the two-input XOR classification

problem.

Figure 2 illustrates the comparison of performances

between the proposed algorithm and standard BP. The figure

specifically includes the mean error at each epoch.

Fig. 2. Performance comparison of standard BP and the algorithm

proposed in Case I with learning rate = 0.2.

In the second phase of the experiment, the learning rate is

increased and chosen as unity - 1, but the weights and biases

are initially selected the same as in the first phase of the

experiment, 0.5 for each node.

The corresponding performance comparison is given in

Fig. 3. The results of the training the XOR classification

task demonstrate that the proposed modified BP algorithm

provides faster learning than the classical BP with given

problem specifications and used network architecture.

 Case II: Training a linearly inseparable classification

task with three input nodes, one output node, and one

hidden layer of four nodes. The size of the training data

set is four.

57

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

In this experiment, a linearly inseparable problem shown

in Table II is chosen. To solve the classification problem,

the NN is designed with three input nodes, one hidden layer

with four nodes, and one output node. The NN architecture

designed is represented in Fig. 4. All nodes in the hidden

layer and output node do not involve bias terms in this case.

Fig. 3. Performance comparison of standard BP and the algorithm

proposed in Case I with learning rate = 1.

TABLE II. A LINEARLY INSEPARABLE CLASSIFICATION

PROBLEM.

Input 1 Input 2 Input 3 Output

0 0 1 0

0 1 1 1

1 0 1 1

1 1 1 0

Fig. 4. NN architecture in Case II for the three-input linearly inseparable

classification problem.

In the first stage of the experiment in Case II, the network

is trained with a standard BP algorithm. The sigmoid

function is chosen as the transfer function in each node unit.

Next, the network is trained with the proposed algorithm.

The learning rate is chosen as 0.1 in both stages. To keep the

equality in analysing both algorithms, classical BP and the

proposed algorithm, the weight matrices for the hidden layer

and the output layer are selected the same as given by (15)

and (16):

0.35 0.30 0.60

0.55 0.20 0.80
,

0.45 0.10 0.40

0.15 0.40 0.50

hiddenW

  
 
 
 
  
 
  

 (15)

  0.30 0.20 0.30 0.20 .outputW    (16)

Figure 5 shows the average training errors of the proposed

algorithm and the standard BP.

In the second stage of the experiment in Case II, the

learning rate is changed and selected as one while the initial

weights and biases are chosen equally as in the first phase of

the experiment. The performance of the standard BP and the

proposed algorithm are indicated in Fig. 6.

Fig. 5. Performance comparison of standard BP and the algorithm

proposed in Case II with learning rate = 0.1.

Fig. 6. Performance comparison of standard BP and the algorithm

proposed in Case II with learning rate = 1.

From the experimental results in Case II, it is clear that

for the given linearly inseparable problem, the proposed

algorithm outperforms the classical BP considering the

convergence speed to minimum loss.

 Case III: Training a linearly inseparable classification

task with three input nodes, one output node, and one

hidden layer of four nodes. The size of the training data

set is eight.

In Case III, another inseparable problem with the size of

eight training pairs is selected as given in Table III. To solve

the given problem, the same NN architecture is used as in

Case II.

In this experiment, the network performance is analysed

both for the standard BP algorithm and for the proposed

algorithm. The sigmoid function is set as the transfer

function in each node unit. The learning rate is chosen as

one in both algorithms, and the weights are initially selected

same as in Case II. The resulting average training errors of

the standard BP algorithm and the proposed algorithm are

presented in Fig. 7.

The results obtained from the experiments conducted in

Case III specify that the proposed algorithm shows superior

performance compared to standard BP.

As stated above, one of the important pitfalls of BP is the

58

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

tendency to a slow convergence. Taking into account the

empirical evidence from the experiments conducted in all

cases, the modified algorithm provides faster training with

an improvement in the risk of slow convergence.

TABLE III. A LINEARLY INSEPARABLE CLASSIFICATION

PROBLEM.

Input 1 Input 2 Input 3 Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Fig. 7. Performance comparison of the standard BP and the algorithm

proposed in Case III with learning rate = 1.

Another significant risk in training NNs by BP is the local

minima problem [19], [20] and this threat is more common

in linearly inseparable situations [7]. The local minima

problem usually occurs due to the saturation of nodes in the

hidden layers of feedforward NNs. In the case of saturation,

a lack of harmony would occur in the weights connecting

the hidden layer to the output layer [6] and the network may

no longer be trained.

