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1Abstract—Backpropagation (BP) is one of the most widely 

used algorithms for training feedforward deep neural networks 

(NNs). The algorithm requires a differentiable activation 

function and it performs computations of the gradient 

proceeding backward through the feedforward deep NN from 

the last layer through to the first layer. To calculate the 

gradient at a specific layer, the gradients of all layers are 

combined using the chain rule of calculus. One of the biggest 

disadvantages of BP is that it requires a large amount of 

training time. To overcome this issue, this paper proposes a 

modified BP algorithm with multiplicative calculus. 

Multiplicative calculus provides an alternative to the classical 

calculus, and it defines new kinds of derivative and integral 

forms in multiplicative form rather than addition and 

subtraction forms. The performance analyses are discussed in 

various case studies, and the results are given comparatively 

with the classical BP algorithm. It is found that the proposed 

modified BP algorithm converges in less time to the solution 

and thus provides fast training in the given case studies. It is 

also shown that the proposed algorithm avoids the problem of 

local minima.  

 
 Index Terms—Backpropagation; Local minima problem; 

Multiplicative calculus; Neural networks. 

I. INTRODUCTION 

The backpropagation (BP) algorithm was first proposed 

by Werbos in his doctoral dissertation in 1974 [1]. The 

thesis introduced the algorithm in the general context so that 

it was not widely known and publicised in the neural 

network (NN) community until the mid 1980s. The 

algorithm was then independently presented by Rumelhart, 

Hinton and Williams [2], Parker [3], and Lecun [4], but it 

became popularised by Rumelhart and McClelland [5]. 

After the publication of this study, there was a huge 

explosion of scientific work in the field of NNs. Most 

multilayer NNs have been trained by the BP algorithm. 

Although the BP algorithm has numerous advantages in 

many successful applications, there have been some 

drawbacks such as the BP needs a lot of training time and 

therefore the convergence tends to be significantly slow [6] 

and the learning process is stuck at a local minimum [7]. 

This study addresses a novel solution to overcome the slow 

convergence rate problem and avoid local minima problem, 

and this paper introduces a modified BP algorithm with 

multiplicative calculus. To my knowledge, this is the first 

study on the use and application of multiplicative calculus in 
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this field. 

The proposed algorithm uses the multiplicative derivative 

of the activation function in the NN architecture. The 

proposed algorithm is the modified BP algorithm that still 

performs a backward pass while adjusting the learnable 

parameters (weights and biases). The difference from 

classical one is the use of multiplicative form of the 

derivative in the computations and also the use of new 

derivative form on only the last layer not in the hidden 

layers.  

Some linearly inseparable problems are studied through 

shallow NN models with the proposed algorithm, the 

performance of the algorithm is analysed in different case 

studies, and the obtained results are provided comparatively 

with the classical BP algorithm. It is shown that the 

proposed modified BP algorithm converges quickly to the 

optimal solution compared to the classical one. The initial 

values of the adjustable parameters are changed and the 

potential local minima convergence is created for the 

classical BP algorithm, and then the proposed algorithm is 

implemented through the same network and it is indicated 

that the proposed algorithm avoids the local minima 

problem. 

The rest of the paper is presented as follows. Section II 

gives an overview of the classical BP algorithm. In Section 

III, the multiplicative calculus description is introduced. 

Section IV describes the proposed algorithm, and the 

performance analyses are discussed in Section V. Finally, 

Section VI provides the conclusions of the paper. 

II. AN OVERVIEW OF BACKPROPAGATION 

In feedforward NNs, when one of the inputs x in the 

training data set comes to produce an output y, the initial 

information flows to the hidden units in each layer, and this 

process is called “forward propagation”. In training NNs, 

forward propagation lasts until it produces a cost (or error). 

The backpropagation (BP) algorithm simply enables the 

information flow from the cost and then propagates back 

through the network to compute the gradient [8]. The BP 

algorithm to train the feedforward NN is summarised in 

Algorithm 1 [9]. 

As illustrated, the BP algorithm requires differentiable 

activation functions to carry out gradient computations. To 

implement the computations of the gradient at a specific 

layer, the gradients of all layers are merged via the chain 

rule of calculus.  
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Algorithm 1. Standard BP algorithm framework. 

