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Abstract—Biometric identification systems are increasingly 

important today compared to traditional 

recognition/classification systems. Electromyography (EMG) 

signals and person identification/classification systems are 

preferred for high-security systems as they include physiological 

and behavioural movements. This study investigates biometric 

EMG signals based on convolutional neural networks (CNNs) 

and personal identification/classification systems. Bioelectric 

signals were recorded at six different wrist movements from five 

volunteer participants with a four-channel EMG device. To 

determine the spectrum characteristics of EMG signals, the 

frequency subbands of the signals were found using the discrete 

wavelet transform (DWT), empirical wavelet transform (EWT), 

and empirical mode decomposition (EMD) methods. In 

addition, statistical methods are used to improve the 

effectiveness of the feature vector. The CNN model was used to 

define or classify people. The performance of the developed 

system was evaluated using Accuracy, Precision, Sensitivity, F-

score parameters. As a result, a classification success of 95.66 % 

was achieved with the developed EMD-CNN method, 94.10 % 

with the DWT-CNN method, and 93.33 % with the EWT-CNN 

method. The artificial intelligence model presented in this study 

explains the effectiveness of EMG signals in person recognition 

or classification as a biometric identification system. 

Furthermore, the developed model shows promise for the 

development and design of future biometric recognition systems. 

 
Index Terms—Biomedical informatics; CNN; EMG; Person 

identification.  

I. INTRODUCTION 

With the development of technology, it is important to 

protect people’s information security. In general, security 

systems are divided into three categories. These are 

knowledge-based systems (password, personal identification 

number (PIN), etc.), belonging-based systems (wristbands, 

magnetic cards, etc.), and biometrics-based systems 

(fingerprint, iris, face, voice, electromyography (EMG), 

electroencephalography (EEG), etc.) [1], [2]. Biometric 

systems are systems, developed to identify/confirm the 

identity of a person using the unique physical and behavioural 

characteristics of the body [3]. Recently, with the 

development of biometric sensors and machine learning 

algorithms, the use of biometric technologies in the field of 

security has increased. Conventional knowledge and 

belonging recognition systems are known to be fraud, theft, 

forgetfulness, and insufficient to protect personal information 

regarding information leakage [2]. Furthermore, the risks 

caused by personal faults cause major problems at the 

security level. Due to the problems that may occur in 

conventional recognition systems, usage is gradually 

decreasing. For higher security, biometric systems are widely 

used in financial instruments, military areas that require high 

security, and mobile phone access applications. 

Biometric systems are divided into two groups, 

physiological and behavioural. The data obtained based on 

the physical and immutable characteristics of people are 

physiological biometric systems. Iris, face, retina, fingerprint, 

etc. are in the physiological category. Behavioural biometric 

systems based on the behavioural characteristics of the person 

are the data such as voice, wet signature, hand movements, 

and body signals. 

Although biometric identification systems have a much 

higher level of security than traditional identification 

systems, they can be copied. For example, the reproduction 

of the face model with 3D printers, the copying of fingerprints 

using latex gloves, the recording of voice data with the help 

of recorders, and the copying of the iris using contact lenses 

are some of these [1]. 

Consequently, new biometric systems are needed that 

provide a high level of security. Especially with the 

development of wearable sensor technology, researchers have 

turned to biometric systems based on electrical signals that 

include physiological and behavioural features such as EEG 

[4], [5], EMG [1], and electrocardiography (ECG) [6]. The 

latent nature of electrical biosignals makes these signals 

difficult to mimic or synthesise and provides an advantage in 

distinguishing them from biological targets [7]. The ECG 

signals obtained from the heart muscles do not change due to 

the voluntary movements of the person. Therefore, it can only 

create a biometric signature, like other biometric data (iris, 

fingerprint, etc.). Electrical signals such as EEG and EMG 

include both voluntary behaviour (hand movement, gesture, 

etc.) and physiological characteristics of the person. It has 

been stated that as the number of movement types in EEG 

signals increases, the success rate of person classification 

decreases below 70 % [1]. Due to the high-accuracy of EMG-

based biometric systems in motion recognition, individuals 

can create signatures with high-security features by 

identifying different muscle movements. This is the focus of 

our study. 

In this study, EMG signals obtained from arm muscles 
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were used. The convolutional neural network (CNN) model 

was developed to create a personal 

identification/classification system for the signals obtained. 

