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1Abstract—Caudal epidural anaesthesia is usually the most 

well-known technique in obstetrics to deal with chronic back 

pain. Due to variations in the shape and size of the sacral 

hiatus (SH), its classification is a crucial and challenging task. 

Clinically, it is required in trauma, where surgeons must make 

fast and correct selections. Past studies have focused on 

morphometric and statistical analysis to classify it. Therefore, 

it is vital to automatically and accurately classify SH types 

through deep learning methods. To this end, we proposed the 

Multi-Task Process (MTP), a novel classification approach to 

classify the SH MTP that initially uses a small medical tabular 

data set obtained by manual feature extraction on computed 

tomography scans of the sacrums. Second, it augments the data 

set synthetically through a Generative Adversarial Network 

(GAN). In addition, it adapts a two-dimensional (2D) 

embedding algorithm to convert tabular features into images. 

Finally, it feeds images into Convolutional Neural Networks 

(CNNs). The application of MTP to six CNN models achieved 

remarkable classification success rates of approximately 90 % 

to 93 %. The proposed MTP approach eliminates the small 

medical tabular data problem that results in bone classification 

on deep models. 

 

 Index Terms—Bone classification; Synthetic tabular data 

generation; Two-dimensional embedding; Transfer learning; 

Generative adversarial networks; Convolutional neural 

networks; Deep learning. 

I. INTRODUCTION 

Caudal epidural block (CEB) is usually the most known 

technique in obstetrics, performed by inserting a needle 

through the inferior hiatus. This technique aims to gain 

entrance into the sacral epidural space to inject an 

anaesthesia solution to treat spinal deformities and manage 

chronic back pain [1]. The most facing difficulties during 

CEB are needle positioning, especially specifying the 

location of the apex, which is the most critical anatomical 
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landmark of the sacral hiatus (SH) [2]. Because SH shape 

and size variations play an important role in the accuracy of 

needle position and feasibility, the success of the CEB 

technique decreases [3], [4]. Additionally, due to obesity, 

palpation may be complicated [5]. Therefore, classification 

of SH requires diagnosis, surgical planning, and 

postoperative assessment.  

Ultrasonography or fluoroscopy can improve the position 

of the clinical needle [2]. Since minimally invasive surgeries 

are related to a lower risk of infection, less exsanguination, 

and a complete decrease in disorder, they are helpful for the 

patient. However, they increase the workload of a surgeon 

[6]. Also, they may be less preferred due to radiation 

exposure, time limitation, and lack of trained and informed 

personnel [7]–[12]. In addition, because computed 

tomography (CT) scans comprise many slices and each 

holds many data, they cannot be accurately analysed by 

investigation or conventional methods. Therefore, additional 

information about the anatomical structure of SH is highly 

beneficial to support surgeons during their intraoperative 

decision-making.  

Many workers have performed morphometric studies to 

classify SH traditionally in many different geographical 

areas [13]–[17]. However, these studies have focused only 

on statistical data analysis and methods to increase the 

success of the CEB technique. Consequently, it is crucial to 

classify SH automatically and accurately via deep learning 

(DL) methods not studied so far. The need for robust data 

analysis has become more critical as the world becomes 

more data-driven for decision-making [18]. One of the most 

exciting developments in this field is the rise of DL to 

analyse large amounts of data.  

Data come in two different forms: structured and 

unstructured data. Structured data are stored as tabular data, 

such as Excel sheets and databases, while unstructured data 

are stored in various forms, including text, email, images, 
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and videos. In structured data, each column represents a 

distinct feature and each row represents a different instance. 

Structured data are easy to analyse and process using 

traditional classifiers such as the Support Vector Machine 

(SVM) [19], Logistic Regression (LogReg) [20], and tree-

based algorithms [21]. These models are designed to 

outperform DL models, mainly when working with small 

tabular data sets [22]. On the contrary, DL models are 

complex architectures with many hidden layers and nodes, 

allowing them to process and analyse large amounts of data 

accurately [23]. 

However, the Convolutional Neural Network (CNN) 

cannot be applied directly to tabular data. Therefore, several 

studies have recently introduced methods that make CNN 

viable for tabular data classification [24]–[28]. Converting 

tabular data sets to images makes it easier to analyse 

through CNNs. SuperTML [24] uses two algorithms: Equal 

Font-SuperTML (SuperTML_EF) and Variable Font-

SuperTML (SuperTML_VF). In contrast, the 

SuperTML_EF algorithm provides equal space for each 

feature, and SuperTML_VF gives greater image space for 

more relevant features. 

