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1Abstract—Hammerstein-Wiener systems present a 

structure consisting of three serial cascade blocks. Two are 

static nonlinearities, which can be described with nonlinear 

functions. The third block represents a linear dynamic 

component placed between the first two blocks. Some of the 

common linear model structures include a rational-type 

transfer function, orthogonal rational functions (ORF), finite 

impulse response (FIR), autoregressive with extra input 

(ARX), autoregressive moving average with exogenous inputs 

model (ARMAX), and output-error (O-E) model structure. 

This paper presents a new structure, and a new improvement 

is proposed, which is consisted of the basic structure of 

Hammerstein-Wiener models with an improved orthogonal 

function of Müntz-Legendre type. We present an extension of 

generalised Malmquist polynomials that represent Müntz 

polynomials. Also, a detailed mathematical background for 

performing improved almost orthogonal polynomials, in 

combination with Hammerstein-Wiener models, is proposed. 

The proposed approach is used to identify the strongly 

nonlinear hydraulic system via the transfer function. To 

compare the results obtained, well-known orthogonal functions 

of the Legendre, Chebyshev, and Laguerre types are exploited. 

 

 Index Terms—Hammerstein-Wiener models; Identification 

system; Improved orthogonal functions; Nonlinear systems. 

I. INTRODUCTION 

When the system’s output is nonlinearly dependent on its 

inputs, it is possible that the input-output link is broken 

down into two or more interconnected elements. In this 

case, we can represent the dynamics using a linear transfer 

function and capture the nonlinearity using nonlinear input 

and output functions. The Hammerstein-Wiener (H-W) 

model realises this configuration as a serial connection of a 

static nonlinear block with a dynamic linear block [1]–[4]. 

The first and third blocks are the input and output 

nonlinearities. On the other hand, common linear model 
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structures include rational transfer functions, polynomial 

functions, finite impulse response (FIR), autoregressive with 

extra input (ARX), autoregressive moving average with 

exogenous inputs (ARMAX), Bock-Jenkins model 

structures, and output-error (O-E) models [5], [6]. These 

nonlinear blocks can be either continuous or discontinuous, 

where some continuous nonlinearities can be represented 

using a function expansion with the polynomial 

representation [7], [8]. Some authors have also investigated 

the application of new techniques such as neural networks, 

using two independent networks with one hidden layer 

whose parameters were identified by the extreme learning 

machine (ELM) algorithm. In this case, the proposed 

solution is with an invertible output nonlinearity, which 

actually implies the basic structure of the H-W model. 

Many authors have proposed identification algorithms for 

H-W model estimation [5]–[10]. Some use identification 

algorithms divided into two stages: recursively calculating 

the least squares estimation of the parameter vector and 

singular value decomposition of fixed-size matrices [11]–

[17]. Also, in the literature, we can find a blind approach, 

where the structure of the input nonlinearity does not 

necessarily have to be known [11]. For H-W ARMAX 

models, an extended stochastic gradient algorithm is 

developed, and two types are proposed: recursive 

generalised extended least squares algorithm and 

generalised extended stochastic gradient algorithm [10]. 

The H-W model applies in several areas, such as 

modelling electro-mechanical systems and radio frequency 

components, sound and speech processing, chemical 

processes control, and nonlinear industrial systems 

identification. Also, the H-W model can be used as a black-

box model because it allows flexible parameterisation for 

nonlinear models. For example, we can improve the 

accuracy of a linear model by adding input or output 

nonlinearity to this model [12]. We can use the H-W as a 

grey-box model to have an idea of the characteristics of the 

process through it. For example, the nonlinearity of the 
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input may represent a typical physical transformation in 

actuators, and the nonlinearity of the output may describe 

typical sensor characteristics [12], [17]. 

In [18]–[21], authors proposed a new class of almost 

orthogonal polynomials with application in the modelling of 

dynamical systems. Further, the authors in [22]–[25] present 

possible applications in orthogonal endocrine adaptive 

neurofuzzy systems. Also, the authors in [26]–[29] suggest 

new classes of quasiorthogonal polynomials and their 

applications in modelling, neural networks, sliding mode 

control, and control of dynamical systems. In this paper, the 

authors consider the possible application of improved 

orthogonal polynomials of Legendre type [18], [19] to 

represent an H-W system’s input and output nonlinearities.  