Given the training data set 

   , , , inputs target values x s t s  

1. Initialise the weights, including biases. 

2. Take one input from the training data set  ,x t  and obtain the 

network output, y. 

3. Calculate the error, e, of the network output to the target and the 

delta,   of the output nodes. 

 e t y  and  = δ φ v e  

Note that v represents the weighted sum, φ  represents the activation 

function, and  φ v  represents the first derivative of the output 

 .y φ v   

4. Propagate the output node delta, ,δ  in the backward direction and 

then calculate the deltas of the consecutive left nodes.  
( ) k T

e W δ  and  ( ) ( ) ( )k k k
δ v e  

5. Repeat the previous step up to the layer which is on the immediate 

right of the input layer. 

6. Update the adjustable parameters according to the following rule. 

 ij i jw αδ x  and     ij ij ijw new w old w   

Note that α represents the learning rate. 

7. Repeat the stages explained in the previous steps for each training 

data point. 

8. Continue updates until the network parameters are adjusted 

accordingly and the NN is properly trained. 

III. MULTIPLICATIVE CALCULUS 

There are two main tools in calculus: the derivative with 

differentiation operation and the integral with integration 

operation. The process of finding a derivative is called 

“differentiation” and the process of finding an integral is 

called “integration”. Those two operations are fundamental 

and essential operations of calculus. The differentiation and 

integration are infinitesimal versions of the subtraction 

operation and addition operation on numbers, respectively. 

The close connection between the derivative and the integral 

was first observed independently by Newton and Leibniz in 

the second half of the 17th century [10]. 

It is known that many physical quantities in nature are of 

an exponentially varying type. As an alternative to classical 

calculus, multiplicative calculus was proposed for 

exponentially varying functions [11]. Multiplicative calculus 

introduces new kinds of derivative and integral forms in 

division and multiplication forms rather than addition and 

subtraction. This alternative calculus was extensively 

described in [12]–[14], with use on real-valued functions 

[15], and its extension to complex-valued functions [11], 

[16].  

The multiplicative derivative of a function f (x)   

symbolised by 
d

f (x)
dx




 or *f (x)  is given by (1) 

 

1
*

*

* 0

( )
( ) ( ) lim .

( )

h

h

d f x h
f x f x

f xdx 

 
   

 
 (1) 

Similarly, the multiplicative integral of a function 

f (x)   represented by 
b

dx

a
f (x)  or 

b dx

a
f (x)  is 

defined as in (2) 

   ( ) ( ) ( ) .
b bbdx dx

aa a
f x f x exp ln f x dx    (2) 

In these definitions,   indicates the positive real 

numbers and ln(f(x)) represents the natural logorithm of the 

given function. It is known that the classical derivative 

denoted by 
d

f (x)
dx

 or f (x)  of a function f (x)   is 

defined as following [(3)] 

 
0

( ) ( )
( ) ( ) lim .

h

d f x h f x
f x f x

dx h

 
   (3) 

Comparing the multiplicative derivative equation with 

this classical definition of derivative, we observe that the 

difference f(x + h) – f(x) is replaced by the ratio 
f (x h)

,
f (x)


 

and also the division by h is replaced by raising the 

reciprocal power 1/h. 

Additionally, the multiplicative derivative and the 

classical derivative are related by (4) and (5): 
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0 0

( ) ( ) ( ) 1
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h

h h
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f x h f x h f x
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f x

f x

f x h f x

f x

 

 
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 
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 

 
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  * ( )
( ) ( ) .

( )

f x d
f x exp exp ln f x

f x dx

   
    

  
 (5) 

IV. THE PROPOSED ALGORITHM 

The proposed algorithm is a modified version of BP for 

training neural networks (NNs). The algorithm still makes 

backward passes during update processes of adjustable 

parameters.  

