
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

1Abstract—Documentation as Code (DaC) is an approach

that applies the principles of software development to the

production of technical documentation. Using modern tools,

DaC enables software engineers to treat documentation as a

first-class citizen in the development process, alongside code

and tests. In this paper, we discuss the advantages of DaC in

system and software engineering, including improved

accuracy, traceability, and maintainability. In the automotive

industry, DaC has been used to document various aspects of

vehicle development, such as requirements, design, testing, and

compliance. This paper provides an overview of the state-of-

the-art in DaC in the automotive industry and discusses the

potential benefits and challenges of using this approach. In

addition, case studies and examples of how DaC has been used

in the automotive industry to improve the quality and

maintainability of documentation are presented. This research

has been conducted with more than 150 engineers actively

contributing to DaC on the project for more than a year within

a company, so the scalability of the presented solution has been

tested. Finally, a set of guidelines is provided for teams to

follow when adopting DaC to ensure successful

implementation.

 Index Terms—Automotive engineering; Documentation;

Software engineering; Software systems.

I. INTRODUCTION

The automotive industry is under increasing pressure to

improve the quality and efficiency of vehicle software

development. One approach that has been gaining popularity

in recent years is Documentation as Code (DaC), which

treats documentation as a first-class citizen in the

development process, alongside code and tests. The main

idea behind DaC is to make documentation more accessible,

maintainable, and up-to-date by storing it in the same

repository as the code and using the same tools for version

control, collaboration, and continuous delivery.

DaC has been applied in various domains, such as

application development, IT, and web development.

However, its application in the automotive industry is still in

its infancy. The automotive industry has unique

requirements and constraints, such as safety, cybersecurity,

and compliance with standards such as ASPICE [1], [2],

which stands for Automotive SPICE (Software Process

Improvement and Capability dEtermination), which make it

Manuscript received 5 February, 2023; accepted 14 April, 2023.

challenging to apply DaC. Furthermore, the automotive

industry has a long product lifecycle and requires

maintaining documentation for a longer period.

This paper provides an overview of the state-of-the-art in

DaC in the automotive industry and discusses the potential

benefits and challenges of using this approach. The paper

will also present case studies and examples of how DaC has

been used in the automotive industry to improve the quality

and maintainability of documentation. This paper will be of

interest to researchers, practitioners, and professionals in the

automotive industry who are looking for ways to improve

the quality and efficiency of vehicle software development.

Also, this paper discusses the use of DaC in compliance

with the automotive standard ASPICE and the V-model. The

ASPICE standard is a widely used framework for evaluating

and improving the quality of automotive software

development processes. The V-model, on the other hand, is

a widely used software development model that describes

the various phases of a project lifecycle and the relationships

between them.

By integrating DaC practises into automotive

system/software engineering, we can ensure that the

documentation produced during the development process is

accurate, consistent, and up-to-date. This can be achieved by

using version control systems, such as Git, to manage the

documentation and by using automated tools to check the

documentation for errors and inconsistencies. Additionally,

by using the V-model, we can ensure that the documentation

is produced in the appropriate phase of the project and is

aligned with the requirements and design of the system.

The paper concludes that by using DaC practises in

conjunction with the ASPICE standard and the V-model, we

can improve the quality of automotive system/software

engineering and ensure that the documentation produced is

accurate, consistent, and up-to-date, as well as accessible

and easy to use.

The rest of the paper is organised as follows. The next

section provides a brief overview of DaC and its benefits.

Then, the paper will present the processes and tools used in

the case study, the research that inspired the writing of this

paper, and examples of how DaC has been used in the

automotive industry. Finally, the paper will conclude with a

discussion of the potential benefits and challenges of using

DaC in the automotive industry and future research

directions.

Documentation as Code in Automotive

System/Software Engineering

Momcilo V. Krunic

Department of Computer Engineering and Communications, Faculty of Technical Sciences,

University of Novi Sad,

Trg Dositeja Obradovica 6, Novi Sad 106314, Serbia

momcilo.krunic@uns.ac.rs

http://dx.doi.org/10.5755/j02.eie.33843

61

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

II. OVERVIEW

Documentation as Code (DaC) is a holistic approach to

documenting technical information that can be applied to the

development of technical documentation in automotive

engineering. By applying DaC, this research explores its

ability to improve accuracy, traceability, maintainability,

accessibility, and utilisation.

The benefits of using DaC are considerable; it allows

automotive engineers to author technical documentation

faster with more precision and less overhead cost.

Automated processes, such as automated builds or

continuous integration pipelines, can be used to create

documentation from source files and to send changes to

production systems quickly and reliably. Moreover,

incorporating version control to track document changes

helps automotive engineers identify and address problems

more quickly. Automated testing can also be used to

validate the accuracy of documentation before it is released

to production.

The art of documenting computer programmes has

evolved significantly in the past few years. Today, many

different tools and techniques are used to produce high-

quality technical documentation. Some key trends and

practises currently considered state-of-the-art in DaC

include the following.

− Use of Markdown and other lightweight markup

languages: DaC often relies on storing documentation in

plain text files that can be version-controlled, reviewed,

and rendered as HTML, PDF, or other formats.

Markdown is a popular format for this purpose, as it is

easy to read and write and can be converted to other

formats using a variety of tools. The research presented in

this paper used Markedly Structured Text (MyST) [3]

Markdown flavor as the language of choice for

documenting technical information.

− Automated documentation generation: DaC often uses

tools and scripts to automatically generate documentation

from code, comments, tests, and other sources, such as

models or artifacts of design. This helps to ensure that

documentation is accurate and up-to-date with the code,

and can reduce the effort required to maintain it. This case

study utilised the Sphinx [4] framework for automated

code documentation generation as part of the continuous

delivery [5] process.

− Use of version control systems: DaC relies on version

control systems to manage and track changes to

documentation, just like code. This allows collaboration,

review, and rollback of changes, and enables the

traceability of documentation to specific versions of code.

This is one of the key enablers of the DaC, since it

ensures that all software development artifacts are stored

and released together. This greatly simplifies forensics

since reproducibility is embedded in the system design.

The research presented in this paper uses the Git version

control system for managing all relevant artifacts:

documentation, source code, tests, test results, and

configuration files.

− Use of model-driven development: DaC often uses

model-driven development (MDD) approaches, where

documentation is generated automatically from models of

the system, and the documentation is kept in sync with

the model, making it more accurate and up-to-date. In this

research, the C4 architecture model [6] has been used to

describe the system on various levels of abstraction:

system Context, Containers, Components, and Code.

− Adoption of DevOps practises to enable the continuous

delivery process [5]: DaC often follows the DevOps

principles, which emphasise continuous integration and

delivery, collaboration, and automation, enabling fast

feedback loops and transparency. This provides an

opportunity to react as soon as the problem occurs, which

makes it much cheaper and easier to resolve. More details

about the DevOps tooling landscape used in this research

are provided in Section III (“Processes and Tools”).