This paper is organised as follows. Section I gives a 

detailed introduction to the H-W models and improved 

almost orthogonal functions of the Müntz-Legendre type. In 

Section II, H-W models are given. Section III describes a 

process of obtaining improved almost orthogonal functions 

and polynomials of Müntz-Legendre type. A short 

description of the multi-tank hydraulic system is given in 

Section IV. Experimental results that verify the proposed 

approach and comparison with similar methods are 

presented in Section V. In Section VI, the latest works in 

which the H-W models are combined with intelligent 

controls are discussed. Finally, the last section consists of 

concluding remarks. 

II. HAMMERSTEIN-WIENER MODELS 

The Hammerstein-Wiener model structure is made up of 

two nonlinear blocks and a linear block. This structure 

combines the Hammerstein (Fig. 1(a)) and Wiener model 

structures (Fig. 1(b)). The Hammerstein model is described 

using input nonlinearity followed by a linear system model. 

In contrast, the Wiener model consists of a linear block 

followed by output nonlinearity. Depending on the specific 

case, these models can be combined and the Hammerstein-

Wiener (H-W) or Wiener-Hammerstein (W-H) structure can 

be formed. The H-W model structure is presented in Fig. 

1(c) and Fig. 2, while the W-H structure is presented in Fig. 

1(d). 

 

 
Fig. 1.  (a) Hammerstein model structure; (b) Wiener model; (c) 

Hammerstein-Wiener model; (d) Wiener-Hammerstein model. 

In Fig. 2, u(t) is the system input and y(t) is the system 

output. The nonlinear functions f1 and f2 represent the input 

and output nonlinearity, respectively. 

The linear block can be described using various model 

structures [12] where the output signal of the structure 

presented in Fig. 2 can be determined using the following 

equations: 

     1 1 ,w t f u t  (1) 

     2 1( ) ,w t G z f u t  (2) 

          2 2 2 1 .y t f w t f G z f u t   (3) 

 
Fig. 2.  H-W model structure. 

One of the generally used models for the representation 

of the linear block is the ARMAX model (see Fig. 3) [3]. 

 
Fig. 3.  H-W ARMAX system. 

The linear part of the system can be described with the 

following equation [3] 

  
 

 
 

 

 
 2 1 ,

B z C z
w t w t e t

A z A z
   (4) 

where e(t) represents the disturbance term and A(z), B(z), 

and C(z) are polynomials of order na, nb, and nc, 

respectively: 

  
1

1 ,
an

i

i

i

A z a z



   (5) 

  
1

,
bn

i

i

i

B z b z



  (6) 

  
1

1 .
cn

i

i

i

C z c z



   (7) 

Substituting (1) and (4) into (3), we obtain the output 

signal 

  
 

 
  

 

 
 2 1 .

B z C z
y t f f u t e t

A z A z

 
   

 
 (8) 

The influence of measurement noise ε on the output 

signal can also be considered [8], [9] 

       2 2 .y t f w t t   (9) 

In this paper, the O-E model has been used for the 

parameterisation of the linear part of the system (see Fig. 4). 

The structure of the O-E model can be described using 

the following equation 
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  
 

 
    ,k

B z
y t u t n e t

A z
    (10) 

where nk is an input delay. 

 
Fig. 4.  O-E model structure. 

The advantages of the Wiener system with orthogonal 

Hermite polynomials used for nonlinearity representation 

have been given in [29]. Hence the authors of this paper use 

a class of improved almost orthogonal polynomials of 

Müntz-Legendre type for the nonlinearity functions of the 

H-W model, i.e., f1 and f2. 

III. IMPROVED ALMOST ORTHOGONAL FUNCTIONS 

The authors of this paper developed several new types of 

orthogonality in the last ten years. Some of them are almost 

orthogonality [18], improved orthogonality [26], 

quasiorthogonality [19], generalised quasiorthogonality 

[23], and a new type of trigonometric orthogonality [27]. On 

the other hand, the generalisation of Malmquist-Takenaka 

polynomials is developed for the modelling purposes of an 

industrial protector cooling system [20]. This type of 

polynomial is modified in the z-domain [28]. All these types 

of orthogonality, in combination with intelligent systems 

(genetic algorithms, neural networks, fuzzy systems), have 

been used very successfully in the field of automation and 

electronics [18]–[28]. This paper provides an extension of 

generalised Malmquist polynomials that represent 

appropriate Müntz polynomials. Additionally, a 

combination of extended Müntz-Legendre polynomials is 

proposed, whose coefficients contain a measure of 

imperfection in the form of the parameter .   