The novelty and improvement of the proposed algorithm 

is the use of multiplicative form of the derivative in the 

computations rather than the classical derivative. The type 

of sigmoid function is selected as the activation function 

forms on the layers of NN but the new derivative form is 

applied only on the last layer not in the hidden layers. The 

sigmoid function is defined by the following formula [(6)] 

 
1

.
1 1

x

x x

e

e e


 
 (6) 

The natural logarithm of the sigmoid function is 

calculated as given in (7), below 

 

1
( ) ( 1)

1 1

( 1).

x
x x

x x

x

e
ln ln ln e ln e

e e

x ln e



  
      

    

    (7) 

Then the classical derivative for the natural logarithm of 

the sigmoid function is evaluated as given in (8) and (9), 

below: 
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  

1

1 1

( 1) ,

x

x x

x

d d e
ln ln

dx dxe e

d
x ln e

dx



  
   

    

    (8) 

    
1 1

( 1) 1 .
1 1

x x

x x

d d
x ln e e

dx dx e e
     

 
 (9) 

Finally, the multiplicative derivative of the sigmoid 

function is formulated by (10), below 

 
*

*

1 1 1
.

1 1 1x x x

d d
exp ln exp

dxdx e e e 

    
     

      
  (10) 

The proposed algorithm is now described as in Algorithm 

2. 

 
Algorithm 2. Proposed algorithm framework. 

Given the training data set 

   , , , inputs target values x s t s   

1. Initialise the weights, including biases. 

2. Take one input from the training data set  ,x t  and obtain the 

network output, y. 

3. Calculate the exp raised to the power of t and the exp raised to the 

power of y to obtain the error, e, of the output of the network to the 

target and the delta,   of the output nodes using the multiplicative 

derivative of the sigmoid function. 

( ) ( ) e exp t exp y  and 
*

* 

 
  

 

1

1
y

d
δ e

dx e
 

4. Propagate the output node deltas,   in backward direction but now 

use the classical derivative of the sigmoid function.  
( ) k T

e W δ  and  ( ) ( ) ( )k k k
δ v e  

5. Repeat the previous step up to the layer that is on the immediate right 

of the input layer. 

6. Update the adjustable parameters according to the following rule. 

 ij i jw αδ x  and     ij ij ijw new w old w  

7. Repeat the stages explained in the previous steps for each training 

data point. 

8. Continue updates until the network parameters are adjusted 

accordingly and the NN is properly trained. 

V. RESULTS AND DISCUSSION 

To analyse the performance of the proposed modified 

backpropagation (BP) algorithm, various cases of linearly 

inseparable problems are examined through some shallow 

neural network (NN) models.  

 Case I: Training XOR classification task with two input 

nodes, one output node, and one hidden layer of two 

nodes. The size of the training data set is four. 

The XOR, or “exclusive OR”, classification problem is a 

classic and common problem in NN research areas [17]. The 

two-input XOR problem is shown in Table I. 

Minsky and Papert [18] first showed that it was 

impossible for a single-layer perceptron network to solve the 

XOR classification problem. In this experiment, a shallow 

NN with two input nodes, one hidden layer with two nodes, 

and one output node is used. The architecture is 

demonstrated in Fig. 1. Each node in the hidden layer and 

the output layer includes a bias term.  

In the first phase of the experiment, the network is trained 

with the standard BP algorithm. The sigmoid function is 

chosen as the transfer function in each node unit. Next, the 

network is trained with the proposed algorithm. The weights 

and biases are initially selected as 0.5 for each node as 

follows (11)–(14): 

 
0.5 0.5

,
0.5 0.5

hiddenW
 

  
 

 (11) 

 
0.5

,
0.5

hiddenb
 

  
 

 (12) 

  0.5 0.5 ,outputW   (13) 

  0.5 .outputb   (14) 

The learning rate is chosen as 0.2. 

TABLE I. TWO-INPUT XOR CLASSIFICATION PROBLEM. 

Input 1 Input 2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 
Fig. 1.  NN architecture in Case I for the two-input XOR classification 

problem. 

Figure 2 illustrates the comparison of performances 

between the proposed algorithm and standard BP. The figure 

specifically includes the mean error at each epoch.  

 
Fig. 2.  Performance comparison of standard BP and the algorithm 

proposed in Case I with learning rate = 0.2. 

In the second phase of the experiment, the learning rate is 

increased and chosen as unity - 1, but the weights and biases 

are initially selected the same as in the first phase of the 

experiment, 0.5 for each node.  