III. PROCESSES AND TOOLS

To make the most of the DaC approach in the automotive

industry, it is essential to have processes and tools in place

that support its use. This includes process guidelines, source

control systems, collaboration tools, and CI/CD servers,

used for managing documentation alongside code and other

artifacts. Automated methods should be used to generate

documentation from models of the system and to validate

various aspects of the generated documentation.

Furthermore, traceability and consistency between

requirements, design elements, source code, and tests is

vital, hence the need for a well-designed synergy between

processes and tools. Automation ensures that documentation

is accurate and up-to-date with changes in the system.

A. Processes

One of the conditions of the case study used in this

research was the Automotive SPICE (ASPICE) standard

Level 02 (managed process) requirements Fig. 1. ASPICE is

a process assessment model tailored to the automotive

industry. It is based on the ISO 15504 (SPICE) standard and

provides a structure to evaluate and enhance the software

development process in the automotive industry. ASPICE is

used in automobile system and software engineering to help

automotive suppliers meet the expectations of original

equipment manufacturers (OEM). In this research, it has

been utilised as the main process guideline/requirement for

the implementation of DaC.

The ASPICE process model and the V-model are two

widely used models in the automotive industry for software

development. The V-model is a graphical representation of

the development process, showing the relationships between

different stages such as requirements, design,

implementation, and testing. ASPICE provides

recommended practises and guidelines to assess the current

state of the software development process and identify areas

for improvement. When used together (Fig. 2), these two

models can help ensure that software development is

efficient, effective, and safe, thus improving the quality and

safety of software development in the automotive industry.

It is essential to note that in this research, feature teams

have been structured according to Agile Scrum practises. As

such, Sprint was the organisational cycle in which feature

teams arranged their work. The regular process would

assume that the Sprint planning feature team would agree

with the customer about the scope for the following Sprint,

62

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

using the System Architectural Design - SysAD (SYS.3) as

a Project backlog. Then the set of input requirements from

the SysAD is decomposed into User Stories. The User Story

would be viewed as a software requirement to be consistent

with ASPICE. Also, one User Story can be treated as an

Software Engineering (SWE) Group V-model package (Fig.

2). What that implies practically is that User Story cannot be

considered finished before all SWE.1-6 artifacts are created

or generated. To meet this quality requirement, and still be

agile, feature teams tailored User Stories so they can be

delivered in just one Sprint, by executing so-called micro-V

cycles. This is the place where DaC was a key empowering

factor and without which this dynamic would not be

possible, or it would be simply highly inefficient due to

context switching. Treating documentation as code one can

simply update what is necessary or create new content,

without leaving the integrated development environment

(IDE). These tasks should be considered alongside

functionality when tailoring and planning User Stories.

Using micro-V cycles, quality is embedded into the released

software ground up, brick by brick (Sprint by Sprint), where

User Story cannot be merged into the main branch if the

whole package (SWE.1-6) is not wrapped up.

It is worth noting that the OEM defines SysAD, but the

feature team can suggest modifications when they find a

better design or demonstrate that the existing one is not

feasible.

After going through several rounds of internal audits with

the Quality Assurance Department, the DaC implementation

used in this research, developed incrementally and

iteratively executing micro-V cycles, was found to meet all

the Base Practises set out for Software Engineering Group

Level 2. This was a significant achievement, as it reassured

management to adopt DaC practises throughout the

organisation.

Fig. 1. ASPICE five capability levels.

Fig. 2. Organisation of ASPICE V-model.

B. Tools

The DaC methodology involves using a range of tools to

facilitate different stages of the software development

process, including application lifecycle management (ALM)

to track progress, documentation generation for accurate and

up-to-date records, source control management to keep

versions organised, CI/CD for automated delivery, and

custom microtooling to streamline tasks. We used these

tools alongside an existing tool (Windchill) to ensure

63

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

backward compatibility with the exchange of requirements

using the ReqIF format (Fig. 3). This portion of the system

requires improvement both in the process and in the tools.

Fig. 3. Requirements exchange process between the OEM and the Tier 1

software supplier.

As can be seen from Fig. 3, the software development

process starts once input requirements have been received

from the customer in the ReqIF format, in the Windchill

tool. This is part of the legacy process, which is

unfortunately still part of the software lifecycle

management. The author of this study find this to be one of

the hindrances to Agile practises in the automotive industry,

and it is something that needs to be changed to optimise the

software development process and enable continuous

delivery. In reality, this step is not followed strictly, and the

feature teams find alternate means of communicating

directly with the customer and breaking down the problem,

rather than passing the ReqIF back and forth. Direct

communication with the customer should always be the

preferred process, rather than a workaround.

In this study, Jira was used as an application lifecycle

management (ALM) tool, but it was also used as a process

guideline. Since the proposed system was designed to be

team-focused to reduce context switching between different

tools and environments, it was observed that the ALM tool

could also be used as a process framework. Entities of the

ALM tool (Capabilities, Features, Epics, etc.) were used as

placeholders for the process definition in the form of a

Definition of Done (DoD). The DoD was versioned and

stored in the Git repository together with other artifacts.

When a feature team starts to work on a new Capability, it

will clone the template and the entire structure illustrated in

Fig. 4, which serves a dual purpose: artifact lifecycle

management and process guideline/framework. It should be

noted that Jira can be replaced by any other ALM tool, such

as Redmine, Codebeamer, Polarion, etc. Moreover, it is

important to recognise the clear relationship between the

structure shown in Fig. 4 and the SWE group in the ASPICE

V-model, Fig. 2. This is an example of how the process and

the tool can be combined to streamline the development

process and increase the chances of consistently following

the process.

Version control is a crucial component of the approach to

the DaC system. For this research, Git was the obvious

choice. It is a state-of-the-art version control system and a

reliable storage solution. This decision was made because

Git had successfully met the needs of versioning and storing

the only artifact that brings value to the customer - working

software. This strategy simplifies the whole continuous

delivery process. When all artifacts related to the release

process are stored and versioned in the same place, it

becomes much easier to perform automated validations by

the CI/CD server before delivering the software to

customers, resulting in a better quality of the final product

and higher customer satisfaction. Additionally, it is much

easier to perform forensics when bugs are found. By simply

checking out the released Git repository, all necessary

information is available for an investigation into the

particular release, including source code, test results,

architecture, etc. Furthermore, in this research, it has been

demonstrated that adopting a trunk-based development

approach [7] is essential for the continuous successful

delivery of artifacts, working software and documentation.

Continuous delivery [5] is a process that enables fast

feedback loops from customer to the feature teams. This is

essential for optimal steering of the software development

process and discovering problems in the early stage. Besides

the version control system, this CI/CD is the second most

important component of the proposed DaC system.

Automated builds were used to validate the code and

documentation, compile it, and run tests. Automated

deployments of documentation and software were also

performed. Automating these processes is essential to avoid

manual interventions and human errors. Automated builds,

tests, and deployments are the core components of a

continuous delivery pipeline, which can drastically improve

the quality of software and documentation delivered to

customers. In this research, the Jenkins CI/CD build server

has been used for both continuous delivery pipelines:

Software (see the figure in the following section) and

documentation.