To start with, the definition of improved almost 

orthogonality can be represented via the rational transfer 

function 

 
              , ,n m n m

C

W W W s W s w s ds
   

   (11) 

with weight function w(s) = 1, m > n. The transfer functions 

have the following form 

 

   
 

 

   
 

 

1

0

1

0

,

.

n

i

n n

i

m

i

m m

i

s i

W s

s i

s i

W s

s i

















 
 

 
 

 
 
 

 
 
 


 
 









 (12) 

For obtaining the transfer function 
    ,mW s


 we used a 

well-known transformation  s f s  and the property of 

symmetry [30]. Now, a sequence of Müntz orthogonal 

rational functions is used in the following form [31] 

  
 

 

1
*

0

0

, 1, 2,3,...,

n

k

k

n n

k

k

s

W s n

s













 






 (13) 

where the zeros *

k  are obtained by mapping the poles ,k  

and the poles 
k  by mapping the zeros *

k , using the 

symmetric transformation    * *,  .k k k kf f      

Therefore, using the symmetric transformation in (13), we 

obtain 

  
 

 

1

0

*

0

.

n

k

k

n n

k

k

s

W s

s




















 (14) 

If the poles and zeros from (11) are substituted in (13) 

and (14), a new class of improved almost Müntz-Legendre 

orthogonal polynomials    nMLW s


 defined via the transfer 

function and the parameter   will be obtained 

 
   

 

 

1
*

0
1

0
1

, 1,2,3,...,

n

k

k
j k

nML n

k

k
j k

s j

W s n

s j










 


 



 






 (15) 

where the zeros *

k  and poles 
k  are 

*

k

k

b



  and 

*
,k

k

b



  respectively. Parameter b represents the real 

constant of the symmetric bilinear transformation 

   /s as b cs a    [30]. Classical orthogonal 

polynomials are obtained depending on the parameter values 

a, b, and c. When parameter c = 0, Laguerre and Legendre 

orthogonal polynomials on the interval (0, 1) are obtained. 

The Malmquist-Takenaka polynomials are derived for the 

values a = 0 and b ≠ 1. 

If we substitute (15) into (13) and (14), improved almost 

orthogonal polynomials of Müntz-Legendre type 
   nMLP x


 

can be obtained 

 

       

     
,

0

1
,

2

,

P

k

s

nML nML

C

n

nML n k

k

P x W s x ds
i

P x A x

 

  





 
 

 
 

 
  





 (16) 

where Cp involves all the poles of    ,nMLW s


 and 
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 

 

1

0
1

,

0,
1

.

n

k

f f
j k

n k n

k f

f f k
j k

b
j

A

j



 


 




 

 
 

 
 

 
 








 

An example of a sequence (the first four members) of 

improved almost orthogonal polynomials of Müntz-

Legendre type (for 1,b    
0 ,   

1 2 ,   
2 3 ,   

3 4 ,   
4 5  ) is given as 

 

   
   

   

   

0

2 2

1

3 3 2 2

2

4 4 3 3 2 2

3

,  

3 2 ,

15 3
7 ,  

2 2

65 70 35 2
.

4 3 4 3

ML

ML

ML

ML

P x x

P x x x

P x x x x

P x x x x x











 

  

   

 
 
  
 
   
 
 
    
  

 (17) 

If we apply substitution tx e  in the previous 

expressions, the appropriate functions for H-W models are 

obtained in the form 
   iML x


  and 

   
   

1 1
, 0,1,2, .iML

iML

x i n
x









   

Hence, to identify nonlinear systems in the form of 

transfer functions, we will develop a new type of 

polynomial (17). The newly developed polynomials will be 

used in the structure of the H-W model as a replacement for 

the standard functions contained in these models. Unknown 

systems are identified by the transfer function using the 

mean square error (MSE) method [18], [23]. In 

identification systems, we minimise the error value between 

classical H-W models with our proposed H-W structure 

with improved almost orthogonal polynomials of Müntz-

Legendre type. 