DeepInsight [25] uses t-distributed stochastic neighbour 

embedding (t-SNE) to project feature vectors onto a two-

dimensional (2D) space while minimising the Kullback-

Leibler divergence. The resulting 2D projection is compared 

with the original full-dimensional space, and a rectangle is 

identified that includes all projected feature points with a 

minimum area. This rectangle forms the image 

representation. 

Representation of Features as Images with Neighborhood 

Dependencies (REFINED) [26] uses Bayesian 

multidimensional scaling. It can generate high-quality 2D 

images while preserving the original feature distribution. It 

is an effective means of minimising distortion and 

maintaining data integrity in a 2D space.  

The Image Generator for Tabular Data (IGTD) [27] 

algorithm creates an image accurately, assigning every 

feature within the tabular data to a specific pixel, 

corresponding to its intensity reflected in the image. 

The Dynamic Weighted Tabular Method (DWTM) [28] 

uses advanced statistical techniques such as Pearson’s 

correlation and Chi-square to accurately compute the 

weights of each feature in tabular data. DWTM arranges 

them in descending order and assigns them space within the 

image canvas according to their significance. 

In this study, we proposed the Multi-Task Process (MTP) 

classification approach, a crucial and challenging task and a 

novel way to classify SH using two-dimensional embedding 

with CNNs. As shown in Fig. 1, manual feature extraction is 

applied to two-dimensional (2D) sacrum images in CT in 

the first stage. The distance values are measured manually 

considering SH’s shape and size between the priorly 

determined locations on sacrum bones. In the second stage, 

these distance values are obtained as tabular data. Due to the 

insufficient data set to train a data-hungry CNN, in the third 

stage of the MTP, the rows of the tabular data set are 

increased by a Generative Adversarial Network (GAN) 

synthetically. In the fourth stage, with an algorithm known 

as two-dimensional embedding, these values are projected 

into images. In the last stage, after feeding these images into 

pre-trained CNN models, we achieved significant SH 

classification success rates of approximately 90 %–93 % 

after 30 epochs. 

 
Fig. 1.  MTP: Flow chart of the SH classification. 

The study contributions are as follows: 

1. The novelty of this study is that the classification of 

SH using DL methods in CT has not previously been 

studied in the literature; 

2. Deep models require many weights that need to be 

optimised due to their complexity during training to avoid 

overfitting. Unfortunately, the acquisition of many CT 

scans is challenging in the medical field. Also, training 

deep models with three-dimensional (3D) volumetric data 

are computationally intensive and exponentially increases 

the need for weights to be learnt. Additionally, annotated 

CT scans are limited because they are time consuming 

and varies from an expert’s point of view. To do this, we 

manually transform the SH shape and size features on 2D 

sacrum CTs into tabular data and use a GAN to increase 

it synthetically; 

3. We embed increased non-heterogeneous tabular data 

rows into images. Each image file with a 3D matrix of 

pixels represents an individual sample that a CNN can 

train. Thus, the computational cost is reduced since only 

2D convolution is required; 

4. We investigate the relative performances of the MTP 

on other pre-trained DL models. We demonstrate that 

MTP is a successful approach in terms of applicability 

with different DL models; 

5. We investigate the relative results of the MTP 

classification approach and non-deep models, traditional 

machine learning (ML) classification algorithms. We do 

not observe a definitive superiority between the results, 

and they are close to each other; 

6. We eliminate the difficulties that surgeons face in 

planning external pelvic injuries and enable them to do 

the planning in a much shorter time and with the correct 

diagnosis decisions; 

7. Knowing the anatomical structure well of the SH helps 

surgeons prevent possible complications during 

operations to be performed in this area; therefore, MTP 

protects the neural structures and their surroundings in 

surgical interventions in the pelvic region; 

8. MTP reduces the use of the tomography device, 

reducing the high radiation exposure rate of the operating 

team and the patients; 
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9. MTP contributes to the increase in the success rate of 

the operation and the patient’s recovery in a shorter time, 

reducing the error rate during the pre-operation; 

10. MTP allows the construction of multi-model 

pipelines. 