64

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

Fig. 4. Jira as a process guideline.

The continuous delivery pipeline for DaC has been

divided into CI and CD pipelines to optimise the entire

process. The Documentation CI (see the figure in the

following section) pipeline is triggered on every pull request

(PR) update. Its primary purpose is to keep all architectural

diagrams up-to-date, as well as to serve as a quality

gatekeeper and to prevent broken diagrams, links, etc. from

being merged into the main branch.

Whenever a PR is merged to the main branch, the

Documentation CD pipeline (see the figure in the following

section) is launched. This pipeline performs additional

verifications, builds the documentation, and deploys the

documentation as a static website to the designated

documentation server.

The main reason for breaking the DaC continuous

delivery pipeline into two separate pipelines is execution

time. The DaC CI pipeline needs to be as fast as possible

(execution time <2 min), as it serves as a gatekeeper to

prevent PRs from merging if something goes wrong. On the

other hand, DaC CD pipeline does not need to be as

dynamic (execution time >30 min) since one can survive

with outdated documentation for a half hour.

The selection of a language for writing technical

documentation is an important part of DaC system design.

Markdown language [8] was chosen for this case study for

several reasons: it is lightweight and does not require any

prior knowledge, it is portable across different operating

systems and editors, it can be rendered directly in the Git

repository (GitHub, GitLab, BitBucket, etc.) and can be

used with Sphinx [4] to create consistent and well-structured

technical documentation from multiple Markdown files.

Sphinx has been established as the tool of preference for the

fabrication of technical documentation by many ventures

[9], such as one of the most notable of all time, Linux [10].

65

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

IV. DOCUMENTATION AS CODE - CASE STUDY

At the begginning of this section, let me first identify all

relevant documents (Fig. 5) and map them to SWE process

group (Fig. 2):

− SWE.1 - Software Requirement Document (SRD);

− SWE.2 - Software Architecture Document (SAD),

Platform Architecture Document (PAD);

− SWE.3 - Unit Design Document (UDD) - Generated;

− SWE.4 - Unit Test Specification (UTS), Unit Test

Results (UTR) - Generated;

− SWE.5 - Integration Test Specification (ITS),

Integration Test Results (ITR) - Generated;

− SWE.6 - Software Test Specification (STS), Software

Test Results (STR) - Generated.

Fig. 5. Documentation landscape compliant with the ASPICE SWE process group.

This research was conducted during a joint effort between

a Tier 1 software company and one of the largest German

OEMs. During such collaborations, the usual practise is to

have a Lastenheft and a Pflichtenheft. The first one, a

Lastenheft, is a customer input requirement presented in the

form of a SysAD (SYS.3, Fig. 2) or other documents. The

second, a Pflichtenheft, represents the specification that

describes in detail how the Tier 1 software will meet the

customer’s requirements (Lastenheft). The actual

implementation only begins after the customer has accepted

the Pflichtenheft. In this context, Pflichtenheft is directly

connected with two layers (out of three) of the ASPICE

Software engineering group, SWE.1 and SWE.2,

consequently with three documents: SRD, PAD, and SAD.

As one can notice, these are the only three documents

created manually from the entire documentation landscape

(Fig. 5). Also, it can be inferred that these three documents

(SRD, PAD, and SAD) must always be up-to-date and

consistent with the implementation, but also accessible by

Tear 1 and OEM to communicate efficiently. For this

purpose, it has enabled access to Pflichtenheft (SRD, PAD,

and SAD) on the documentation server, through the VPN

channel, so the customer can access these documents in real

time and discuss them with feature teams. This close

feedback loop on the documentation level is important since

it gives confidence to both Tier 1 and the customer about

problem identification and some design choices. It is

important to emphasise that a second feedback loop is

established once working software is delivered to a

production-like environment. Afterward, the next iteration

loop can begin, Pflichtenheft is adjusted according to new

learnings, and the source code is updated accordingly.

Without the DaC efficient dynamic of this iteration, the loop

would not be feasible, and it would be much harder to

maintain pace and consistency between the upfront design,

established in SRD, PAD, and SRD, and the

implementation. This conclusion has been derived from the

comparative analysis between the case study used in this

research, where the DaC system approach has been widely

adopted, and other projects within the same company, where

66

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

the traditional exchange format between Tier 1 and OEM

has been performed using ReqIF files (Fig. 2). This is one

example where the DaC systematic approach has an

immense auspicious influence on the dynamic of the

software development process, materialised through the fast

feedback loop between the feature team and the customer.

This enables incremental and iterative software development

processes that usually lead to optimal solutions by any

means.

The discipline required to maintain consistency between

software specifications, upfront design, and implementation

can be difficult to maintain. Tools and processes that

facilitate and motivate feature teams during software

development to be diligent were the main drivers behind the

research described in this paper. First, it is important to

make documentation a habit. To do this, documentation

should be attractive and easy to create [11]. As feature teams

are responsible for creating technical documentation and

like to code, providing them with the opportunity to “code”

documentation felt like a natural choice. Also, the process of

creating documentation can be done in the same integrated

development environment (IDE), using the same tools. This

reduces context switching (performance killer) and

ineffective (extraneous) cognitive load.

There are three types of cognitive load [12]: intrinsic,

extraneous, and germane cognitive load. In terms of writing

documentation, the intrinsic cognitive load could be

knowing the syntax of the language to represent the data.

Extraneous cognitive load might be instructions on how to

manage documentation files in the third-party document

management system. Germane’s cognitive load is the only

one related to intellectual activities that generate actual

value, the documentation content. According to cognitive

load theory [13], one should “encourage learner activities

that optimise intellectual performance”. Thus, DaC system

approach has been designed as a function that minimises the

intrinsic and extraneous working memory footprint and

amplifies the germane cognitive load.

Intrinsic cognitive load has been minimised by selecting a

simple Markdown language as a choice for writing

documentation. It is something closest to plain text, and

therefore it does not require almost any mental effort to

express yourself.

The extraneous cognitive load has been reduced by

providing feature teams with the opportunity to work on

technical documentation without leaving the familiar

working environment (IDE), reviewing, storing, and

versioning the documentation next to the source code (on

the Git repository), and automating documentation

verification, build, and deployment.

The germane cognitive load refers to the effort needed to

create a lasting storage of information. In DaC context, it is

related to creating documentation that fulfils its purpose and

brings value to the users: feature teams, customers, etc.

Documentation can bring some value only if it is consistent

with the source code. Reviewing, storing, and versioning

documentation with the source code (and other relevant

artifacts) increases the chances for consistency, thus

maximising the value produced by engaged germane

cognitive load.

Cognitive load can also be directly related to accidental

and essential complexity [14]. Accidental complexity could

be processes and third-party tools introduced to “facilitate”

documentation management, but instead creates unnecessary

extraneous cognitive load; therefore, it should be removed.

