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1Abstract—Deep learning (DL) is a new option that has just 

been made available for side-channel analysis. DL approaches 

for profiled side-channel attacks (SCA) have dominated 

research till now. In this attack, the attacker has complete 

control over the profiling device and can collect many traces 

for a range of critical parameters to characterise device 

leakage before the attack. In this study, we apply DL 

algorithms to non-profiled data. An attacker can only retrieve 

a limited number of side-channel traces from a closed device 

with an unknown key value in non-profiled mode. The authors 

conducted this research. Key estimations and deep learning 

measurements can reveal the secret key. We prove that this is 

doable. This technology is excellent for non-profits. DL and 

neural networks can benefit these organisations. Neural 

networks can provide a new technique to verify the safety of 

hardware cryptographic algorithms. It was recently suggested. 

This study creates a non-profiled SCA utilising convolutional 

neural networks (CNNs) on an AVR microcontroller with 8 

bits of memory and the AES-128 cryptographic algorithm. We 

used aligned power traces with several samples to demonstrate 

how challenging CNN-based SCA is in practise. This will help 

us reach our goals. Here is another technique to create a solid 

CNN data set. In particular, CNN-based SCA experiment data 

and noise effects are examined. These experiments employ 

power traces with Gaussian noise. The CNN-based SCA works 

well with our data set for non-profiled attacks. Gaussian noise 

on power traces causes many more issues. These results show 

that our method can recover more bytes successfully from SCA 

compared to other methods in correlation power analysis 

(CPA) and DL-SCA without regularisation. 

 
 Index Terms—Non-profile side-channel attack; AES; CNN. 

I. INTRODUCTION 

Researchers and security experts worldwide have recently 

paid close attention to side-channel attacks (SCA) [1]. To 

 
Manuscript received 27 January, 2023; accepted 15 April, 2023. 

This work has been supported by the Universiti Kebangsaan Malaysia 

(UKM) under Grant No. TAP-K023208. 

devise countermeasures, they first apply various cipher-

cracking strategies and then provide recommendations to 

make the ciphers more secure [2]. Some researchers use 

deep learning models [3] to carry out SCA [4]. 

Convolutional neural networks (CNNs) [5] were the primary 

tool used to demonstrate the efficacy of their attacks and 

describe how they were carried out. During the evolution of 

SCA throughout history, there have been three distinct 

stages. 

The beginning of the SCA (from 1996 to 2000), the main 

feature of this stage is the identification and use of different 

forms of side-channel information for vital analysis. In 1996 

[6], it was found that the execution time of the algorithm 

could be attacked to break Rivest-Shamir-Adleman (RSA). 

In 1998 [7], the power consumption leakage model was 

applied to the problem of breaking data encryption standard 

(DES). One of the vulnerabilities of DES is its susceptibility 

to SCA, which exploit information leaked through 

unintended channels such as timing, power consumption, or 

electromagnetic radiation. According to the findings of 

research conducted by Quisquater [8] in 2000, 

electromagnetic radiation can also be used effectively for 

SCA. 

The first phases of forming the SCA (from 2001 to 2010). 

In this stage, the primary distinguishing characteristic is the 

increasing emphasis placed on SCA assessment, 

countermeasures, and applications, in addition to the 

discovery of novel leakage models. 2008 saw the beginning 

of the side-channel analysis competition known as the 

differential power analysis (DPA) contest [9]. The traces 

that collected from this DPA competition were used as a 

basis for several subsequent studies that were based on 

machine learning [10]. In 2010, SCA that used flash 

memory pumping, SCA that relied on watermarks, and SCA 

that exploited fault sensitivity were prevalent.  

The pinnacle of advancement for SCA (after 2011) [11]. 
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The greater use of cross-domain technology for SCA is the 

primary feature of this stage. In particular, deep learning 

methods such as multi-layer perceptron (MLP) [12] and 

CNN are becoming more popular. CNNs have been shown 

to defeat jitter-based countermeasures, power trace 

misalignment, and disguised Advanced Encryption Standard 

(AES) implementations. As a result, this research uses 

CNNs. 