II. MATERIALS AND METHODS 

A. Data Acquisition 

After the YOBU Clinical Research Ethics Committee 

approved this study, CT scans belonging to the pelvic region 

of 252 patients were retrospectively obtained between June 

01, 2018 and October 15, 2020. Typically, participants are 

patients 20 years or older who come to the YOBU Research 

and Application Hospital for pelvic CT scans. Individuals’ 

CT scans do not have pathological tumours or defects in the 

pelvic rings. We excluded CT scans of patients with too low 

image resolution from this study. Therefore, only 123 CT 

scans from patients for feature extraction remained of 252 

CT scans. 

B. Organising the SH Shapes 

Figure 2 shows different SH shapes of sacrum bones [15]. 

Before GAN, we pre-processed SH shapes and reduced six 

types to three types to obtain more consistent results and 

ensure data integrity. SH shapes in Figs. 2(a), 2(d), and 2(f) 

are represented by one as type M because of their similarity, 

Fig. 2(c) - by two as type V, and in Fig. 2(b) - by three as 

type U. We ignored the SH shape in Fig. 2(e) because it is 

scarce in the population. 

 
                 (a)                                (b)                               (c)                

 
                      (d)                                (e)                                 (f)                  

Fig. 2.  Different hiatus shapes [15]: (a), (d) irregular hiatus shape, (b) 

inverted U shape, (c) inverted V shape, (e) incomplete formation of the 

posterior sacral canal wall, (f) dumple shape. 

C. Feature Extraction 

We use Radiant Dicom Viewer software to perform 

manual feature extractions in sacrum CT in Fig. 3. Nine 

distance values (features) are measured between the location 

of each patient’s landmarks and are stored as comma-

separated values (CSV) files.  

 

Fig. 3.  Feature extractions in the Radiant Dicom Viewer. 

Figure 4 shows the locations of the landmarks and their 

distances from each other, considering the apex of SH. 

Table I shows the original SH tabular data set (o-SHd) 

belonging to the first five patients. 

 
Fig. 4.  Located landmarks and distance features on the sacrum. 

A. Tabular Data Set Augmentation 

In data science, data are categorised into structured and 

unstructured data. Structured data are also known as tabular 

data. Tabular data include a set of rows and columns 

consisting of features and are the most common data type in 

real-world applications. Many challenges arise when 

feeding them to deep neural networks, including lack of 

locality, missing values, mixed feature types, and unlike text 

or images, lack of prior knowledge of the structure of the 

data set [29]. 

The o-SHd used in the MTP was very small, with only 

123 instances. When it splits into train, validation, and test 

sets with a 50:30:20 ratio, we only got 69 train sets, 29 

validation sets, and 25 test sets.  

TABLE I. o-SHd. 

 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Class 

Patient 1 1,4 1,8 2,5 3,4 6,2 6,7 6,2 9,8 2,5 1 

Patient 2 1,8 1,7 4,1 3,4 6,7 8,7 8,4 12,1 3,2 1 

Patient 3 2,4 1,5 4,0 3,1 7,9 8,4 8,4 11,9 3,4 3 

Patient 4 2,6 1,5 4,1 3,1 6,7 8,4 6,3 12,5 4,4 2 

Patient 5 1,9 1,1 1,6 2,2 3,8 4,4 4,4 9,8 3,9 3 
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Due to the insufficient o-SHd for training a data-hungry 

CNN, we augmented it with respect to its feature 

distributions and their classes. We adopted the GAN for 

Tabular Data (TabGan) project [30] for this process. 

Therefore, we synthetically increased 123 in o-SHd to 874 

instances of new data set named “GAN-powered SH tabular 

data set” (g-SHd). After splitting g-SHd with an 80:20 ratio 

using the Scikit-Learn library of Python programming 

language, we got a training set of 699 samples and a blind 

test set of 175.  

Figure 5 shows the heat map of correlation of o-SHd and 

g-SHd on how strongly each feature relates to each other. 

White represents strong relations, whereas red represents 

weak relations. The correlation is apparent in both data sets, 

especially between the 6th-7th and 8th-9th features. Figure 6 

shows the t-SNE visualisations of o-SHd and g-SHd. 