Essential complexity might be the process of creating

consistent usable content through the participation of

germane cognitive load.

Besides making a software development-centric

documentation creation environment that motivates feature

teams to write better documentation more often, there

should be also some sort of gating mechanism and

protection against undesired behaviour, like introducing

broken links, inconsistencies, etc. An important concept that

helps detect inconsistencies between implementation and

documentation is traceability.

This research highlighted the important concept of

traceability, which was explored and established through

multiple levels and perspectives. The DaC system was of

particular interest to the ASPICE auditors, prompting a

careful design of its components. The first perspective of

traceability has been established through the use of the ALM

tool, which groupes related artifacts into a package called

“User Story”. A single input requirement can be

decomposed into multiple User Stories that can be

interlinked and even share some development content, but

each Story contains all the related artifacts necessary to

deliver the Story in the form of a micro-V model increment.

Another aspect of traceability is established through the

branching strategy process. Although trunk-based

development is promoted as the overall branching strategy,

short-lived branches are allowed. The strategy is simple:

when one starts to work on a particular subtask (SRD, SAD,

etc.), it creates a branch. Since one Story should be

completed within a two-week cycle (a Sprint), branches

should not have a lifespan longer than that (ideally, no more

than a couple of days). It was also instructed to merge at

least once a day to avoid merge conflicts and integration

problems. This aspect of traceability is important for top-

down analysis, as one can easily trace related work in the

form of a branch by following User Stories and decomposed

micro-V model subtasks. Each subtask should contain the

link to the branch and related Pull Request where the review

process occured.

Another perspective of traceability has been achieved

more in the DaC spirit through the source code (software

and documentation). The idea behind this concept was

simple: one should leave a piece of evidence in the source

code (software and documentation) in the form of a User

Story ID (generated by the ALM tool) wherever some work

related to that Story occurred: decomposition in the (SRD),

architectural design (SAD), writing implementation (source

code), tests, etc. This is convenient from a development

perspective since one can simply search for the Story ID in

the IDE and all related micro-V model artifacts (SRD, SAD,

source code, tests, etc.) will appear. If necessary, those can

be changed, and afterward, Pull Request should be created

where the review process is initiated. This is also convenient

for the official ASPICE audit process, since it is

straightforward to find all the evidence by searching the Git

repository.

From the user’s point of view, a top-down traceability

67

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

analysis can be performed using the ALM tool or bottom-up

by searching for the Story ID in the Git repository.

Furthermore, an automated gating system could be

integrated into the PR handler to prevent merging the User

Story into the main branch if artifacts from the micro-V

model are missing, thus ensuring the releasable state of the

main branch is maintained at all times. At the time of this

research, the automated gating system was still under

development, so the review process was the only way to

prevent this behaviour. The traceability graph builder was

developed as a prerequisite for this automation, so the next

step would be to integrate the gating system into the PR

handler.

This research was motivated by the fact that software

development is a relatively new engineering discipline

(especially in the automotive industry) and there are many

conflicting views on the proper software development

processes. From conventional automotive waterfall

processes, which heavily emphasise upfront design, to Agile

development techniques that question the need for

documentation and prior design. The design of the DaC

system, described in this paper, attempts to close this gap by

providing some useful recommendations, so feature teams

can promote technical excellence through lean software

development practises and comply with automotive

standards.

A. Requirements as Code - Executable Specifications

Historically, in the automotive industry, requirements

elicitation has been a continuous process of clarifying the

scope of the work that needs to be done between the

customer and Tear 1 software supplier (Fig. 6). In practise,

this usually means that the Agile principle “customer

collaboration over contract negotiation” is neglected, and

the “contract game” occurs by throwing files in the

requirement interchange format (ReqIF) files over fence.

Fig. 6. Requirements elicitation process between Tier 1 and OEM.

The author of this research found this process to be a relic

of the past and something that needs to be replaced with

direct collaboration between customer and feature teams.

Writing good software requirements was never an easy task.

This research adopted some practises proposed by the

behaviour-driven development (BDD) methodology to

explore alternatives to the traditional approach and improve

the process of defining the problem that needs to be

resolved.

BDD is a software development methodology that

emphasises the collaboration between developers, testers,

and stakeholders to define and understand the behaviour of a

system. It is an extension of test-driven development (TDD)

and emphasises the use of natural language and examples to

describe the desired behaviour of the system.

BDD uses a specific syntax called “Gherkin” to describe

the behaviour of a system in terms of User Stories and

related scenarios (executable specifications), which are

specific examples of how the system should behave in a

certain context. These scenarios are written in a natural

language format, making it easier for stakeholders to

understand and provide feedback.

The BDD process starts with the stakeholders defining the

acceptance criteria/test [15] for the system in the form of

scenarios (SWE.1, Fig. 2). These scenarios are then used as

a basis for writing automated tests (SWE.6, Fig. 2), which

are used to ensure that the system behaves as expected.

Developers then implement the system and run automated

tests to ensure that the system behaves as described by the

scenarios.

BDD is often used in conjunction with Agile development

methodologies, such as Scrum, and emphasises the

importance of continuous testing and feedback to improve

the quality of the system.

Overall, BDD is a methodology that helps to ensure that

the system is developed to meet the needs of stakeholders by

fostering collaboration between the different roles involved

in the development process and providing a clear and

common understanding of the behaviour of the system.

In this research, feature teams have used the SRD

template [16] to decompose input requirements (SYS.3, Fig.

2) into User Stories and scenarios. SRD is then stored and

versioned on the Git repository, in addition to the source

code, the software architecture, and other relevant artifacts.

68

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

This is important to emphasise because, with this file

organisation, it is easy to change User Stories and scenarios

from the same IDE, and perform baselining with the same

tool (Git) for the whole micro-V model package. This setup

enables the incremental and iterative modus operandi

between feature teams and customers.

B. Architecture as Code

One of the major challenges during system (software)

design is managing complexity. This has an immense

influence on the maintainability of the system since

complexity is what makes software hard to change. Major

complexity inceptions are irreversible design decisions and

all workarounds that follow. To avoid this and reduce

accidental complexity, creating software architecture for

such a complex system should be an iterative process [17] in

close collaboration with various stakeholders. The most

important quality attribute of the software architecture

becomes how easily it can be changed.

“First make the change easy (warning: this might be

hard), then make the easy change” - Kent Beck.

In modern software development practises, creating

software architecture is a continuous collaborative process

between various stakeholders. Conway’s law [18] teaches us

that the organisational team structure represents a blueprint

when it comes to crafting system (software) architecture and

that organisations that recognise this have more chances to

succeed [12]. When creating a new system, organisations

can apply inverse Conway law manoeuvre, and organise

teams in the such constellation to achieve desired system

architecture. As one can notice, management of the

company becomes a system architect, or at least an

influencer, through the creation of teams organisation. This

becomes inevitably a large upfront design that is so loathed

by the Agile community. Communication between

management and feature teams becomes imperative to create

an optimal system design; therefore, “there is no silver

bullet” solution when it comes to crafting such a design.