IV. EXPERIMENTAL SETUP-MULTI-TANK SYSTEM 

To apply newly improved almost Müntz-Legendre 

orthogonal functions in combination with H-W models, we 

used a multi-tank hydraulic system shown in Fig. 5. 

 
Fig. 5.  Multi-tank system by INTECO. 

The multi-tank system [32] consists of three separate 

tanks equipped with drain valves. The first tank has a 

constant cross section, while the second and third are 

spherical and conical and have a variable cross section. 

These features introduce the main nonlinearities in the 

utilised system. Each tank is equipped with a level sensor 

based on hydraulic pressure measurement. Finally, a speed 

pump is variable and is used to fill the upper tank with a 

constant cross section. 

The multi-tank system can be described using the 

nonlinear equations [27] 

 

   

   

   

1

1 2

32

1

1 1

1 1 1 1

2

1 1 2 2

2 2 2 2

3

2 2 3 3

3 3 3 3

1 1
,

1 1
,

1 1
,

dH
q C H

dt H H

dH
C H C H

dt H H

dH
C H C H

dt H H



 



 

 

 

 
  

 
 
  
 
 
  
  

 (18) 

where q represents the entry into the first upper tank, Hi is 

the level of fluid in the i-th tank (i = 1, 2, 3), Ci is the 

resistance of the output orifice of i-th tank, and i represents 

the flow coefficient of the i-th tank. Finally,  1 1H  

represents the cross-sectional area of the i-th tank at the 

level Hi. The specified parameter values can be found in 

[27]: a = 0.25 m, b = 0.345 m, c = 0.1 m, w = 0.035 m, R = 

0.364 m, H1max = H2max = H3max = 0.35 m. 

Now, we rewrite the right sides of (18) in the form F(x, q) 

= [F1, F2, F3], where 

 

 
   

 
   

 
   

1

1 2

32

1 1 1 1

1 1 1 1

2 1 2 1 1 2 2

2 2 2 2

3 2 3 2 2 3 3

3 3 3 3

1 1
, ,

1 1
, ,

1 1
, .

F q H q C H
H H

F H H C H C H
H H

F H H C H C H
H H



 



 

 

 

 
  

 
 
  
 
 
  
  

 (19) 

For the model (18), for fixed q = q0, we can define an 

equilibrium state (steady-state points) given by 

31 2

0 1 10 2 20 3 30 .q C H C H C H
 

    The linearized model is 

obtained by the Taylor expansion of (19) around the 

assumed equilibrium state 

 ,H q

dh
J h J u

dt
   (20) 

where h = H-H0 is the modified state vector (deviation from 

equilibrium state H0), u = q-q0 is deviation of the control, 

relative to q0, JH and Jq are Jacobians of function (19) and 

(20): 

 

 

 

0 0

0 0

,

,

,
,  

,
,

H

H H q q

q

H H q q

F H q
J

H

F H q
J

q

 

 

 
  

 

 
  

 

 (21) 
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i.e., 

 

   

   

   

   

   

 

1

1

2

2

3

1 1

1

10 1 10

1 1

1

10 2 20

2 2

1

20 2 20

2 2

1

20 3 30

3 3

1

30 3 30

1 10

0 0

0 ,

0

,

,

,

,

,

1

0 .

0

H

q

A

J B C

D E

C
A

H H

C
B

H H

C
C

H H

C
D

H H

C
E

H H

H

J
















































 
  
 
   

 
 







 




 






  
  
  
  
  
  
  
  

 

(22)

 

This linear model (22) can be used for analysis and for 

the design of local controllers of the pump-controlled 

system. The model of this system is described by (18) and 

(22) used in our experiments. 

V. EXPERIMENTAL RESULTS 

To evaluate the efficiency of the proposed H-W structure 

with improved almost orthogonal functions of the Müntz-

Legendre type, we conducted experiments with a given 

multi-tank system.  

To obtain the transfer function of the hydraulic system, 

the method shown in Fig. 6 was used. The unknown 

hydraulic system is identified through six different types of 

polynomials. 