        
                                                           (a)                                                                                                             (b)                                                                     

Fig. 5.  Correlation heat maps of (a) o-SHd and (b) g-SHd. 

        
                                                                         (a)                                                                                                          (b)                                                                

Fig. 6.  t-SNE visualisations of (a) o-SHd and (b) g-SHd.  

B. Embedding Features in the Images 

We developed a new algorithm to generate an image data 

set and applied it to g-SHd using the SuperTML method 

[24]. Eight hundred seventy-four instances and their features 

were successfully embedded in the images using the 

OpenCV library. Due to the input size of the deep models, 

images were generated in 224×224 sizes. The SuperTML 

method is motivated by the analogy between Tabular data 

Machine Learning (TML) problems and text classification 

tasks. However, unlike the text classification problems 

studied in [31], the features of the tabular data are of 

separate dimensions. Therefore, generated images should 

have some space between their features in different sizes to 

ensure that they do not overlap in the generated images [24]. 

Because g-SHd has the same importance for features, the 

algorithm allocated the same size to every feature. So, g-

SHd could be directly embedded into images without 

calculating its importance. As shown in Fig. 7, every 

instance, and their nine features in g-SHd train and test sets, 

was projected with an order to new images.  

 
Fig. 7.  Embedding the features into 224×224 images and distributing them 

into three folders. 

47



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 2, 2023 

By the algorithm saving images in class folders, we got g-

SHd (eg-SHd) embedded. In Table II, the class distribution 

of the eg-SHd is shown. Figure 8 shows the flow chart of 

the proposed algorithm. 

TABLE II. THE CLASS DISTRIBUTION OF eg-SHd. 

Type M Type V Type U Train data set 

291 212 196 699 

Type M Type V Type U Test data set 

77 47 51 175 

 
Fig. 8.  The flow chart of the proposed algorithm. 

C. Deep Convolutional Neural Networks 

CNNs have achieved tremendous image classification and 

recognition performance. A CNN recognises an object in 

detail by looking for low-level features, such as edges, lines, 

and curves, and then builds up more features with an overall 

outlook [32]. 

DL performance depends on the amount and quality of 

the data gathered in a learning model for the target 

application [33]. Accuracy scores are higher when more 

sample images are used for training on the success of a 

CNN [34]. When the training data set is enlarged, the 

diversity of the data increases, and a better generalisation is 

achieved. However, the necessary amount of data to build 

deep models are hard to find, especially in the medical field. 

The transfer learning technique deals with similar problems 

[32]. The image data augmentation technique is another 

procedure for creating various transformed images such as 

rotation, flips, zooms, etc. This technique expands the 

training data sets to improve the CNNs’ ability to generalise 

their learnings to new images to reduce overfitting. 

D. Experimental Environment 

This study uses a machine with Intel(R) Core (TM) i7-

8750H CPU @2.20 GHz processor, 32 GB SDRAM, and 

8 GB of NVIDIA Geforce RTX 2070 graphical processing 

unit with CUDA 11.5 CuDNN 8.1 for the experimental 

environment. 

Because they provide a huge set of ML libraries and are 

very convenient for DL, all training steps were conducted in 

Python (Python 3.8.13). Keras 2.10 [35] with TensorFlow 

2.10 [36] backend was used for training CNN models. 

Figure 9 shows the general architecture of the MTP 

approach. 

 
Fig. 9.  Overall architecture of the MTP approach. 
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E. Pre-Processing of eg-SHd with Keras 

The eg-SHd, including 699 images, was split into the 

validation data set using the rates of 25 % with the Keras 

image data generator pipeline. After the process, 525 train 

sets and 174 validation sets were obtained, almost the same 

numbers as 175 in the blind test set. Table III shows the 

distribution of the eg-SHd. 

Data augmentation techniques are also applied to increase 

the generalisability of the models and prevent them from 

overfitting. Thus, deep models constantly saw slightly 

modified versions of new input data and were able to learn 

more robust features. In the training set, the rotation range 

of 30 degrees was performed. Figure 10 shows modified 

versions of the eg-SHd after applying Keras’s augmentation 

techniques. 

TABLE III. DISTRIBUTION OF eg-SHd. 

eg-SHd Total Images 

Train 525 

Validation 174 

Test 175 

Total 874 

 
Fig. 10.  Transformed eg-SHd. 