There have been many attempts in the past to create

graphical, drag and drop, and non-code environments for

crafting a system/software architecture. The problem is not

to create a such graphical environment that can enable non-

technical people to drag and drop software elements, make

some connections, and then generate some code out of it.

The problem is the maintenance of such a product

(system/software architecture): How to establish efficient

and sustainable round-trip between these graphical design

elements and the source code? When design changes, how

do we integrate generated source code with the existing code

base? When the code base is changed, how and when to

update the graphical representation? Many organisations

abandoned the first part (to generate code out of graphical

elements), but kept only the second, to regularly update the

graphical representation of the code base to ensure

consistency. Similarly, as in the rest of the documentation

the main enabler to maintain consistency between

architectural design and the source code was to make it

attractive and easy to change to become a regular habit [11],

as well as to make it functional and integral part of the

software development cycle.

The role of a software architect has evolved from being

the mastermind of system design to being a feature team

facilitator and teacher. Now, crafting software architecture is

a team activity. To make architectural work more engaging

for software developers, the obvious choice is to make it

more coding-like. The same conclusion applies when it

comes to making the architecture easy to change

operationally and functionally. Software engineers like to

develop software, so providing them an opportunity to craft

architecture in the same manner and using the same working

environment increases the chances that the team will treat it

equally to source code and keep it consistent. Text is the

most powerful abstraction. There were many attempts in the

past to create an architectural language like ADL,

ArchiMate, ABACUS, etc. In the automotive community,

the foundation “Genivi” defined Franca as the interface

definition language (IDL) and Franca+ as an extension that

enabled a language-based modelling approach for

AUTOSAR environments [19]. The main advantage of this

approach is that it provides a mechanism to automate source

code generation from the model using the CI infrastructure

and thus ensuring consistency between the model, source

code, and configuration files all the time. A similar approach

has been taken in this research, where it has been developed

in-house domain-specific language (DSL) based on textX

framework to model the AUTOSAR environment at the

code level (Level 4, [6]).

In addition to generating the source code from the model,

the main purpose of the software architecture is to tell the

story of the software [6]. This is important because it

exposes the internal structure (static architecture) and

behaviour (dynamic architecture) of the system and prevents

inceptions of accidental complexity to crawl into the design

and make software architecture more difficult to change. In

this research, the C4 model [6] has been used to present

architecture on four levels of abstraction: System Context,

Containers, Components, and Code. As it has been

mentioned, the Code level has been modelled using custom

DSL to generate AUTOSAR arxml model and source code.

Three other levels have been modelled using the PlantUML

[20] language and the extension of the C4 model [21] (the

same language that was used in this paper to create figures).

During this research, PlantUML files were stored and

versioned in the Git repository along with the source code

and other artifacts. The output of the PlantUML are svg

images that are referenced in the software architecture

document (SAD). These images are updated by the CI

process (Fig. 8) on every Pull Request. Also, one interesting

feature of the PlantUML language is that its support

includes preprocessing directives, enabling the reusability of

PlantUML elements and the creation of composite diagrams.

Quality Gate CI pipeline (see the figure at the end of this

section) ensures that broken diagrams cannot merge into the

main branch.

In this research, the arc42 [22] SAD template [23] has

been used to document software architecture. The fifth part

of the SAD, known as the “Building Block View”, is where

the C4 model should be described in detail.

C. Unit Detail Design as Code

Test-driven development (TDD) [24] is an effective

software development process that serves primarily as a

69

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

design technique. It helps to create code that is reliable and

easy to change (maintain). The TDD process involves

writing tests before coding, so that one can be sure that the

code works as expected. The usual TDD cycle includes the

following:

1. Writing test that fails - RED;

2. Writing implementation that makes the test pass -

GREEN;

3. Removing duplications and increasing quality -

REFACTOR.

Writing the test first has an immense impact on the

quality of the source code design. Implementation created

this way is written with testability in mind. TDD represents

the most powerful mechanism to manage the main software

quality properties, such as modularity, cohesion, separation

of concerns, abstraction, and coupling management [17].

This mechanism is established through an instant feedback

loop in the form of writing tests. If it becomes too hard to

write the test for a certain piece of functionality, due to

many different reasons, like the setup is too complex, etc., it

might be a good point in time to revisit the design. This

instant feedback helps to manage the complexity of the

system being built. Also, it gives confidence to the feature

team to perform source code refactoring more often.

The tests for our software should be understandable,

maintainable, repeatable, atomic, necessary, granular, and

fast. They should be focused on the behaviour of the system

rather than a specific implementation and should be easy to

change while remaining true to the system. They should be

deterministic and provide the same result every time they

run. Tests should be isolated and focus on a single outcome

and must be necessary to guide our development choices.

They should be small, simple, and focused and provide a

clear pass/fail result without needing interpretation. Lastly,

they should serve as a tool to guide our development.

When the feature team utilises TDD as a routine and

writes tests according to the guidelines written above, then

those tests become Unit Detail Design (SWE.3, Fig. 2) and

validation (SWE.4, Fig. 2). In this research, not all teams

have followed TDD practises, but those who did, used tests

produced this way for SWE.3 and SWE.4. The tests have

been stored and versioned in the Git repository along with

the validated source code.

D. Testing, Validation, and Verification

Testing, validation, and verification are usually connected

with the right side of the V-model (Fig. 2). In this research,

micro-V iterative loops have been executed throughout

regular development cycles daily, including the right side

(Fig. 7). During this research, two different testing,

validation, and verification contexts were performed, both

automated as part of the CI loop: testing, validation, and

verification of the software that is developed (Fig. 7) and of

technical documentation that is being produced along the

way (Fig. 8).

During this research, testing of the software has been

performed on three levels (Fig. 2):

1. SWE.6 Software Qualification tests - Acceptance tests

(executable specifications) are developed as part of the

BDD process of defining acceptance scenarios using

Gherkin syntax (for each User Story), before any

development activity. These tests (executable

specifications) validate the expected behaviour of the

software at the highest level of abstraction. There is no

need for additional tests on this level. The direct

advantage of Requirements as Code approach.

2. SWE.5 Integration tests - Generated from the DSL

architectural model, using the integration test framework

developed for that purpose. This has been enabled by

treating Architecture as Code. These tests verify that the

specification of the architecture model is met

(interconnections between software components),

therefore ensuring consistency between software

architecture and implementation.

3. SWE.4 Unit Validation tests - Developed through

practising TDD, before implementation, following the

red, green, and refactor cycle. These tests validate the

behaviour of software units at the lowest level of

abstraction. There is no need for additional test

development in addition to this, which is a direct

consequence of Unit Detail Design as Code approach and

following TDD methodology.

This CI/CD pipeline (Fig. 8) is triggered on every PR

update. Upon the completion of each execution, test results

at all three levels are documented in the Jenkins job and

uploaded to the Git repository, thus creating a historical

record and ensuring transparency at all times. PRs that do

not pass all stages in the CI/CD pipeline (Fig. 8), are marked

as unapproved by the system builder and cannot be merged

to the main branch before being fixed, thus establishing a

direct feedback loop towards the PR author.