Behavioural and physiological biometric data were 

generated with EMG signals collected during six different 

hand movements of two female and three male volunteers. 

With these data, 95.62 % accuracy was obtained with the 

empirical mode decomposition (EMD)-CNN model. It is 

believed that the proposed study will contribute significantly 

to biometric person identification problems. 

II. RELATED WORKS AND CONTRIBUTIONS 

Few studies have been conducted in the literature on EMG-

based person identification/classification using the properties 

of biosignals for identification purposes. The most widely 

used methods are methods for determining the spectral 

characteristics of EMG signals based on conventional 

machine learning algorithms. The feature vector can be 

obtained using fast Fourier transform (FFT), discrete wavelet 

transform (DWT), and average frequency methods. These 

feature vectors can be classified by conventional methods 

such as support vector machines (SVM) [8], [9], multilayer 

perception (MLP) [8], [10], k-nearest neighbours (kNN) [11], 

and artificial neural network (ANN) [3]. 

Kim and Pan [12] obtained the vector of features of various 

wrist and hand movement activities using EMG signals and 

filterbank and waveform length (WL) feature extraction 

methods. Dimension reduction analysis was performed with 

the principal component analysis (PCA) and linear 

discriminant analysis (LDA) methods. A person recognition 

model was proposed with an accuracy rate of 86.66 % using 

SVM and kNN classification methods. Raurale, McAllister, 

and Del Rincon [10] proposed EMG signals of arm 

movement activity from five volunteer subjects for person 

recognition using an armband and 92 % success was 

achieved. Shin, Kang, Jung, and Kim [9] performed a person 

identification/classification analysis using EMG signals from 

five wrist movements. The root mean square (RMS), WL, 

integral EMG (IEMG), simple square integral (SSI), and 

variance (VAR) feature extraction methods were used and 

achieved an accuracy value of 87.1 % using the SVM 

algorithm for person classification. Shioji, Ito, Ito, and 

Fukumi [13] proposed a person identification and 

classification model using biometric-based EMG signals and 

achieved an average accuracy of 94.5 % using the CNN 

model. 

Contribution 1: This paper is the first study to develop a 

model using EMG signals to determine frequency 

components in signals with DWT, EWT, and EMD methods. 

Results were found with a 95.62 % validation with CNN deep 

learning algorithm. 

Contribution 2: A model is proposed that uniquely 

identifies or classifies people with six wrist movements of 

EMG signal data. The model, developed with the data set that 

detects the activities in four different muscle groups with the 

help of sensors, raises the level of accuracy to higher levels. 

Contribution 3: By combining two different strengths with 

EMG signals, both voluntary behaviour and physiological 

characteristics, a model was developed to evaluate high-

security person identification/classification problems. Thus, a 

new person authentication system is proposed based on a 

neuromuscular password. 

Contribution 4: The CNN model is preferred because it has 

high-accuracy classification/recognition capacity by 

determining the feature vectors of the EMG signals coming 

from the input signals without expert knowledge. 

Contribution 5: Collecting EMG data with a portable 

armband sensor will be easy to apply to areas requiring high 

security, using this system in daily life. 

III. MATERIALS AND METHODS 

This study aims to develop a 1D-CNN model by obtaining 

the feature vector in EMG signals with DWT, empirical 

wavelet transform (EWT), and empirical mode 

decomposition (EMD) methods. The model was developed 

using EMG data (Fig. 1) recorded with six wrist movements 

by five subjects. 

A. Data Set 

The publicly available Mendeley data set [14] was used in 

this study. EMG signals were recorded at the Central 

Research Laboratory of İzmir Katip Çelebi University using 

the MP36 BIOPAC device with a sampling frequency 

2000 Hz. Five participants/subjects, two women (ages 23, 24) 

and three men (ages 22–24), participated in the experiments. 

The EMG data were collected from the dominant hand of 

each participant. EMG signals were obtained from the surface 

muscles of the extensor carpi radialis, flexor carpi radialis, 

extensor carpi ulnaris, and flexor carpi ulnaris (Fig. 1(b)) near 

the skin surface using a four-channel electrode system. 

Subjects were asked to perform the REST, EXTENSION, 

FLEXION, ULNAR, RADIAL, and GRIP movements as 

shown in Fig. 1(a).

 
                                                                                      (a)                                                                           (b)                                                                               

Fig. 1.  (a) Six different hand gestures; (b) EMG measurement locations.