II. LITERATURE REVIEW 

Maghrebi, Rioul, Guilley, and Danger [3] were the main 

investigators in exploiting CNNs for side-channel attacks 

(SCA), although they were not the learning methods that 

deployed deep learning approaches such as MLP, CNN, and 

long short-term memory (LSTM) [4]. These techniques 

include random forest and support vector machine (SVM) 

[5]. The findings of their study show that deep learning is 

superior to more conventional approaches to machine 

learning and, as a result, produces good outcomes. The 

authors show this using two different data sets, one of which 

is an implementation that does not have any kind of 

protection, and the other utilises a countermeasure for 

masking. In addition, the results show that the CNN 

database, sometimes referred to as the side-channel analysis 

data set, is in [6]. This database has been used in the 

investigations of various researchers and was first presented 

by the authors. After introducing the data set, they 

investigate the effect of hyperparameters to find the CNN 

and MLP architectures [6] that will be the most effective. 

According to the findings of their study, Masure, Canovas, 

and Prouff [7] reveal the increase in the volume of the CNN 

kernel, resulting in better behaviour if the network is 

confronted with misaligned traces. However, they do not 

explain why increasing the kernel makes the attack more 

effective, which is strange. This discovery, in our view, is 

fascinating and certainly deserves more discussion. 

Since both studies reveal that CNN performs successfully 

in various scenarios, further study was conducted on CNN’s 

behaviour. Picek, Samiotis, Kim, Heuser, Bhasin, and Legay 

[9] compared CNNs’ performance against machine learning 

methods such as Random Forest, XGBoost, and Naive 

Bayes. Their main objective is to investigate the 

circumstances under which CNNs perform better than the 

other techniques described. According to the findings of 

their study, CNNs can only improve performance in the 

aggregate. According to the authors, CNNs are most 

effective when the traces are not pre-processed, when noise 

levels are lowered, and when information dimensions are 

higher (i.e., their many features with many traces). On the 

contrary, machine learning (ML) schemes could achieve 

performance that is almost on par with that of CNNs. The 

discovery that ML methods need noticeably fewer 

processing resources than CNNs is a significant result. As a 

result, the researchers have severe reservations about the 

usefulness of CNNs. 

After further research, CNNs were shown to have the 

potential to surpass existing specific data sets with state-of-

the-art solutions. An implementation with a covert 

countermeasure was the source of the measurements for 

each data set. The authors in [10] performed tests to show 

that CNNs can synchronise non-aligned traces by 

identifying the properties of the most significant trace, 

enabling grouping to be carried out by applying the chosen 

characteristics. The findings of such experiments are 

presented in the article. In addition to these discoveries, the 

scientists explain that this attack is carried out by using raw 

trace data without any pre-processing. 

In contrast to a template attack, which generally includes 

the adversary realigning the traces and selecting the points 

of interest on their own, this one does not. Because of this, 

the findings show that CNNs are beneficial even when the 

traces are misaligned. On the other hand, overfitting is 

potential due to the size and complexity of the CNN 

architecture that lies under the surface. They provide two 

data augmentation algorithms for misaligned traces as a 

means of generating more training data to do this. 

Experiments were carried out to illustrate the efficacy of 

data augmentation options for misaligned traces. 

The findings corroborated by Kim, Picek, Heuser, Bhasin, 

and Hanjalic [11] show that their CNN framework performs 

at the leading edge in the random delays (RD) data set. This 

gives more credence to the findings in [12]. In particular, 

compared to DPAv4a data set considered a fundamental 

information set, an ideal network of its needs fewer attack 

traces to recover the key of the RD data set [13]. In [14], the 

researchers experimented with a wide variety of topologies 

and sets of pieces of information. The results of such 

experiments showed that no single design succeeds with all 

data sets. Hence, this remains very necessary in selecting a 

structure appropriate for issues present at that time. In 

addition, the authors provide evidence that including 

distortion within the primary substrates of the networks 

helps performance by reducing the amount of overfitting 

that occurs. When working with smaller data sets, this is 

suggested by using increased noise levels, whereas working 

with more extensive data sets requires a lower noise level to 

get the best results. 