Establishing and maintaining consistent technical

documentation is a difficult task, which requires the

implementation of systematic remedies to ensure its

successful implementation. In the case of the DaC approach,

the validation and verification of documentation are

conferred to CI Fig. 8 and CD Fig. 9 pipelines.

To ensure consistency of PlantUML files and software

architecture, on each PR all diagrams are regenerated, and

updated svg files are automatically pushed to the Git

repository. Consequently, all references to architectural

diagrams (svgs) in the documentation are updated, thus

keeping SAD up-to-date. Tedious and error-prone manual

processes of generating svgs have been delegated to the CI

pipeline, thus offloading feature teams of such activity and

making more room for participation of germane cognitive

load. To optimise the execution time of the CI pipeline (Fig.

8), only modified Markdown files from the PR that triggered

pipeline execution are verified. If all stages pass, PR is

approved by the system builder; otherwise, it is marked as

unapproved, and cannot be merged into the main branch,

until the pipeline is green.

The CD pipeline (Fig. 9) is triggered by merging to the

main branch. It performs additional checks on the entire

documentation landscape, not just files modified by the PR.

If this stage passes, documentation is built with the Sphinx

[4] and deployed to a dedicated documentation server. It

might happen that some changes have been merged to the

main branch before the issue has been discovered on the

documentation deployment pipeline. That will prevent

deployment of the latest changes but still keep

documentation in a consistent state, slightly outdated but

70

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

consistent. The PR creators will be automatically notified to

fix the issue. Taking into consideration the dynamic of

merging changes multiple times per day (and fixing such

issues), it has been decided that this trade-off is acceptable.

It is much more important to establish fast feedback loop on

the CI pipeline, rather than to be bulletproof. Issues that are

missed by the CI are caught by the CD pipeline. The study

has shown that these issues rarely occur and establishing a

fast feedback loop on the PR is of utmost necessity.

Fig. 7. Continuous delivery pipeline for software.

Fig. 8. Documentation as Code Continuous Integration pipeline.

Fig. 9. Documentation as Code Continuous Deployment pipeline.

V. RESULTS AND DISCUSSION

Stability and Throughput are the only two measures that

could be used to evaluate changes applied to processes,

tools, technology, etc. [17], [25]. When we change a process

(or whatever), we can measure the impact of this change on

either of these two measures and steer changes accordingly.

Stability was tracked during the research as one of the key

metrics, measured by the number of defects reported. The

results revealed interesting findings. The blue bars depicted

in Fig. 10 represent the defects reported during the research

in 2022 when the DaC approach was applied, while the red

bars represent the number of defects reported in the legacy

project in 2020. To make the comparison more meaningful,

data were collected during the same phase of the projects

and the customer was not changed. The same feature teams

were mostly involved in both projects, with the only

difference being the software development methodology. In

the project where the DaC approach was applied, 35 %

fewer defects were reported on average than in the project

where legacy processes and tools were utilised. This number

is quite similar and comparable to the results of different

studies [26], [27], where the impact of the test-first approach

(TDD) on defect reduction ranged from 40 %. In another

study [25], it was measured that feature teams that employed

techniques like those presented in this paper (BDD, TDD,

Continuous Delivery, etc.) spent 44 % more time

performing useful tasks.

In addition to the reported defects, Fig. 10 shows

additional useful data on the Throughput and the effects of

continuous and disruptive delivery processes on the reported

defects. It is important to note that this was one of the main

philosophical/process-based differences between the two

projects observed in the case study. Throughput in the DaC

Project was managed through continuous delivery, whilst in

the Legacy Project it was disruptive. The three red peaks in

Fig. 10 indicate the number of reported defects just after

disruptive delivery occurred. In the case of the DaC Project,

Fig. 10 shows a linear progression in the number of reported

defects. This is expected due to the continuous delivery

process and the fact that the number of delivered lines of

code (LOC) increased over time, but the ratio

[defect]/[LOC] remained constant.

The interesting statistic can be derived from the

documentation repository (Fig. 11). The statistic provides

71

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

data on the number of commits per month related to the DaC

approach during the research. In the first couple of months,

the whole infrastructure was created, and feature teams were

onboarded. Afterward, there was a steady influx of commits

per month related to the creation of technical documentation

(executable specifications, architecture, unit design, etc.).

When comparing this statistic to the almost non-existent

documentation from the Legacy Project, a direct correlation

can be made between treating documentation as a first-class

citizen (DaC) (Fig. 11) and a reduced number of reported

defects (Fig. 10).

Fig. 10. Stability measured throughout the first year of the Project.

Fig. 11. Statistics of the documentation repository (commits per month).

The cumulative flow diagram in Fig. 12 shows a snapshot

of Throughput during the research. It indicates that 1629

subtasks related to the micro-V model (Fig. 4)

(Story[container]) were completed within three months. In

particular, 184 User Stories were delivered across five

different features over the same period, averaging six Stories

per Sprint. This high pace was made possible by tailoring

the User Stories to include both implementation and

documentation.

Fig. 12. Release cumulative flow chart.

The DaC approach has enabled a high-paced Throughput,

by providing feature teams an opportunity to work on all

micro-V model artifacts in a single working environment for

software and documentation development. In DaC approach,

documentation is treated equally as important to source code

and delivered together, whereas in other (legacy) projects it

was usually done at the end of the project lifecycle. This has

a significant negative impact on the quality of the delivered

software (Fig. 10), since if documentation is treated

separately from implementation, it usually means that

design decisions were taken ad hoc and not communicated

properly to other stakeholders. This can lead to a suboptimal

system architecture that is difficult to change, negatively

impacting the maintainability of the system and other

quality attributes.

When comparing state-of-the-art automotive software

development practises and our approach that introduces

DaC, in terms of quality and efficiency of a delivered

product, there are several points to consider.

Process improvement: ASPICE provides a process

framework, a set of recommended practises and guidelines

for software development, testing, maintenance, etc. to

improve the efficiency of the software development process.

It emphasises that processes should fulfil their purpose,

make sense, and bring value to the user. The DaC approach

brings process improvement by removing waste embodied

in processes and third-party tool overhead, significantly

reducing context switching, and improving performance.

The working environment and processes have been designed

to be software development-centric, adjusted to the only

stakeholders in the entire system that generate actual value

for the customer. This has an auspicious impact on quality

since feature teams treat documentation as code and keep it

consistent with implementation. Up-front design

(Architecture as Code) and testability of the system

(executable specifications, and UDD as code) became

highly integrated and important software development

properties in the DaC approach.

Collaboration improvement: The DaC focusses on

improving collaboration and accessibility of the

documentation to all relevant stakeholders, as well as

facilitating inter- and intra-team communication. By treating

DaC, developers can work on the documentation in parallel

with the codebase, which increases the efficiency of the

development process. All important design decisions are

communicated through the regular Pull Requests review

process (intra-team), leaving a historical record as evidence

of evolutionary design. When it comes to cross-cutting

decisions affecting multiple domains (feature teams), the

DaC approach resolves this systematically by utilising the

Git Codeownership mechanism. Improved collaboration and

communication prevent accidental complexity from

creeping into the design, making architecture more flexible.