F. Training CNN Models 

As a technique of ML, during training, transferring the 

level of learning acquired from one task to another related 

task is known as transfer learning [37]. In this study, we 

loaded the pre-trained CNN models with ImageNet weights 

to transfer learning and set the top property of the model to 

false. We added Gaussian noise with 0.8 and a dropout rate 

of 0.2 to prevent the model from overfitting before the fully 

connected layers with 4096 neurons.  

CNN models (Inception-v3, Inception ResNet-v2, 

ResNet50-v2, ResNet152-v2, DenseNet121, and 

DenseNet169) employed in this study, were trained with 

Keras in 30 epochs. Unfroze all convolutional layers, 

implement time-based decay, and set the initial learning rate 

to 0.004. The decay rate is proportional to the learning rate, 

the epoch value and the momentum. Momentum applied 0.3 

within the Stochastic Gradient Descent (SGD) optimiser, 

which tends to converge to better results. 

After employing eg-SHd with the MTP, accuracy and the 

loss performances of all models are shown after 30 epochs 

in Figs. 11–16, respectively. The confusion matrix was 

computed to understand which classes were correctly 

labelled (true-positives) diagonally and mislabelled (false-

negatives) off-diagonally as boxes in the matrix. As can be 

seen in Fig. 11, 161 of 175 test data were correctly 

predicted, and 14 were incorrectly predicted for Inception-

v3. 

       
                                                  (a)                                                                      (b)                                                                     (c)                                        

Fig. 11.  Relatively evaluated performance of MTP (Inception-v3): (a) Accuracy, (b) Loss, (c) Confusion Matrix.  

       
                                                  (a)                                                                      (b)                                                                     (c)                                        

Fig. 12.  Relatively evaluated performance of MTP (Inception ResNet-v2): (a) Accuracy, (b) Loss, (c) Confusion Matrix. 
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                                                  (a)                                                                      (b)                                                                     (c)                                        

Fig. 13.  Relatively evaluated performance of MTP (ResNet50-v2): (a) Accuracy, (b) Loss, (c) Confusion Matrix. 

       
                                                  (a)                                                                      (b)                                                                     (c)                                        

Fig. 14.  Relatively evaluated performance of MTP (ResNet152-v2): (a) Accuracy, (b) Loss, (c) Confusion Matrix. 

       
                                                  (a)                                                                      (b)                                                                     (c)                                        

Fig. 15.  Relatively evaluated performance of MTP (DenseNet121): (a) Accuracy, (b) Loss, (c) Confusion Matrix. 

       
                                                  (a)                                                                      (b)                                                                     (c)                                        

Fig. 16.  Relatively evaluated performance of MTP (DenseNet169): (a) Accuracy, (b) Loss, (c) Confusion Matrix. 

III. RESULTS 

Table IV shows the performance metrics evaluated for the 

MTP approach on CNN models. Accuracy is the most 

intuitive performance measure and is simply a ratio of 

correctly predicted observations to the total observations in 

an experiment. The Inception-v3 model reached a 0.92 

accuracy score with the MTP approach, which means that 

the model is approximately 92 % accurate. 

High precision relates to the low false-positive rate, 

which also indicates whether the predicted positive 

observations are truly predicted as correct. Performance 

metrics obtained a 0.95 precision score for type M, 0.98 for 

type U, and 0.83 for type V class. 

The arithmetic mean of all precision scores belonging to 

these classes is 0.92, which is known as the macro-average 

precision score and is used for needs to be treated equally to 

evaluate the overall performance of the model related to its 

class labels. The score for each class by the number of 

actual instances when calculating the average weighting 

score is 0.92. The weighted macro-averaging score is used 

in the case of the model imbalance classes. The ratio of 

correctly predicted positive observations to all observations 

in the actual class: 1.00 for type M, 0.80 for type U, and 

0.91 for type V class: 

 ,
TP

Precision
TP FP




 (1) 
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 ,
TP

Recall
TP FN




 (2) 

 .
TP TN

Accuracy
TP TN FP FN




  
 (3) 

TP, TN, FP, and FN denote the true positive, true 

negative, false positive, and false negative cases, 

respectively. The F1-score is the harmonic mean of 

precision and recall 

 1 .
PrecisionRecall

F score
Precision Recall

 


 (4) 

The F1-score is the weighted average of Precision and 

Recall and is more beneficial than accuracy, which works 

best if false positives and false negatives have similar costs. 