These studies suggest that CNNs include two essential 

qualities that make them suitable for side-channel analysis. 

To begin with, they can determine the most critical features 

independently and without any guidance. As a consequence 

of this, prior processing on the traces was not needed to gain 

greater behaviour. Compared to more conventional 

approaches, we consider this to be a considerable advantage. 

According to the authors in [15], pre-processing is prone to 

errors, and poor selection of Points of Interest (PoI) leads to 

lower performance. Because CNNs are spatially invariant, 

they can identify characteristics regardless of their position 

within feature vectors. This is the second benefit of using 

CNNs. As a result of this quality, CNNs can perform at the 

cutting edge of the field when it comes to data sets 

originating from implementations that use a concealed 

countermeasure. The methodologies used in the study that 

we have discussed up to this point are standard practises in 

deep learning. According to further research, it has been 

recommended that new innovative tactics be used, designed 

explicitly for the side-channel attack, aiming to take 

advantage of a few qualities. 

The researchers in [16] suggested a completely new CNN 

framework that uses more domain information obtained 

through a side-channel attack. Data provided for creating 

neural networks can be plaintext or ciphertext, and this 
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distinction is determined by the leaky model. The 

classification block of a CNN architecture is the component 

that is given the domain information to use as a new feature 

vector. In the work, the authors compare several 

architectural concepts offered by various works of literature 

with and without the architecture that they have provided. 

They show how a design that uses domain knowledge can 

improve performance for protected information and not 

protected information. However, if profile traces are 

generated using a fixed key, this method is not proper. 

Zaid, Bossuet, Dassance, Habrard, and Venelli [17] 

strongly focus on the need for fine-tuning architecture and 

hyper-parameters; models do not operate correctly without 

an appropriate configuration. They point out that we cannot 

realise the full potential of architecture if we do not 

understand the influence of a hyperparameter and explain 

why this is the case. The authors provide three visualisation 

methods to solve this problem: weight, gradient, and 

heatmap. These methods are utilised to improve the 

readability and interpretability of each hyperparameter. 

These approaches make it simpler to set the 

hyperparameters by allowing an opponent to determine the 

influence of each one individually, which in turn makes it 

easier to tune the hyperparameters. Using these three 

visualisation approaches, they also propose implementation 

options for protected and unprotected environments. In 

particular, for data sets that include a concealed 

countermeasure, it is recommended that the CNN kernel 

measure be modified to equal 50 % of the highest delay of 

randomised delay. It remains one of the guidelines provided 

by their method. 

In contrast to the content provided in articles produced by 

deep learning communities, the increase in substrate is 

recommended as opposed to the number of neurones 

contained within each layer [18]. The authors improved the 

state-of-the-art work on entire information sets by 

developing architectures and conducting tests with all 

publicly available data sets using the methodologies 

described, which led to an increase in overall performance. 

On the other hand, the choice of hyperparameters is 

occasionally made without enough rationale, even though 

their method offers cutting-edge performance for all 

publicly available data sets. For example, the authors do not 

explain how certain learning rates were determined for a few 

specific data sets or why they were used in the first place. 

They also do not explain why they were used at all. 

Pfeifer and Haddad [19] propose using a deep learning 

layer known as the spread layer. This layer would be the 

first to be explicitly designed for side-channel attacks. As 

demonstrated in their study, Haddad and Pfeifer depicted 

with this layer that some substrate was needed for better 

outcomes. Furthermore, the profiling phase needs fewer 

traces, which speeds up the learning procedure. Such 

findings were intriguing about side-channel analysis 

communities because they suggest motivation to create 

substrates specially made to take advantage of the side-

channel properties of traces. This is because these findings 

indicate a motivation to create layers specially made to take 

advantage of the side-channel properties of traces. On the 

other hand, the authors do not provide much information 

about how to establish the hyperparameters of the layer or 

why this layer can offer the results it does. These questions 

will be addressed in Section IV, at which point we will 

investigate the spread layer in great detail and solve some of 

its faults that it has. 