The corresponding performance comparison is given in 

Fig. 3. The results of the training the XOR classification 

task demonstrate that the proposed modified BP algorithm 

provides faster learning than the classical BP with given 

problem specifications and used network architecture.  

 Case II: Training a linearly inseparable classification 

task with three input nodes, one output node, and one 

hidden layer of four nodes. The size of the training data 

set is four.  
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In this experiment, a linearly inseparable problem shown 

in Table II is chosen. To solve the classification problem, 

the NN is designed with three input nodes, one hidden layer 

with four nodes, and one output node. The NN architecture 

designed is represented in Fig. 4. All nodes in the hidden 

layer and output node do not involve bias terms in this case. 

 
Fig. 3.  Performance comparison of standard BP and the algorithm 

proposed in Case I with learning rate = 1. 

TABLE II. A LINEARLY INSEPARABLE CLASSIFICATION 

PROBLEM. 

Input 1 Input 2 Input 3 Output 

0 0 1 0 

0 1 1 1 

1 0 1 1 

1 1 1 0 

 
Fig. 4.  NN architecture in Case II for the three-input linearly inseparable 

classification problem. 

In the first stage of the experiment in Case II, the network 

is trained with a standard BP algorithm. The sigmoid 

function is chosen as the transfer function in each node unit. 

Next, the network is trained with the proposed algorithm. 

The learning rate is chosen as 0.1 in both stages. To keep the 

equality in analysing both algorithms, classical BP and the 

proposed algorithm, the weight matrices for the hidden layer 

and the output layer are selected the same as given by (15) 

and (16): 

 

0.35 0.30 0.60

0.55 0.20 0.80
,

0.45 0.10 0.40

0.15 0.40 0.50

hiddenW

  
 
 
 
  
 
  

 (15) 

  0.30 0.20 0.30 0.20 .outputW     (16) 

Figure 5 shows the average training errors of the proposed 

algorithm and the standard BP. 

In the second stage of the experiment in Case II, the 

learning rate is changed and selected as one while the initial 

weights and biases are chosen equally as in the first phase of 

the experiment. The performance of the standard BP and the 

proposed algorithm are indicated in Fig. 6. 

 
Fig. 5.  Performance comparison of standard BP and the algorithm 

proposed in Case II with learning rate = 0.1. 

 
Fig. 6.  Performance comparison of standard BP and the algorithm 

proposed in Case II with learning rate = 1. 

From the experimental results in Case II, it is clear that 

for the given linearly inseparable problem, the proposed 

algorithm outperforms the classical BP considering the 

convergence speed to minimum loss. 

 Case III: Training a linearly inseparable classification 

task with three input nodes, one output node, and one 

hidden layer of four nodes. The size of the training data 

set is eight.  

In Case III, another inseparable problem with the size of 

eight training pairs is selected as given in Table III. To solve 

the given problem, the same NN architecture is used as in 

Case II.  

In this experiment, the network performance is analysed 

both for the standard BP algorithm and for the proposed 

algorithm. The sigmoid function is set as the transfer 

function in each node unit. The learning rate is chosen as 

one in both algorithms, and the weights are initially selected 

same as in Case II. The resulting average training errors of 

the standard BP algorithm and the proposed algorithm are 

presented in Fig. 7. 

The results obtained from the experiments conducted in 

Case III specify that the proposed algorithm shows superior 

performance compared to standard BP. 

As stated above, one of the important pitfalls of BP is the 
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tendency to a slow convergence. Taking into account the 

empirical evidence from the experiments conducted in all 

cases, the modified algorithm provides faster training with 

an improvement in the risk of slow convergence.  

TABLE III. A LINEARLY INSEPARABLE CLASSIFICATION 

PROBLEM. 

Input 1 Input 2 Input 3 Output 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 
Fig. 7.  Performance comparison of the standard BP and the algorithm 

proposed in Case III with learning rate = 1. 

Another significant risk in training NNs by BP is the local 

minima problem [19], [20] and this threat is more common 

in linearly inseparable situations [7]. The local minima 

problem usually occurs due to the saturation of nodes in the 

hidden layers of feedforward NNs. In the case of saturation, 

a lack of harmony would occur in the weights connecting 

the hidden layer to the output layer [6] and the network may 

no longer be trained.  