In our case, the F1-score is the same with a precision and 

recall value of 0.92 in the case of the weighted average, 0.97 

for the type M class, 0.88 for the type U class, and 0.87 for 

the type V class.  

A. Evaluation of the MTP Performances with eg-SHd and 

o-SHd Data Sets 

The same tuning hyperparameters are used to evaluate 

MTP’s performances on the most accurate deep models to 

make a consistent and accurate comparison. During training 

CNNs, only changes are applied to the batch size and the 

learning rate depending on the model’s architecture.  

Figures 11-16 shows the relatively evaluated performance 

of the MTP on all models using the eg-SHd data set. The 

models have all performed robustly with the MTP approach. 

We can understand from Table IV that the MTP has almost 

similar classification performance success rates of 

approximately 90 %–93 % in all models. 

In addition, the results were compared by employing the 

o-SHd data set, both the most accurate ML classification 

algorithms and the MTP. Table V shows the performance 

metrics relatively evaluated between the MTP and 

traditional ML classification algorithms. As can be seen 

from the table, a very significant performance improvement 

has been observed with the MTP approach employed with 

the eg-SHd data set. 

B. Evaluation of the MTP’s Performances Using 

Standard Data Sets 

We used three standard data sets to test the MTP 

approach and compared its results with those obtained with 

the ML classifiers. Details of the selected data sets and 

comparison of the MTP results with the ML classifiers are 

given in Table VI. The objective is to evaluate performance 

of the MTP approach and test its robustness on small 

standard tabular data sets, not just for o-SHd. 

The first standard data set is the Iris data set [38], which 

is a public data set containing 150 samples, four features 

and three classes. It is the most popular data set for pattern 

recognition.  

The second is the Wine data set [39]. It contains 178 

samples and 13 dimensions and is the UCI repository’s third 

most popular data set. 

Both data sets have three classes. The last data set is a 

medical data set, Breast Cancer Wisconsin [40] (BCW), 

which contains data from 699 patients. It has ten features 

and two classes. These three tabular data sets are preferred 

to test the classification performances of the MTP approach. 

All tasks of the MTP are considered for these 

classifications, as mentioned in Fig. 1.  

The experiments show that the CNN-based MTP 

approach provides better results than the traditional ML 

classifiers on the medical o-SHd data set. The proposed 

approach also proves robust and successful in disease 

diagnosis in the BWC data set. The results on both the o-

SHd and BWC data sets prove that MTP is a viable option 

for performing state-of-the-art results on medical data sets. 

TABLE IV. PERFORMANCE METRICS OF MTP ON CNNS. 

MTP (Inception-v3) MTP (Inception ResNet-v2) 

 Precision Recall F1-score  Precision Recall F1-score 

Type M 0.95 1.00 0.97 Type M 0.96 1.00 0.98 

Type U 0.98 0.80 0.88 Type U 0.86 0.94 0.90 

Type V 0.83 0.91 0.87 Type V 0.92 0.77 0.84 

Accuracy   0.92 Accuracy   0.92 

Macro Avg 0.92 0.91 0.91 Macro Avg 0.91 0.90 0.91 

Weighted Avg 0.92 0.92 0.92 Weighted Avg 0.92 0.92 0.92 

MTP (Resnet 50-v2) MTP (Resnet 152-v2) 

 Precision Recall F1-score  Precision Recall F1-score 

Type M 0.96 1.00 0.98 Type M 0.95 0.99 0.97 

Type U 0.98 0.84 0.91 Type U 0.96 0.86 0.91 

Type V 0.84 0.91 0.88 Type V 0.86 0.89 0.88 

Accuracy   0.93 Accuracy   0.93 

Macro Avg 0.93 0.92 0.92 Macro Avg 0.92 0.91 0.92 

Weighted Avg 0.93 0.93 0.93 Weighted Avg 0.93 0.93 0.93 

MTP (DenseNet 121) MTP (DenseNet 169) 

 Precision Recall F1-score  Precision Recall F1-score 

Type M 0.95 0.96 0.95 Type M 0.97 0.94 0.95 

Type U 0.98 0.88 0.93 Type U 0.95 0.82 0.88 

Type V 0.84 0.91 0.88 Type V 0.77 0.94 0.85 

Accuracy   0.93 Accuracy   0.90 

Macro Avg 0.92 0.92 0.92 Macro Avg 0.90 0.90 0.89 

Weighted Avg 0.93 0.93 0.93 Weighted Avg 0.91 0.90 0.90 
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TABLE V. RELATIVELY EVALUATED PERFORMANCE METRICS OF MTP AND TRADITIONAL ML CLASSIFICATION ALGORITHMS. 