   

 

Rest Extension Flexion 

   
Ulnar Radial Grip 
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During the experiment, participants were asked to perform 

six movements with a duration of four seconds and a total 

length of 52 seconds with a rest period of four seconds in 

between. The experiment is repeated with five cycles for a 

total recording time of 380 seconds with 30-second rest 

intervals. Data were recorded for 380 s from each channel 

(Fig. 2). 

 
Fig. 2.  Timeline of recordings (X: Rest, E: Extension, F: Flexion, U: Ulnar Deviation, R: Radial Deviation, G: Grip).

B. Discrete Wavelet Transform 

DWT is a conventional multiresolution analysis method for 

nonstationary signals. In general, wavelet-based techniques 

are a viable method in the analysis of variable signal types 

such as EMG [15]. 

DWT decomposes the signal to be analysed into frequency 

components using a variable window [16]. In the wavelet 

transform method, large time windows for low frequencies 

and short time windows for high frequencies are used [17]. It 

also offers the advantages of low computational cost and ease 

of implementation [18]. In DWT decomposition, signals are 

decomposed into multiple resolution coefficients using low- 

and high-pass filters. Different frequency bands make up the 

DWT coefficients. The detail (D) coefficients have a larger 

frequency and are more resolved over time. The 

approximation (A) coefficients at lower frequencies achieve 

superior frequency resolution [19], [20]. The original signal, 

filtered through a high-pass filter h(n) and a low-pass filter 

g(n), produces the output of the first decomposition level 

[16]. Equations (1) and (2) express these filters, respectively, 

as follows: 

    
1

2 ,
L

low k
Z x k g n k


    (1) 

    
1

2 ,
L

high k
Z x k h n k


    (2) 

where Zlow represents the approximation and Zhigh is for detail 

coefficients; x[k] represents the EMG signal, L represents the 

width of the signal, h[n] the high-pass filter, and g[n] the low-

pass filter. In this study, N = 6, in short, seven vectors will be 

obtained for each wavelet function to be used (Fig. 3). With 

the DWT method, important information can be obtained 

from EMG signals with a sampling frequency of 2000 Hz 

with a six-level analysis. In this study, the coefficient vector 

was obtained using the Db1 wavelet function.

 
                                                                                     (a)                                                                 (b)                                                                                         

Fig. 3.  EMG signals six coefficients (a) and DWT decomposition tree (b).

C. Empirical Wavelet Transform 

EWT is an adaptive signal decomposition method based on 

the information content of the input signal [21], [22]. Unlike 

wavelet transform and Fourier transform methods, they do 

not use predetermined basic functions. Instead of predefined 

filterbank structures, such as conventional wavelet transform 

methods, EWT uses structures adaptively according to the 

spectral distribution of the signal [23]. 

When analysing the signal in the EWT method:  

1. Due to the need for symmetry, the signal must be real-

valued; 

2. The frequency axis of the signal with 2pi period is 

considered.  

However, due to Shannon’s sampling criteria, analyses are 

performed in the range of [0, pi]. The N mode is predefined, 

which determines how many segments the input signal will 

divide into in the range [0, pi]. In this study, the analysis was 

performed by dividing the input signal into N = 6 segments. 
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Each segment is associated with the Littlewood-Paley 

wavelet function. Thus, six empirical wavelet coefficients 

(Fig. 4) are obtained corresponding to the approximation (low 

frequencies) and detail (high frequencies) coefficients [21].

 
Fig. 4.  EWT decomposition modes.

D. Empirical Mode Decomposition 

The EMD method is a method developed by Huang et al. 

[24] to analyse stationary and nonlinear data [25]. EMD is a 

method in which a complex data set can be decomposed into 

adaptive finite and intrinsic mode functions (IMF). It is a 

widely used model in biomedical analysis because it 

preserves the properties of the input signal after 

decomposition [24]. Two conditions must be met for each 

IMF to be established: 

1. The number of extremums and zero crossings in the data 

set must be equal or differ by at most 1; 

2. The mean value of the envelope defined by the local 

maximum and local minimum should be 0.  

The EMD algorithm follows these steps to split the signal 

into IMFs [25]–[29]. Input signal x(t): 

Step 1: Find all the maximum and minimum points in the 

input signal x(t). By combining these points with 

interpolation, the upper range u(t) and the lower range v(t) are 

obtained. 