To determine the performance of the proposed algorithm 

to alleviate the local minima problem in nonlinearly 

separable classification tasks, the initial weights and bias 

values are set to one of the potential local minima point for 

standard BP algorithm in two-input XOR classification 

problem, and then the proposed algorithm is tested through 

the same network with same initial values. 

The weights and biases for each node are initially selected 

as given by (17)–(20): 

 
4 4

,
4 4

hiddenW
 

  
 

 (17) 

 
1

,
1

hiddenb
 

  
 

 (18) 

  4 4 ,outputW   (19) 

  1 .outputb   (20) 

The learning rate is chosen as unity (1).  

Figure 8 shows the performance of the proposed 

algorithm in the case of a local minimum point of standard 

BP. 

A similar experiment is conducted using the NN 

architecture to solve the three-input linearly inseparable 

classification problem in Case II. When a local minimum is 

chosen with the selected initial weights given by (21) and 

(22) and the learning rate is chosen as unity - 1, the 

corresponding analysis is presented in Fig. 9: 

 

4 4 4

4 4 4
,

4 4 4

4 4 4

hiddenW

 
 
 
 
 
 

 (21) 

  4 4 4 4 .outputW      (22) 

 
Fig. 8.  Performances of the proposed algorithm and standard BP to a 

specific local minimum problem, two-input XOR classification problem. 

 
Fig. 9.  Performances of the proposed algorithm and standard BP to a 

specific local minimum problem, three-input linearly inseparable 

classification problem in Case II. 

For the classification task given in Case III, Fig. 7 also 

gives this comparison with respect to a local minima 

problem. All the experimental evidence states that the 

proposed algorithm is less prone to the common local 

minima problems.  

It is known that, in training the NNs, initial weights, 

biases, and also learning rate affect the performance of 

learning process directly on convergence characteristics 

(speed, training time, and avoiding local minima).  

To obtain a generalised performance evaluation, different 

initial weights and biases are randomly selected, and the 

algorithms with different learning rates are compared. Table 

IV illustrates the experimental results for the two-input 

XOR problem in Case I.  
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Both algorithms are run with three different learning rates 

(α = 0.1, α = 0.5, and α = 1) and the algorithms are 

implemented with 100 different random initial weights and 

biases. Random values are generated in the interval of [0, 1]. 

The table provides the averages of all mean square error 

(MSE) values in total of 100 experiments after completing 

the 1000th, 5000th, and 10000th training cycles. 

TABLE IV. EXPERIMENTAL RESULTS FOR TWO-INPUT XOR 

PROBLEM. 

Algorithm 
MSE after 

1000th epoch 

MSE after 

5000th epoch 

MSE after 

10000th epoch 

Proposed 

algorithm 

(α = 0.1) 

0.1177 0.0339 0.0226 

BP algorithm 

(α = 0.1) 
0.2510 0.1876 0.0917 

Proposed 

algorithm 

(α = 0.5) 

0.0265 0.0166 0.0142 

BP algorithm 

(α = 0.5) 
0.2160 0.0320 0.0172 

Proposed 

algorithm 

(α = 1) 

0.0184 0.0161 0.0153 

BP algorithm 

(α = 1) 
0.0863 0.0238 0.0189 

 

Similar analysis is performed to test the proposed 

algorithm on avoiding the local minima problem. The two-

input XOR problem and the same NN architecture as in 

Case I are selected and the learning rate is taken as one. 100 

different random initial weights and biases are created in the 

interval of [0, 1] and the standard BP and the proposed 

algorithm are tested in 100 experiments.  

The results are recorded after 50,000 epochs and the 

experiments that converge to a local minimum are labelled 

as learning failures. Success rate is calculated as the number 

of experiments that converges to the global minimum. Table 

V shows the success rates for avoiding the local minima for 

the two-input XOR problem in Case I. 

TABLE V. SUCCESS RATES OF ALGORITHMS TO AVOID THE 

LOCAL MINIMA PROBLEM FOR TWO-INPUT XOR PROBLEM. 