Models Data set #Samples #Features Precision Recall F1-score Accuracy 

Multi-Task Process - Resnet 50-v2 (MTP) eg-SHd 874 9 0.93 0.92 0.92 0.93 

Extreme Gradient Boosting (XGBoost) o-SHd 123 9 0.67 0.60 0.60 0.60 

Random-Forests (RF) o-SHd 123 9 0.67 0.60 0.57 0.60 

Linear Discriminant Analysis (LDA) o-SHd 123 9    0.57 

(k-Nearest Neighbors Algorithm) k-NN o-SHd 123 9 0.71 0.48 0.52 0.48 

Naive Bayes Classifier o-SHd 123 9 0.61 0.52 0.52 0.52 

Support Vector Machines (SVM) o-SHd 123 9 0.46 0.44 0.41 0.44 

TABLE VI. COMPARISON OF MTP AND OTHER ML CLASSIFIERS PERFORMANCES ACROSS STANDARD DATA SETS. 

Data sets 

Data  

representat

ion 

Data  

augmentation 
#Samples #Features Models Precision Recall F1-score Accuracy 

eg-Iris 
SuperTML_

EF 

GAN 

Keras 

899 4 
MTP 

(CNN) 

0.92 0.91 0.91 0.91 

eg-Wine 1666 13 0.91 0.91 0.91 0.91 

eg-BCW 1664 10 0.96 0.96 0.96 0.96 

Iris 

Tabular 

Data 
- 

150 4 

XGBoost 0.90 0.90 0.90 0.90 

RF 0.97 0.97 0.97 0.97 

SVM 0.97 0.97 0.97 0.97 

Wine 178 13 

XGBoost 0.95 0.94 0.94 0.94 

RF 0.97 0.97 0.97 0.97 

SVM 1.00 1.00 1.00 1.00 

BCW 699 10 

XGBoost 0.96 0.96 0.96 0.96 

RF 0.94 0.94 0.94 0.94 

SVM 0.98 0.98 0.98 0.98 

 

IV. DISCUSSION 

In tabular data analysis, traditional classifiers typically 

outperformed CNN models. However, the results of the 

experiments in this study demonstrated that CNN models 

are more effective when handling tabular data. This study 

shows their effectiveness in medical data sets, showing that 

CNN models are consistently better than traditional 

classifiers. Additionally, this study shows that the MTP can 

perform well with small and multiclass data sets.  

Although previous studies of SuperTML [24], 

DeepInsight [25], IGTD [27], and DWTM [28] focus on the 

idea of transforming tabular data into images, none of them 

used GANs for tabular data. MTP is a novel approach that 

uses its medical tabular data set, creating it with manual 

feature extraction and synthetically increasing it. MTP 

performs remarkably well on small data sets compared to 

the IGTD method and the DeepInsight technique. In the 

future, combining different methods and techniques and 

using them with the MTP approach can produce the best 

method for all kinds of tabular data classification tasks. 

V. CONCLUSIONS 

In this study, we have presented a novel approach to SH 

classification, MTP, which considers landmarks located on 

sacrum bones and their distances from each other to classify 

SH; in this way, it represents medical images with numbers 

in tabular data.  

This attitude allows us to use the GAN, which makes the 

tabular data set synthetically generable. In this way, it 

eliminates significant problems in the medical field in case 

of insufficient or limited data sets. Also, transforming the 

tabular data set into new image forms makes training 

processes with CNNs possible using transfer learning 

techniques even in the face of the limited amounts, poor, 

and varying qualities of medical data.  

The experiments demonstrate that the proposed approach 

achieved significant performance and usually outperformed 

results of traditional ML classifiers. In future work, we plan 

to improve the MTP classification approach by automating 

feature extraction and extending it to other medical 

applications. 
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