According to Jin, Kim, Kim, and Hong [20], the deep 

CNN framework works admirably for SCAs. Despite this, 

some issues remain concerning the training process for deep 

neural networks. The primary issue is that training deep 

neural networks can be complicated since gradients can 

either vanish or grow as the training progresses. In the 

sections concerned, we will explain the latest advancements 

with the initiation of deep neural networks to solve the 

issues above. 

Much work has been done on parameter initialisation 

topics; variables would often be picked randomly from a 

Gaussian distribution. This was significantly reworked by 

Glorot and Bengio [21], who also introduced the latest 

initialisation technique called “Xavier’s initialisation” 

simultaneously. This method considers the number of inputs 

and outputs associated with the parameter while 

simultaneously deriving the parameter values from a 

Gaussian distribution. This method is currently considered 

standard practise and is used to initialise the parameters of 

several extensive deep-learning libraries. When academics 

began looking into the architectures of deep neural 

networks, they found that several works ran into problems 

with the convergence of their designs. Convergence 

problems were experienced, e.g., by the well-known visual 

geometry group (VGG) architecture, which is trained in four 

phases. The network is then enlarged with additional layers, 

and training is performed at each stage to ensure that it 

converges correctly [22]. 

A novel strategy for deep CNN initialisation is presented 

by F.-X. Standaert in [23]. According to his research 

findings, even though the Xavier initialisation was designed 

to work with linear activations, it is not appropriate for use 

with the rectified linear unit (ReLU). In addition, they argue 

that deeper networks have a more difficult time reaching a 

point of convergence. A solution to such issues, provided by 

them, is the initialisation of “He”, which was developed 

specifically for CNNs that use ReLU and, compared to other 

initialisation methods, results in an improvement in the 

degree to which deep neural networks converge. layer 

sequential unit variance (LSUV) initialisation is an 

alternative method of initialisation that is proposed in [24]. 

Rather than being developed explicitly for designs that use 

ReLU as an activation function, this approach exhibits an 

additional generic character and is appropriate for various 

architectural kinds. They provide evidence of the viability of 

their approach by conducting experiments to validate their 

claims. Both sets of research have shown how important it is 

to have accurate initialisation of the network parameters for 

deep neural networks to converge. The published research 

has only recently begun to do investigations in actual SCA 

circumstances where the attack traces and the profiling 

traces were obtained from identical gadgets. This was not 

unusual for people to use the same key for both the attack 

path and the profiling track. The results of these studies can, 

as a direct consequence of this fact, provide an inaccurate 

image of the effectiveness of several therapies, including 

template attack (TA), ML, and DL. Consequently, the SCA 
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community has begun to construct a more realistic 

environment in which various gadgets are used to acquire 

attack and profiling traces [25]. A comparison of various 

research methods on SCA is shown in Table I. 

TABLE I. COMPARISON OF VARIOUS RESEARCH METHODS ON 

SCA. 

Research works 
Attacked 

Network 

Physical 

Measurement 
Limitations 

Wu et al. [13], 2023 MLP, CNN EM 
Minimal (black 

box) 

Maji, Banerjee, 

Fuller, and 

Chandrakasan [14], 

2022 

CNN, 

BNN 
SPA 

Methodology 

specific to µC 

Shimada, Kuroda, 

Fukuda, Yoshida, 

and Fujino [15], 

2022 

MLP EM Intention paper 

Sako, Kuroda, 

Fukuda, Yoshida, 

and Fujino [22], 

2022 

Systolic 

array 
CPA 

Only the 

systolic array 

is implemented 

Shi, Sun, Wang, 

and Hu [24], 2020 
BNN Power 

Specific to the 

line buffer 

Yang, Xiang, 

Huang, Fu, and 

Yang [25], 2023 

CNN Power 

Using non-

fine-tuned 

models once 

trained 

III. PROPOSED METHODOLOGY 

One of the most popular uses of CNN is image 

recognition [16]. They are effective in dividing time series 

[17]. CNNs are great models for the extraction of features 

and categorisation of complex data because they are 

invariant to translation. As a result, our attack into side-

channel data attacks benefits from the use of CNNs. CNN 

has the drawback of being trained for each major theory 

separately. Our best guesses for the 8-bit key will require 

256 trials of practise. 