Step 2: By averaging the upper envelope u(t) and the lower 

envelope v(t), the average envelope of the input signal x(t), 

m1, is obtained. 

Step 3: Using (3), the h1 signal is obtained by subtracting 

the mean envelope m1 from the input signal x(t) 

  1 1.h x t m   (3) 

Step 4: If the h1 signal obtained does not meet the IMF 

characteristics, the first three steps are repeated. This is called 

the elimination process. h1k is obtained by repeating (4) k 

times. The iteration is terminated when the number of zero 

crossing points and the number of endpoints do not change. 

The first IMF component c1 = h1k is obtained 

 1 1 1 1 .k k kh h m   (4) 

The first IMF component c1 is subtracted from the input 

signal x(t) and the residual signal r1 is obtained (5) 

  1 1,r x t c   (5) 

 
1 .n n nr r c   (6) 

The c1 signal represents the highest frequency component 

of the EEG signal. r1 is treated as a new signal, and the 

operations are repeated (6). 

Step 5: Finally, the EMD process generates n IMFs c1(t) to 

cn(t) IMFs. The input signal x(t) can be represented by (7) 

      
1

.
n

j nj
x t c t r t


   (7) 

In this study, 10 IMF component levels were obtained in 

the EMD method applied to EMG signals. The first four 

levels of IMF components (IMF1, IMF2, IMF3, and IMF4), 

which are high-frequency components, were used to obtain 

the feature vector (Fig. 5). The IMF0 component represents 

the highest frequency signal of the EMG signal. 

 
Fig. 5.  IMF components of EMD. 

E. Feature Extraction 

Determining the time and frequency characteristics of 

EMG signals in biometric person recognition/classification 

problems directly affects the performance of the model [30]. 

DWT and EWT decomposition techniques represent EMG 

signals as six-wavelet coefficient signals. The EMD method, 

on the other hand, will represent the four IMF components 

with the highest frequency, whose size is the same as the input 
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EMG signal. These data (wavelet coefficients and IMF 

components) are transformed into a reduced feature vector, 

representing an important step in classification processes 

[31]–[33]. Since these features characterise the behaviour of 

EMG signals, their selection is very important. Seven 

statistical methods are selected below for the classification of 

EMG signals. 

1. Average of the absolute value (8) of signals in each 

subband 

 
1

1
.
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i

i
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   (8) 

2. The standard deviation (9) of the signals in each subband 
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   (9) 

3. The skewness (10) of the signals in each subband 
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4. The kurtosis (11) of signals in each subband 
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    (11) 

5. The median (12) of the signals in each subband 
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6. RMS values (13) of signals in each subband 
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7. The ratio of the mean absolute values of the coefficients 

of adjacent (14) subbands 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this study, a computer with an IntelCore i7 2.2 GHz 

processor and 32 GB RAM was used. The Python 

programming language was used in the developed 

classification model. TensorFlow, Keras, and basic Python 

libraries were used as model tools. 

Signals were collected using bioarmband sensors from five 

different volunteers to perform six different wrist 

movements. For each movement pattern, a five-class 

classification issue was constructed independently. The 

suggested approach worked to solve the five-class person 

identification problem for six distinct movement patterns. 

The recording times of the four-channel EEG data set are 

shown in Fig. 2. 85 % of this data set was used as training 

data and 15 % as test data, and the data were randomly 

separated.  
The architecture of the proposed person identification 

method using the DWT, EWT, EMD feature extraction 

algorithms, and CNN classification algorithm is shown in 

Fig. 6. First, EMG signals were obtained from six different 

wrist movements in four-channel form with bioarmband 

sensors from volunteers. By selecting six wrist movement 

signals recorded for 4 s from each volunteer, a 96 s (=24 s × 

4 channels) long, five cycles (Fig. 2) repetition of 480 s (1 × 

960000 samples) long vectors were obtained. The EMG 

signals of five volunteers (5 × 960000 samples) were 

determined as input to the developed model.

 
Fig. 6.  The architecture of the personal identification method.