To determine the performance of the proposed algorithm

to alleviate the local minima problem in nonlinearly

separable classification tasks, the initial weights and bias

values are set to one of the potential local minima point for

standard BP algorithm in two-input XOR classification

problem, and then the proposed algorithm is tested through

the same network with same initial values.

The weights and biases for each node are initially selected

as given by (17)–(20):

4 4

,
4 4

hiddenW
 

  
 

 (17)

1

,
1

hiddenb
 

  
 

 (18)

  4 4 ,outputW  (19)

  1 .outputb  (20)

The learning rate is chosen as unity (1).

Figure 8 shows the performance of the proposed

algorithm in the case of a local minimum point of standard

BP.

A similar experiment is conducted using the NN

architecture to solve the three-input linearly inseparable

classification problem in Case II. When a local minimum is

chosen with the selected initial weights given by (21) and

(22) and the learning rate is chosen as unity - 1, the

corresponding analysis is presented in Fig. 9:

4 4 4

4 4 4
,

4 4 4

4 4 4

hiddenW

 
 
 
 
 
 

 (21)

  4 4 4 4 .outputW     (22)

Fig. 8. Performances of the proposed algorithm and standard BP to a

specific local minimum problem, two-input XOR classification problem.

Fig. 9. Performances of the proposed algorithm and standard BP to a

specific local minimum problem, three-input linearly inseparable

classification problem in Case II.

For the classification task given in Case III, Fig. 7 also

gives this comparison with respect to a local minima

problem. All the experimental evidence states that the

proposed algorithm is less prone to the common local

minima problems.

It is known that, in training the NNs, initial weights,

biases, and also learning rate affect the performance of

learning process directly on convergence characteristics

(speed, training time, and avoiding local minima).

To obtain a generalised performance evaluation, different

initial weights and biases are randomly selected, and the

algorithms with different learning rates are compared. Table

IV illustrates the experimental results for the two-input

XOR problem in Case I.

59

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

Both algorithms are run with three different learning rates

(α = 0.1, α = 0.5, and α = 1) and the algorithms are

implemented with 100 different random initial weights and

biases. Random values are generated in the interval of [0, 1].

The table provides the averages of all mean square error

(MSE) values in total of 100 experiments after completing

the 1000th, 5000th, and 10000th training cycles.

TABLE IV. EXPERIMENTAL RESULTS FOR TWO-INPUT XOR

PROBLEM.

Algorithm
MSE after

1000th epoch

MSE after

5000th epoch

MSE after

10000th epoch

Proposed

algorithm

(α = 0.1)

0.1177 0.0339 0.0226

BP algorithm

(α = 0.1)
0.2510 0.1876 0.0917

Proposed

algorithm

(α = 0.5)

0.0265 0.0166 0.0142

BP algorithm

(α = 0.5)
0.2160 0.0320 0.0172

Proposed

algorithm

(α = 1)

0.0184 0.0161 0.0153

BP algorithm

(α = 1)
0.0863 0.0238 0.0189

Similar analysis is performed to test the proposed

algorithm on avoiding the local minima problem. The two-

input XOR problem and the same NN architecture as in

Case I are selected and the learning rate is taken as one. 100

different random initial weights and biases are created in the

interval of [0, 1] and the standard BP and the proposed

algorithm are tested in 100 experiments.

The results are recorded after 50,000 epochs and the

experiments that converge to a local minimum are labelled

as learning failures. Success rate is calculated as the number

of experiments that converges to the global minimum. Table

V shows the success rates for avoiding the local minima for

the two-input XOR problem in Case I.

TABLE V. SUCCESS RATES OF ALGORITHMS TO AVOID THE

LOCAL MINIMA PROBLEM FOR TWO-INPUT XOR PROBLEM.

Algorithm
Number of learning failures

(out of 100 experiments)

Success

rate

Proposed algorithm 4 (out of 100) 96 %

BP algorithm 15 (out of 100) 85 %

To make a comparative analysis of the proposed

algorithm with improved versions of BP, two benchmark

problems are selected. Those are standard two-input XOR

problem as in Case I and modified XOR problem [21]. The

training performances of the algorithms are evaluated in

terms of the convergence speeds in the simulations. In

comparisons, the BP algorithm with momentum (BP-M), BP

with ESP function (BP-ESP) for the output nodes, BP with

ESP function for hidden output nodes (BP-ESP-H) [22], BP

with gain (BP-G) [23], BP with adaptive momentum (BP-

AM) [24], BP with adaptive gain (BP-AG) [25], and the

Nguyen-Widrow weight initialisation technique (NG-W)

[26] are selected as improved versions of BP. To be parallel

and consistent with the methods mentioned in [21], in the

proposed algorithm, the weights and biases are initialised to

random values in the range of (-0.5, 0.5), the learning rate is

set to 0.5, and the performance measure is chosen as MSE.