Traceability: The DaC approach allows for better

traceability of the documentation, as it is stored in version

control systems and can be easily linked to the codebase. All

micro-V model artifacts are traceable from different

perspectives. Most importantly, software developers can

search for a Story ID and find all relevant micro-V model

artifacts in the working environment, making it convenient

for updates and reviews, thus increasing the chances of

consistency between implementation and technical

documentation.

Automation: The DaC approach makes it easier to

automate the documentation process, such as building and

72

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

continuously deploying the documentation, which is a

prerequisite for continuous delivery. Multiple CI/CD

pipelines ensure direct feedback loops between feature

teams and quality gateways, thus providing a safe

environment for experimentation and learning, which is

essential for software engineering and finding optimal

solutions. Thousands of tests are automatically executed on

every pull request update to prevent undesired behaviour of

the system.

Maintainability: By treating DaC, it is much easier to

maintain the documentation and the source code, since they

are both stored in the same version control system side-by-

side. This quality attribute is tightly coupled with the ability

to change, which is one of the hallmarks of good

architecture. Additionally, using a single version control

system simplifies the release process since the entire

package (functionality and documentation) can be bundled,

tagged, and released together. This also simplifies

reproducibility: one can simply check out the released

package and all the relevant artifacts are present, including

source code, architecture, executable specifications

(acceptance tests), test results, etc.

Testability: The DaC approach is all about managing

complexity and creating flexible architectures that are easy

to change. In complex system environments, it is impossible

to make exact predictions about the impact of even trivial

changes on the overall behaviour of the system. Therefore, it

is necessary to have a different set of tests that can either

confirm or discard our predictions about the behaviour of

the system after a new feature is added or a single line of

code is changed. There is no agility without testability. The

DaC integrates behaviour-driven development (BDD) and

test-driven development (TDD) methodologies, where

software is designed through writing tests first and

implementation second, ensuring the system’s testability at

all times throughout the process at both high (BDD) and low

(TDD) levels. Mid-level testability is covered with

generated integration tests from the architecture model

developed using the Architecture as Code tool set.

Reusability: In the DaC approach, reusability is not

considered a must-have under any circumstances. This

property is closely related to the Don’t Repeat Yourself

(DRY) and Single Responsibility principles. Software

components are reused only when it is obvious that the

reused elements will run in the same problem domain.

However, in complex system environments, what is initially

obvious can turn out to be untrue. This analysis begins with

the BDD and continues through Architecture as Code until

TDD. All three levels of support include (reuse element)

preprocessing directives, so operational support is given by

design. However, it is more important to decide when to

reuse for optimal system design.

Accessibility: This is an important aspect of

documentation, which DaC approach resolves twofold. First,

documentation is embedded directly in the repository close

to the source code and other development artifacts, which

means that it is accessible within the integrated development

environment. This eliminates the need to leave the working

environment to access the most up-to-date documentation.

Second, documentation is continuously deployed to the

server, ensuring it is kept up-to-date and accessible to

everyone with the link and necessary project access rights.

Transparency is one of the three pillars of empiricism,

alongside adaptation and inspection, which are ubiquitous in

the DaC environment. The main infrastructures that enable

transparency in DaC approach are Pull Requests and CI/CD

pipelines. However, it is the content that is continuously

filled in following the DaC methodology that makes the

difference. Thousands of tests are executed on all levels for

each PR update, and results are published on the CI server

as well as in the repository, making test reports transparent

from several perspectives. Transparency is also omnipresent

in the ALM project structure (Fig. 4), which is important for

the MAN process group, Fig. 2. Cumulative flow diagram

(Fig. 12) and various other metrics are generated from the

ALM structure (Fig. 4), providing insight into the statuses of

different user stories and release health checks.

This research was inspired by the idea of continuous and

never-ending improvement (Kaizen [28]) of processes and

tools to produce better quality software faster [17]. In DaC

methodology, quality is built ground up, brick by brick

(micro-V cycle by micro-V cycle), through incremental and

iterative cycles. This idea was based on the philosophy of

W. Edwards Deming, the father of quality, which suggested

that organisations that prioritize improving quality will see a

decrease in costs, whereas those that prioritize cost-cutting

will inherently reduce quality and end up incurring higher

costs [29].

“Inspection to improve quality is too late, ineffective,

costly. Quality comes not from inspection, but from the

improvement of the production process.” - W. Edwards

Deming, Out of the Crisis [30].

VI. CONCLUSIONS

It has been demonstrated that the DaC approach enhances

the Stability (quality) and Throughput (efficiency) of the

software development project. DaC improves

documentation collaboration and accessibility, making it

easier to create and maintain. Furthermore, DaC promotes

the testability of the system as imperative, employing

behaviour-driven development (BDD) and test-driven

development (TDD) methodologies.

This research has demonstrated that the DaC approach is

feasible even in an area such as automotive, which is highly

dependent on consistent documentation. It has elucidated the

advantageous effects of the DaC approach and how to

ensure consistent and up-to-date technical documentation

throughout the project lifecycle management. The major

conclusion from this research is that when the task of

writing documentation is made attractive and easy, feature

teams will regularly update it and keep it consistent. The

DaC approach aims to achieve this by adjusting processes

and tools to be software development-centric.

Processes and tools should be designed and selected to

facilitate creativity and enjoyment during documentation

crafting, just as when writing code, ideally in the same

working environment. This research offered many

incentives for this conclusion on different levels and

perspectives.

When writing Requirements as Code (executable

specifications) using BDD methodology, such requirements

become tightly coupled to the behaviour of the system (not

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

the implementation details). One side effect is full

requirement coverage with acceptance tests.

Architecture as Code provides multiple opportunities for a

feature team to express their creativity when designing

architecture through the activity they enjoy the most -

writing code. The software architecture created in this way

can be used as a model from which source code and

integration tests can be generated. One side effect is

complete interconnection coverage with generated

integration tests.

Applying a test-first approach (TDD methodology),

feature teams have the opportunity to design software units

from the perspective of the user, thus establishing a direct

feedback loop between the design and the customer. One

side effect is full source code coverage with unit design

tests.

This research has provided practical guidelines for the

DaC approach. It has been demonstrated that treating all

relevant documentation artifacts as source code using the

same tools and working environment can have beneficial

effects on consistency and software project management.

However, it is important to emphasise that the DaC

approach presented in this paper does not represent a final

solution set in stone, but rather a solid practical process and

tool framework for the execution of software projects that

embrace and facilitate the philosophy of continual,

incremental, and iterative improvements, with feature teams

at its focal point as organisational stem cells.