CNNs use layers of computation known as convolutional 

and pooling layers. The batch normalisation layers will 

complete these processes today. The batch normalisation of 

Ioffe and Szegedy [18] reduces the internal covariate shift of 

neural networks. The authors claim that this leads to more 

efficient learning. When we put CNN through its paces, we 

use a series of aligned power wires as our test subject. One 

power trace sample would include too much data to be used 

as CNN input features. Therefore, we use the correlation 

coefficient in the first phase of power-trace processing. 

There are typically three parts to a CNN data set: the 

training set, which is used to teach the network, the 

validation set, which is used to test the accuracy of the 

network on unseen data, and the test set, which is used to 

assess the quality of the final prediction or classification. 

Details of the network architecture will be covered in a 

subsequent section. 

− Experiment and Equipment Details 

To evaluate our neural network models, we employed 

MATLAB. Three convolutional layers and three pooling 

layers precede the fully connected layer and the 

classification layer in the network, respectively. The first 

convolution layer has 16 filters, each of which is [11] by 

[12] in size, and has an output layer of the same size as the 

input. The subsequent two convolutional layers are the same 

size as the first but have 24 and 32 filters, respectively. By 

sliding filters down the edge of the layer below them, 

convolutional layers can perform convolution on incoming 

data. The fact that CNN minimises the loss function using 

filter weights allows it to learn invariant features during 

translation. Power cords will not hinder the mobility of SCA 

filters. The max-pooling method with kernel size [12] and 

stride [12] is used for the first two layers, while the average-

pooling technique is used for the third and final layers. 

Maximum and average pooling are non-linear layers that 

can bring down data dimensions. When comparing average 

pooling with maximum pooling, it is important to note that 

the former determines an average, while the latter 

determines a maximum. All convolutional layers in our 

model use ReLU Piecewise linear means that when the input 

is positive, the output is also positive. Softmax is used to do 

the categorisation in the output layer. Table II shows the 

simulation parameters of the proposed CNN model and Fig. 

1 details the structural makeup of our convolutional neural 

network. 

TABLE II. SIMULATION PARAMETERS OF THE PROPOSED CNN 

MODEL. 

Layer 
Weight 

Shape 
Stride Activation 

Convolutional (1) 1 × 3 × 16 - - 

Batch Normalisation (1) - - ReLU 

Max-Pooling (1) - [12] - 

Convolutional (2) 1 × 3 × 24 - - 

Batch Normalisation (2) - - ReLU 

Max-Pooling (2) - [12] - 

Convolutional (3) 1 × 3 × 24 - - 

Batch Normalisation (3) - - ReLU 

Average-pooling (1) - [12] - 

FC-output - - Softmax 

 
Fig. 1.  Proposed model. 

IV. RESULTS 

The CW1173 ChipWhisperer board was subjected to our 

testing [19]. This SCA platform has a target board equipped 

with an 8-bit Atmel AVR Xmega128 microcontroller 

capable of executing AES-128. The ChipWhisperer’s 

internal analog to digital converter (ADC) can capture the 

continuous wave (CW) Lite signal. Because this system is 

set up, we can deliver the software, the plaintext, and the 

key to the Xmega board while recording the traces on a 

laptop. For purposes of conducting tests, we have 5000 

power traces available. 10,000 AES Round 1 and Round 2 

samples are included in each power trace. An attack that is 

not profiled will keep the same key throughout and will 

choose 5000 plaintexts at random. The only round of the 

AES we focus on attacking is the first. 
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The next step is to train a CNN by putting 80 % of the 

data set through its paces during training and just 20 % 

through its paces during testing. Selecting the features that 

have the highest correlation values for I and k is an effective 

way to assist the CNN model in locating HW labels. The 

correct value for the key parameter, k, will accurately 

predict the sequence of intermediate HW values, ultimately 

leading to the appropriate CNN training labels. If the CNN 

can acquire the appropriate properties from the correct key, 

it should train successfully and increase training metrics, 

such as loss and accuracy, with time. The intermediate 

values of all other key candidates will be inaccurate and lead 

to unsuccessful training. The attacker can discover the 

proper key value if they choose the key with the highest 

training metrics. The results of the experiment will now be 

presented. Figure 2 shows clean power traces validation 

accuracy and confusion matrix. Figure 2(a) and Fig. 2(b) 

show validation accuracies and incorrect key guesses, 

respectively. 