30 independent trials are conducted and the numbers of

epochs required for convergence are recorded. Then the

mean of the epochs (# of epochs required to converge) is

calculated. The termination condition for convergence is

chosen as the MSE of 0.001.

First, to train the two-input XOR problem, 2-2-1 network

(two input nodes, one output node, and one hidden layer of

two nodes) is used as in Case I. The results of the

corresponding comparisons on this problem are given in

Table VI. Performance evaluation results for the improved

versions of BP are taken from [21].

TABLE VI. COMPARISON OF THE ALGORITHMS ON TWO-INPUT

XOR PROBLEM.

Algorithm # of epochs required to converge

BP-M 5971

BP-AM 4996

BP-ESP 2220

BP-ESP-H 2256

NG-W 1127

BP-G 5805

BP-AG 6885

Proposed algorithm 1070

Second, to train the modified XOR problem, the same 2-

2-1 network is used. The truth table for the modified XOR

problem is given in Table VII.

TABLE VII. MODIFIED XOR PROBLEM [21].

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

0.5 0.5 1

The performance comparisons of the improved versions

of BP and the proposed algorithm are presented in Table

VIII.

TABLE VIII. COMPARISONS OF THE ALGORITHMS ON A

MODIFIED XOR PROBLEM.

Algorithm
of epochs required to

converge

BP-M 6621

BP-AM 5100

BP-ESP 2718

BP-ESP-H 2269

NG-W 1143

BP-G 5960

BP-AG 2389

Proposed algorithm 1356

VI. CONCLUSIONS

In this paper, a modified backpropagation (BP) algorithm

with multiplicative calculus is proposed for feedforward

neural networks (NNs). The proposed algorithm contains

general characteristics of standard BP that make backward

passes during update processes of learnable parameters. On

the other hand, the originality and enhancement are the

utilisation of the multiplicative form of the derivative in the

computations rather than the classical derivative.

The sigmoid function is preferred as the activation

functions on the hidden layer of NN and the new

multiplicative derivative is applied only on the last layer not

in the hidden layer.

Standard BP is very common in many NN applications

but it has two major negative issues: convergence speed can

60

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 3, 2023

be slower and the training algorithm can converge to a local

minimum. The proposed algorithm introduces a novel

solution to overcome the slow convergence rate problem

and avoid the local minima problem. Many different tasks

are chosen, and several experiments are conducted to

measure the performance of the proposed algorithm.

Experimental results show that the proposed algorithm with

multiplicative calculus yields outstanding success at both

convergence speed and avoiding local minima. Simulations

carried out in Case I have demonstrated that when the

learning rate is chosen, α = 1, after the 1000th epoch, a

reduction of approximately 80 % in mean square error is

obtained as compared to the standard BP. Additionally, a

96 % success rate has been achieved in avoiding the local

minima problem while a success rate is 85 % in standard

BP.

CONFLICTS OF INTEREST

The author declares that he has no conflict of interest.

REFERENCES

[1] P. J. Werbos, “Beyond regression: New tools for prediction and

analysis in the behavioral sciences”, Ph.D. dissertation, Harvard

University, Cambridge, MA, 1974.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors”, Nature, vol. 323, pp.

533–536, 1986. DOI: 10.1038/323533a0.

[3] D. B. Parker, “Learning-logic: Casting the cortex of the human brain

in silicon”, Technical Report TR-47, Center for Computational

Research in Economics and Management Science, Cambridge, MA,

MIT, 1985.

[4] Y. Lecun, “Une procedure d’apprentissage pour reseau a

seuilassymetrique”, in Proc. of Cognitiva 85, 1985, pp. 599–604.

[5] D. E. Rumelhart and J. L. McClelland, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, vol. 1.

Cambridge, MA: MIT Press, 1986. DOI:

10.7551/mitpress/5236.001.0001.

[6] W. Bi, X. Wang, Z. Tang, and H. Tamura, “Avoiding the local

minima problem in backpropagation algorithm with modified error

function”, IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E88-A, no. 12, pp.

3645–3653, 2005. DOI: 10.1093/ietfec/e88-a.12.3645.

[7] M. Gori and A. Tesi, “On the problem of local minima in

backpropagation”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 14, no. 1, pp. 76–86, 1992. DOI:

10.1109/34.107014.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT

Press, 2016.