The input vector is divided into 250 ms (500 samples) 

windows and prepared for the feature vector (9600 × 500 

samples) The 250 ms long signal was first analysed by the 

six-level-DWT method. 
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Wavelet coefficients were obtained at six different 

frequency levels for the analysed signals using the Db1 

(Haar) wavelet function. In the EWT method, a six-level 

wavelet coefficient vector was obtained by using the 

Littlewood-Paley wavelet function. In the same way, the IMF 

coefficients were calculated at four levels to analyse the high-

frequency components in the EMD method. To characterise 

the statistical properties of the coefficients by the DWT, 

EWT, and EMD methods, the mean, standard deviation, 

skewness, kurtosis, median, RMS, and ratio of the mean 

absolute values of the subvectors of each method were 

calculated and the feature vector was obtained for 

classification. 

Finally, the obtained feature vector was classified using the 

CNN deep learning algorithm. There are generally three main 

layers in the structure of the CNN algorithm: 

1. Convolutional layer; 

2. Pooling layer; 

3. Fully connected layer.  

The convolutional layer is the main part of the CNN model. 

The primary purpose of the convolutional layer is to extract 

features from the input data. The pooling layer is used to 

reduce the amount of parameters and computational load used 

in the CNN architecture. The purpose of pooling is to reduce 

the size of the data set and prevent overlearning. A fully 

connected layer is used to connect each neuron in the previous 

layer to each neuron in the next layer [34], [35]. The CNN 

architecture proposed in this study consists of an input layer, 

two convolutional layers, and three fully connected layers. 

The layer output values are obtained by multiplying the input 

values in the convolutional layers with the weight values in 

the layers. In addition, filters in layers are used for learning. 

The filters are randomly generated at startup. During 

training, the optimum filters are tried. The parameter values 

of the CNN architecture are presented in Table I. 

TABLE I. CNN LAYER FEATURES OF THE PROPOSED MODEL. 

Layers DWT-CNN EWT-CNN EMD-CNN 

Input Data Input Train Data: 8160 × 48 × 1 Input Train Data: 8160 × 40 × 1 Input Train Data: 8160 × 28 × 1 

Convolution_1 

Num Filter: 32 

Filter_Size: 4 

Activation: ReLu 

Num Filter: 32 

Filter_Size: 4 

Activation: ReLu 

Num Filter: 32 

Filter_Size: 4 

Activation: ReLu 

Convolution _2 

Num Filter: 16 

Filter Size: 4 

Activation: ReLu 

Num Filter: 16 

Filter Size: 4 

Activation: ReLu 

Num Filter: 16 

Filter Size: 4 

Activation: ReLu 

FullyConnected_1 
Size: 120 

Activation: ReLu 

Size: 120 

Activation: ReLu 

Size: 120 

Activation: ReLu 

FullyConnected_2 
Size: 60 

Activation: ReLu 

Size: 60 

Activation: ReLu 

Size: 60 

Activation: ReLu 

FullyConnected_3 
Output: 5 

Activation:sigmoid 

Output: 5 

Activation:sigmoid 

Output: 5 

Activation:sigmoid 

 

The feature vector obtained from the DWT, EWT, and 

EMD methods consists of a total of 9600 samples. 8160 

samples are for the training and 1440 samples are randomly 

allocated for testing. Except for the last layer of the model, 

which consists of two convolutional layers and three fully 

connected layers, rectified linear units (ReLU) were used as 

the activation function in other layers. The softmax function 

is used in the last layer. ADAM was used as the optimisation 

function of the model, and cross-entropy was used as the loss 

function. 

The Accuracy, Precision, Sensitivity, and F-score 

parameters were used to analyse the performance of the 

methods proposed in this study. Accuracy is the ratio of the 

number of correctly classified samples to the total number of 

samples (15), Precision is the ratio of correct positive values 

to the classified positive values (16), Sensitivity is the ratio of 

the number of correctly classified samples to the number of 

positive samples (17), and F-score is the harmonic mean of 

Sensitivity and Precision values (18): 

 ,
TP TN

Accuracy
TP TN FP FN




  
 (15) 

 ,
TP

Precision
TP FP




 (16) 

 ,
TP

Sensitivity
TP FN




 (17) 

 2 .
Precision Sensitivity

F score
Precision Sensitivity


  


 (18) 

True Positives (TP) are the number of correctly predicted 

samples, False Negatives (FN) are the number of incorrectly 

predicted samples, True Negatives (TN) are the number of 

correctly predicted negative samples, and False Positives 

(FP) represent incorrectly predicted negative samples [36]. 