Algorithm 
Number of learning failures 

(out of 100 experiments) 

Success 

rate 

Proposed algorithm  4 (out of 100) 96 % 

BP algorithm  15 (out of 100) 85 % 

 

To make a comparative analysis of the proposed 

algorithm with improved versions of BP, two benchmark 

problems are selected. Those are standard two-input XOR 

problem as in Case I and modified XOR problem [21]. The 

training performances of the algorithms are evaluated in 

terms of the convergence speeds in the simulations. In 

comparisons, the BP algorithm with momentum (BP-M), BP 

with ESP function (BP-ESP) for the output nodes, BP with 

ESP function for hidden output nodes (BP-ESP-H) [22], BP 

with gain (BP-G) [23], BP with adaptive momentum (BP-

AM) [24], BP with adaptive gain (BP-AG) [25], and the 

Nguyen-Widrow weight initialisation technique (NG-W) 

[26] are selected as improved versions of BP. To be parallel 

and consistent with the methods mentioned in [21], in the 

proposed algorithm, the weights and biases are initialised to 

random values in the range of (-0.5, 0.5), the learning rate is 

set to 0.5, and the performance measure is chosen as MSE. 

30 independent trials are conducted and the numbers of 

epochs required for convergence are recorded. Then the 

mean of the epochs (# of epochs required to converge) is 

calculated. The termination condition for convergence is 

chosen as the MSE of 0.001. 

First, to train the two-input XOR problem, 2-2-1 network 

(two input nodes, one output node, and one hidden layer of 

two nodes) is used as in Case I. The results of the 

corresponding comparisons on this problem are given in 

Table VI. Performance evaluation results for the improved 

versions of BP are taken from [21]. 

TABLE VI. COMPARISON OF THE ALGORITHMS ON TWO-INPUT 

XOR PROBLEM. 

Algorithm # of epochs required to converge 

BP-M 5971 

BP-AM 4996 

BP-ESP 2220 

BP-ESP-H 2256 

NG-W 1127 

BP-G 5805 

BP-AG 6885 

Proposed algorithm 1070 

 

Second, to train the modified XOR problem, the same 2-

2-1 network is used. The truth table for the modified XOR 

problem is given in Table VII. 

TABLE VII. MODIFIED XOR PROBLEM [21]. 

Input 1 Input 2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

0.5 0.5 1 

 

The performance comparisons of the improved versions 

of BP and the proposed algorithm are presented in Table 

VIII. 

TABLE VIII. COMPARISONS OF THE ALGORITHMS ON A 

MODIFIED XOR PROBLEM. 

Algorithm 
# of epochs required to 

converge  

BP-M 6621 

BP-AM 5100 

BP-ESP 2718 

BP-ESP-H 2269 

NG-W 1143 

BP-G 5960 

BP-AG 2389 

Proposed algorithm 1356 

VI. CONCLUSIONS 

In this paper, a modified backpropagation (BP) algorithm 

with multiplicative calculus is proposed for feedforward 

neural networks (NNs). The proposed algorithm contains 

general characteristics of standard BP that make backward 

passes during update processes of learnable parameters. On 

the other hand, the originality and enhancement are the 

utilisation of the multiplicative form of the derivative in the 

computations rather than the classical derivative.  

The sigmoid function is preferred as the activation 

functions on the hidden layer of NN and the new 

multiplicative derivative is applied only on the last layer not 

in the hidden layer.  

Standard BP is very common in many NN applications 

but it has two major negative issues: convergence speed can 
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be slower and the training algorithm can converge to a local 

minimum. The proposed algorithm introduces a novel 

solution to overcome the slow convergence rate problem 

and avoid the local minima problem. Many different tasks 

are chosen, and several experiments are conducted to 

measure the performance of the proposed algorithm. 

Experimental results show that the proposed algorithm with 

multiplicative calculus yields outstanding success at both 

convergence speed and avoiding local minima. Simulations 

carried out in Case I have demonstrated that when the 

learning rate is chosen, α = 1, after the 1000th epoch, a 

reduction of approximately 80 % in mean square error is 

obtained as compared to the standard BP. Additionally, a 

96 % success rate has been achieved in avoiding the local 

minima problem while a success rate is 85 % in standard 

BP. 
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