[9] P. Kim, Matlab Deep Learning: With Machine Learning, Neural

Networks and Artificial Intelligence. Apress, 2017. DOI:

10.1007/978-1-4842-2845-6_1.

[10] S. K. Stein and A. Barcellos, Calculus and Analytic Geometry, 5th ed.

McGraw-Hill, 1992.

[11] A. Uzer, “Multiplicative type complex calculus as an alternative to the

classical calculus”, Computers and Mathematics with Applications,

vol. 60, no. 10, pp. 2725–2737, 2010. DOI:

10.1016/j.camwa.2010.08.089.

[12] M. Grossman and R. Katz, Non-Newtonian Calculus. Lee Press,

Massachusetts, 1972.

[13] J. Grossman, Meta-Calculus: Differential and Integral. University of

Michigan, 1981. DOI: 10.1016/B978-0-12-304360-3.50010-4.

[14] A. Laucka, V. Adaskeviciute, D. Andriukaitis, “Research of the

Equipment Self-Calibration Methods for Different Shape Fertilizers

Particles Distribution by Size Using Image Processing Measurement

Method,” Symmetry, vol. 11, no. 7, p. 838, Jun. 2019. DOI:

10.3390/sym11070838.

[15] A. E. Bashirov, E. M. Kurpınar, and A. Özyapıcı, “Multiplicative

calculus and its applications”, Journal of Mathematical Analysis and

Applications, vol. 337, no. 1, pp. 36–48, 2008. DOI:

10.1016/j.jmaa.2007.03.081.

[16] A. E. Bashirov and M. Rıza, “On complex multiplicative

differentiation”, TWMS Journal of Applied and Engineering

Mathematics, vol. 1, no. 1, pp. 75–85, 2011.

[17] A. Mishra, J. Cha, and S. Kim, “Single neuron for solving XOR like

nonlinear problems”, Computational Intelligence and Neuroscience,

vol. 2022, art. ID 9097868, 2022. DOI: 10.1155/2022/9097868.

[18] M. L. Minsky and S. A. Papert, Perceptrons: An introduction to

Computational Geometry. MIT Press, 2017. DOI:

10.7551/mitpress/11301.001.0001.

[19] L. F. A. Wessels and E. Barnard, “Avoiding false local minima by

proper initialization of connections”, IEEE Transactions on Neural

Networks, vol. 3, no. 6, pp. 899–905, 1992. DOI: 10.1109/72.165592.

[20] I. G. Sprinkhuizen-Kuyper and E. J. W. Boers, “A local minimum for

the 2-3-1 XOR network”, IEEE Transactions on Neural Networks,

vol. 10, no. 4, pp. 968–971, 1999. DOI: 10.1109/72.774274.

[21] Saduf and M. A. Wani, “Comparative study of high speed back-

propagation learning algorithms”, International Journal of Modern

Education and Computer Science, vol. 6 no. 12, pp. 34–40, 2014.

DOI: 10.5815/ijmecs.2014.12.05.

[22] H.-M. Lee, C.-M. Chen, and T.-C. Huang, “Learning efficiency

improvement of back-propagation algorithm by error saturation

prevention method”, Neurocomputing, vol. 41, nos. 1–4, pp. 125–143,

2001. DOI: 10.1016/S0925-2312(00)00352-0.

[23] X. G. Wang, Z. Tang, H. Tamura, M. Ishii, and W. D. Sun, “An

improved backpropagation algorithm to avoid the local minima

problem”, Neurocomputing, vol. 56, pp. 455–460, 2004. DOI:

10.1016/j.neucom.2003.08.006.

[24] H. M. Shao and G. F. Zheng, “A new BP algorithm with adaptive

momentum for FNNs training”, in Proc. of 2009 WRI Global

Congress on Intelligent Systems, 2009, pp. 16–20. DOI:

10.1109/GCIS.2009.136.

[25] N. M. Nawi, R. S. Ransing, and M. R. Ransing, “A new method to

improve the gradient based search direction to enhance the

computational efficiency of back propagation based neural network

algorithms”, in Proc. of 2008 IEEE Second Asia International

Conference on Modelling & Simulation, 2008, pp. 546–552. DOI:

10.1109/AMS.2008.70.

[26] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer

neural networks by choosing initial values of the adaptive weights”, in

Proc. of 1990 IJCNN International Joint Conference on Neural

Networks, 1990, pp. 21–26, vol. 3. DOI:

10.1109/IJCNN.1990.137819.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

61