 
Fig. 6.  Block scheme of system identification. 

First, the input-output data set has been formed using the 

model of the multi-tank system given by (18). The data set 

used for this purpose is shown in Fig. 7. We consider a 

proposed method with the H-W structure with orthogonal 

functions described by (17), and the values for 1.01.   

This H-W structure consists of two nonlinear blocks 

presented by orthogonal functions from (17). The proposed 

improved H-W structure was further applied to identify the 

hydraulic multi-tank system. For this purpose, the first half 

of the generated data set was used to determine the 

parameters of the H-W model. Subsequently, the second 

half of the data set was used to test the performance of the 

obtained structure. Finally, function substitutions were 

applied using the newly derived improved almost 

orthogonal functions. 

To demonstrate the effectiveness of the proposed method, 

various combinations of functions f1 and f2 are prepared. In 

the first example, the following functions for input 

nonlinearity f1 and output nonlinearity f2 are used 

 

   

   

2 2

1 1

1 1

2 1 1 2 2

1

3 2 ,

1 1
.

3 2

t t

ML

ML t t

f t e e

f f t
f e e





  


 

 

 

 

   
 
 

   
  

 (23) 

 
Fig. 7.  Generated data set used for the system identification. 

The results in Fig. 8 show that the proposed H-W 

structure with input nonlinearity and output nonlinearity can 

capture the multi-tank system’s behaviour with an accuracy 

of 99.32 %. 

In this case, we obtain the following transfer function 

  
2

3 2

0.0268 1.1891 0.4302
.

5.99 11.01 5.98

s s
W s

s s s

 


  
 (24) 

 
Fig. 8.  Comparison of the simulated response of the multi-tank system (zv 

signal) and the H-W model of the system (m1). The input and output 

nonlinearities of an H-W model have been represented using    1ML t


  and 

   1

1ML t


   functions. 
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A second example of the use case of a nonlinear multi-

tank system bases the H-W model on the following function 

     3 3 2 2

1 2

15 3
7 .

2 2

t t t

MLf t e e e


          (25) 

Figure 9 shows the results obtained when both the input 

and output nonlinearities are represented using 
   2ML t


  

function with an accuracy of 99.62 %. 

 
Fig. 9.  Comparison of the simulated response of the multi-tank system (zv 

signal) and the H-W model of the system (m1). Both the input and output 

nonlinearities of an H-W model have been represented using    2ML t


  

function. 

It can be noticed that the structure with both input and 

output nonlinearities realised using 
   2ML t


  gives slightly 

better results and follows the multi-tank system response 

with slightly higher precision.  

To demonstrate the effectiveness of the proposed method, 

the experiments were repeated with well-known orthogonal 

polynomials. We used generalised quasiorthogonal 

polynomials (order k = 1) of the Legendre type [18], 

Chebyshev polynomials of the second kind [19], classical 

Legendre polynomials [13], and Laguerre polynomials [23]. 

In the case when we used generalised quasiorthogonal 

polynomials (order k = 1) of Legendre type and input and 

output nonlinearities, the following functions exist 

    
 

 1, 2

1 2 2

2
1 .

2 2

t tf f t e e
  

  


        (26) 

On the other hand, Chebyshev polynomials of the second 

kind [24] and input and output nonlinearities are given by 

 

 

 

1 1

1

2 2 2

2 ,

1
.

4 1

t

t

f T t e

f T t
e







  
 
  
  

 (27) 

Classical Legendre polynomials [18] and input and output 

nonlinearities are given by 

 
 

 

2

1 2

3 2

2 3

6 6 1,

20 30 12 1.

t t

t t t

f t e e

f t e e e





 

  

    
 

      

 (28) 

Finally, the experiment was performed with Laguerre 

polynomials [12], [33], [34] where nonlinearities are 

described as follows 

 

   

   

2

1 2

3 2

2 3

1
4 2 ,

2

1
9 18 6 .

6

t t

t t t

f L t e e

f L t e e e

 

  

 
    

 
      
  

 (29) 

A summarisation of all the results obtained is given in 

Table I. 