In the DaC approach, the testability of the system is

considered one of the most important quality properties. Fast

feedback loops embodied in CI/CD are seen as the most

effective mechanisms for creating a consistent system that

features teams can confidently reshape and refactor, as well

as incrementally add new features and iteratively refine

toward optimal solutions. This is essential to manage

complexity and control variables during development or

forensic analysis. Being always close to a safe spot when

experimenting and learning is liberating. This is exactly

what test coverage, CI/CD feedback loops, and version

control systems provide when implemented properly. With

every git commit deployed, authors get a genuine sense of

continual and incremental improvement of the system. This

is such a powerful psychological mechanism that

encourages people to commit small and frequent. The author

of the research is firmly convinced, based on empirical

evidence, in the described approach and has even crafted

this paper [31] using the same principles.

ACKNOWLEDGMENT

I express my deepest gratitude to my colleague (and

brother-in-law), Dr. Svetozar Miucin, for his invaluable

guidance and support throughout this research project. I am

also grateful to my colleagues, Dr. Branislav Kordic and

Dimitrije Stojanovic, for their helpful comments and

suggestions. Furthermore, I am sincerely thankful to SVP

Dr. Nemanja Lukic for his selfless support, without which

this research would not have been possible. Lastly, I cannot

express enough appreciation to overall PM Dr. Nenad Cetic

for his invaluable contribution to my professional career

(and this research).

CONFLICTS OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES

[1] K. Hoermann, M. Mueller, L. Dittmann, and J. Zimmer, Automotive

SPICE in Practice: Surviving Interpretation and Assessment. Rocky

Nook, 2008. [Online]. Available:

https://books.google.de/books?id=7wcoAQAAMAAJ

[2] ASPICE Guide. [Online]. Available:

https://knuevenermackert.com/wp-content/uploads/2021/03/ASPICE-

Guide-KM2021-01.pdf

[3] “MyST - markedly structured text - parser”. [Online]. Available:

https://myst-parser.readthedocs.io/en/latest/

[4] “Welcome” - Sphinx Documentation, Sphinx Python Documentation

Generator. [Online]. Available: https://www.sphinx-

doc.org/en/master/

[5] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation, 1st ed.

Addison-Wesley Professional, 2010.

[6] “The C4 model for visualising software architecture: Context,

Containers, Components, and Code”. [Online]. Available:

https://c4model.com/

[7] “Trunk Based Development: Introduction”. [Online]. Available:

https://trunkbaseddevelopment.com/

[8] Markdown Guide. [Online]. Available:

https://www.markdownguide.org/

[9] Sphinx examples. [Online]. Available: https://www.sphinx-

doc.org/en/master/examples.html

[10] Linux technical documentation. [Online]. Available:

https://www.kernel.org/doc/html/v4.10/index.html

[11] J. Clear, Atomic Habits: Tiny Changes, Remarkable Results: An Easy

& Proven Way to Build Good Habits & Break Bad Ones, 1st ed.

Avery, an imprint of Penguin Random House Business, New York,

2018.

[12] M. Skelton, M. Pais, and R. Malan, Team Topologies: Organizing

Business and Technology Teams for Fast Flow. IT Revolution Press,

2019. [Online]. Available:

https://books.google.de/books?id=oFdRuAEACAAJ

[13] J. Sweller, J. J. G. van Merrienboer, and F. G. W C. Paas, “Cognitive

architecture and instructional design”, Educational Psychology

Review, vol. 10, pp. 251–296, 1998. DOI:

10.1023/A:1022193728205.

[14] Brooks, “No silver bullet: Essence and accidents of software

engineering”, Computer, vol. 20, no. 4, pp. 10–19, 1987. DOI:

10.1109/MC.1987.1663532.

[15] S. Freeman and N. Pryce, Growing Object-Oriented Software, Guided

by Tests. Pearson Education, 2009. Available:

https://books.google.de/books?id=QJA3dM8Uix0C

[16] SRD template. [Online]. Available:

https://gitlab.com/labsoftdev/docs-as-code/-

/blob/main/templates/micro-V/Requirements/SRD-

Requirement_Template.md

[17] D. Farley, Modern Software Engineering: Doing what Works to Build

Better Software Faster. Addison Wesley, 2021. [Online]. Available:

https://books.google.de/books?id=ZKxHzgEACAAJ

[18] M. E. Conway, “How Do Committees Invent?”, Datamation, pp. 28–

31, 1968. [Online]. Available:

http://www.melconway.com/Home/pdf/committees.pdf

[19] S. Schlichthaerle, K. Becker, and S. Sperber, “A domain-specific

language based architecture modeling approach for safety critical

automotive software systems”, in Proc. of CEUR Workshop, 2020, pp.

1–6.

[20] PlantUML. [online]. Available: https://plantuml.com/

[21] PlantUML C4. [Online]. Available: https://github.com/plantuml-

stdlib/C4-PlantUML

[22] “arc42”. [Online]. Available: https://arc42.org/

[23] SAD template. [Online]. Available:

https://gitlab.com/labsoftdev/docs-as-code/-

/blob/main/templates/micro-V/Architecture/SAD-

Software_Architecture_Document.md

[24] K. Beck, Test-Driven Development: By Example. Addison-Wesley

Professional, 2003. [Online]. Available:

https://books.google.de/books?id=CUlsAQAAQBAJ

[25] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science Behind

DevOps: Building and Scaling High Performing Technology

Organizations. IT Revolution, 2018. [Online] Available:

https://books.google.de/books?id=85XHAQAACAAJ

74

https://knuevenermackert.com/wp-content/uploads/2021/03/ASPICE-Guide-KM2021-01.pdf
https://knuevenermackert.com/wp-content/uploads/2021/03/ASPICE-Guide-KM2021-01.pdf

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 4, 2023

[26] L. Williams, E. M. Maximilien, and M. Vouk, “Test-driven

development as a defect-reduction practice”, in Proc. of 14th

International Symposium on Software Reliability Engineering, 2003.

ISSRE 2003., 2003, pp. 34–45. DOI: 10.1109/ISSRE.2003.1251029.

[27] R. Jeffries and G. Melnik, “Introduction: TDD–the art of fearless

programming”, IEEE Software, vol. 24, no. 3, pp. 24–30, 2007. DOI:

10.1109/MS.2007.75.

[28] M. Imai, Kaizen: The Key to Japan’s Competitive Success. McGraw-

Hill Education, 1986. [Online]. Available:

https://books.google.de/books?id=q0rCTQlvNMoC

[29] W. E. Deming, A System of Profound Knowledge. British Deming

Association, 1992. [Online]. Available:

https://books.google.de/books?id=v-RSMwEACAAJ

[30] W. E. Deming, Out of the Crisis, reissue. MIT Press, 2018. [Online].

Available: https://books.google.de/books?id=PTNwDwAAQBAJ

[31] M. Krunic, “Documentation as code in automotive system/software

engineering”, 2023. [Online]. Available:

https://gitlab.com/momcilo_krunic/elektronika_ir_elektrotechnika_20

23/"https://gitlab.com/momcilo_krunic/elektronika.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

75