The accuracy of the training network’s validation can 

judge the success of CNN’s non-profiled attacks. Loss and 

accuracy over epochs are the two primary metrics used to 

measure CNN training, as previously mentioned. This study 

focused on precision in finding the appropriate sub-byte key. 

Validation accuracy is shown in Fig. 2(a), which was 

derived from an attack on our data set using 30 epochs for 

each estimate. The number of training epochs is shown 

along the horizontal axis, and the validation accuracy of the 

training network is shown along the vertical axis. Because 

we used the correct sub-byte key value, the validation 

accuracy of our training was much greater than that of the 

other companies. Even after ten epochs, the attack manages 

to discover the hidden key. It is not difficult to determine the 

suitable key guess if we use the highest accuracy value for 

each sub-byte key guess. More intriguingly, we can utilise 

the confusion matrix to differentiate between the 

distributions of the three HW labels. The incorrect 

candidates will fall under the HW4 label, while the correct 

candidate will be marked independently, as shown in Fig. 

2(b). After discovering these data, we set out to determine 

how the power trace noise affected the accuracy of the 

recommended CNN. The initial power traces consist of three 

different layers of Gaussian noise. Then came three sets of 

data. The results of the training are shown in Fig. 3. Even 

though there is very little noise, as shown in Fig. 3, our 

CNN can still identify the correct key after ten epochs have 

passed. The correct key is concealed in the last key byte 

generated after each epoch with more than 3000 power 

traces. The greater the noise variance, the less accurate the 

validation becomes. 

 
(a) 

 
(b) 

Fig. 2.  Clean power traces validation accuracy and confusion matrix: (a) 

Validation accuracies; (b) Incorrect key guesses. 

 
Fig. 3.  Validation accuracy when Gaussian noise is added (0.025). 

− Comparative Analysis 

The potential number of partial keys that can be derived 

from a sample of 30,000 traces is shown graphically in Fig. 

4.  

 
Fig. 4.  Comparison of the results of the SCA attack. 

The CPA was unsuccessful, except for the unmasked 

bytes 2 and 5. Regularisation caused our method DL-SCAs 

(CNN) to attack all 16 bytes in 25,000 traces, whereas they 

only attacked 15 bytes in 30,000 without regularisation (DL-

SCA). Compared to first-order CPAs, non-profiled DL-

SCAs performed better in attacks. The disclosed masking 

SCA countermeasure is vulnerable to attack if a high-order 

CPA can be utilised to reliably predict the internal mask 

value. The risk of side-channel attacks is significantly 

increased since an attacker unfamiliar with the underlying 

processing of the countermeasure can still get all partial 

keys using non-profiled DL-SCAs. These results show that 

our method can recover more bytes successfully from SCA 

compared to other methods in CPA [14] and DL-SCA 

without regularisation [15]. 

V. CONCLUSIONS 

According to the findings of this research, CNN creates 

difficulties for SCA when aligned power traces include a 

large number of samples. After preparing the CNN training 
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data, we evaluated the power traces with the original data 

and those with Gaussian noise. Our non-profiled SCA data 

preparation method is based on CNN, which allows for 

extracting key properties. Our method requires fewer power 

traces for attacks because the power traces are organised 

into three distinct groups. These findings indicate that our 

technique can effectively recover an increased number of 

bytes from SCA compared to previous methods used in CPA 

and DL-SCA without regularisation. The consistent findings 

that our CNN architecture produces for attacks that are not 

profiled highlight the considerable challenge posed by 

Gaussian noise in power traces. To improve the performance 

of neural networks when faced with non-profiled attacks, we 

will investigate several pre-processing strategies that aim to 

decrease power trace noise. 
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