TABLE I. IDENTIFICATION RESULTS OF THE H-W MODELS WITH 

ORTHOGONAL POLYNOMILAS. 

Type of 

polynomials 
f1 f2 Accuracy [%] 

Improved almost 

Müntz-Legendre 
   1ML t


     1

1ML t


   99.32 

Improved almost 

Müntz-Legendre 
   2ML t


     2ML t


  99.62 

Generalised 

quasiorthogonal 

polynomials (order k = 

1) of Legendre type 

   1,

2 t


     1,

2 t


  98.27 

Chebyshev 

polynomials of second 

kind 

 1T t   
1

2T t


 97.64 

Classical Legendre 

polynomials 
 2 t   3 t  96.66 

Laguerre polynomials  2L t   3L t  96.53 

 

Based on the results from Table I, it can be concluded 

that H-W models with improved almost Müntz-Legendre 

polynomials implemented as nonlinearities are very robust. 

The experimental results of our research have shown that H-

W models with proposed orthogonal functions implemented 

in nonlinear blocks effectively capture the behaviour of the 

solid nonlinear system. 

The results obtained by the developed method using the 

improved almost orthogonal Müntz-Legendre polynomials 

in the H-W model have been compared with those obtained 

by the the iterative least squares and a recursive least 

squares [1], the method using the Genetic Algorithm (GA) 

combined with the Recursive Least Squares (RLS) method 

[4], and the method for estimating the parameters of the 

Hammerstein nonlinear model using a multi-signal approach 

[35]. The results are shown in Table II. 

TABLE II. IDENTIFICATION RESULTS OF THE H-W MODELS. 

Method Accuracy [%] 

Multi-signal approach 99.09 

GA + RLS 98.74 

Iterative least squares 98.07 

Recursive least squares 96.12 

 

The advantage of the method proposed in this paper 

compared to the others is that the implementation of the H-

W model with orthogonal polynomials requires a much less 

complex mathematical background. 

VI. DISCUSSION 

In the last 10 years, the application of the H-W model for 

the identification and estimation of parameters of nonlinear 

systems has mainly used classical functions for input and 

output nonlinearities. In [35], the authors propose a new 

solution to estimate the parameters of the Hammerstein 

9
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nonlinear model using a multi-signal approach. A novel 

Adaptive Dual Nonlinear Model Predictive Control 

(ADNMPC) based on discrete-time block-oriented models 

is developed [36]. The proposed method uses a modern 

method of predictive control in combination with H-W 

models to model black-box models. On the other hand, in 

[37], a method for identifying the H-W model is proposed, 

Fourier decomposition, the frequency approach, and the 

spectrum analysis. The authors in [38], [39] propose an 

innovative identification approach of nonlinear stochastic 

systems using H-W model with Output-Error 

Autoregressive (OEA) noise with Improved 

Backpropagation Gradient (IBPG) algorithm, Multi-

Innovation IBPG (MIIBPG) algorithm, a data filtering IBPG 

(FIBPG) algorithm, and a Multi-Innovation-based FIBPG 

(MIFIBPG) algorithm. On the other hand, in this paper, we 

have shown the possibility of applying of the almost 

improved orthogonal polynomials in combination with H-W 

models. Our approach developed showed high accuracy and 

small modelling error, which verifies the accuracy and 

efficiency of the developed structure. 

VII. CONCLUSIONS 

In the last twenty years, H-W models have proved to have 

a significant capability for robust and efficient control of 

highly-nonlinear systems. They have especially shown their 

potential for a wide range of strongly nonlinear system 

representations. This paper considers the application of 

newly derived improved almost orthogonal polynomials for 

the representation of nonlinearities of an H-W system. The 

aim of this paper is to derive a new type of improved almost 

Müntz-Legendre polynomials based on the bilinear 

transformation, which can be used for derivation of the all-

type classical polynomials. A novel identification method 

for nonlinear processes is also discussed in detail. From a 

technical aspect, both nonlinear functions in H-W models 

are replaced with improved almost functions and classical 

polynomials. Their combinations are used to improve the 

accuracy of the proposed method to identify numerous 

engineering applications. In future work, we will consider 

the possibility of using deep learning techniques and 

orthogonal endocrine neural networks together with the 

improved H-W structure proposed in this paper. 
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