In the proposed method, the Accuracy, Precision, 

Sensitivity, and F-score parameters were calculated after 

running 100 iterations. The results of the performance 

analysis of the five-class person classification problem are 

presented in Table II.  

TABLE II. THE MODEL PERFORMANCE FOR PERSON 

IDENTIFICATION. 

 DWT-CNN EWT-CNN EMD-CNN 

Accuracy %94,10 %93,33 %95,62 

Precision %94,11 %93,40 %95,64 

Sensitivity (Recall) %94,14 %93,42 %95,65 

F-Score %94,11 %93,41 %95,64 

 

According to Table II, the lowest classification accuracy of 

93.33 % was obtained with the EWT-CNN model. The 

highest accuracy value of 95.62 % was calculated with the 

EMD-CNN model. Furthermore, in the EMD-CNN method, 

the precision value was 95.64 %, the Sensitivity value was 
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95.65 %, and the F-Score value was calculated as 95.64 %. 

The confusion matrix expressions for all three models are 

presented in Fig. 7. 

In this study, a new nonlinear model-based classification 

method was developed for people’s classification/recognition 

problems using EMG signals. With the proposed model, 

high-accuracy recognition/classification of people can be 

achieved. The comparison of the results obtained in this study 

with the person classification/recognition studies using EMG 

signals is shown in Table III. The EMG signal has the feature 

of showing a different signal for each movement when a 

person makes different movements 

 
(a) 

 
(b)

 

 
(c) 

Fig. 7.  Confusion matrix for each model: (a) DWT-CNN confusion matrix; (b) EWT-CNN confusion matrix; (c) EMD-CNN confusion matrix.

TABLE III. PERSON IDENTIFICATION COMPARISON EXPERIMENT. 

Reference 
Feature extraction 

method 
Classification method Account of pattern Gesture Accuracy 

Shin, Kang, Jung, and Kim [9] 
RMS, WL, IEMG, SSI, 

VAR 

SVM 

(Cubic) 
5 5 %87,1 

Raurale, McAllister, and Del 

Rincon [10] 
BP, RSS 

DT 

5 8 

%90,2 

MLP %91,6 

SVM %91,3 

RBF-NN %91,7 

Shioji, Ito, Ito, and Fukumi [13] - CNN 3 1 %94.6 

Khan, Choudry, Aziz, Naqvi, 

Aymin, and Imtiaz [30]  
EMD 

SVM 

kNN 

DT 

10 1 %95,3 

Lu, Mao, Wang, Ding, and Zhang 

[35] 
DWT, CWT CNN 21 1 %99,2 

Li, Dong, and Zheng [37] MAV, VAR SVM 10 1 %98,2 

Morikava, Ito, Ito, and Fukumi 

[38] 
- CNN 6 5 %47,6 

Shioji, Ito, Ito, and Fukumi [39] - CNN 8 3 %94,6 

Proposed DWT, EWT, EMD CNN 5 6 %95,62 

For this reason, the performance of biometric classification 

studies that involve a large number of gestures is low. In this 

study, six different biometric movements were classified 

using EMG signals based on the CNN model. Most similar 

studies given in Table III have conducted biometric studies 

using less than five movements. However, in our study, a 

higher accuracy was obtained with six movements than in 

other studies. The proposed EMG-based person 
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recognition/classification system may not be suitable for 

people with neurodegenerative disorders due to its ability to 

detect signals. Additionally, it may be necessary to generate 

larger data sets for further research on the robustness and 

stability of EMG-based person recognition systems. 

V. CONCLUSIONS 

In this study, a new CNN-based method was developed for 

person recognition/classification using EMG signals 

recorded during hand movements, and high-accuracy results 

were obtained in person classification/recognition problems 

with the proposed model. According to the results obtained, 

a classification success of 95.62 % was achieved with the 

EMD-CNN method. These results demonstrated the success 

of the person classification/recognition problem using 

nonlinear physiological and behavioural biometric EMG 

signals. Physiological EMG electrical signals that occur in the 

arm muscles during voluntary wrist behaviour movements of 

the person cannot be copied, recorded, or played by others. 

The model developed in this study provides higher security 

than the existing conventional methods. Banks, Military 

zones requiring high security, R&D and Test centers, etc. 

Biometric recognition systems, iris, and fingerprint 

encryption methods can be copied using contact lenses and 

latex gloves. However, since EMG signals, obtained with 

physiological and behavioural movements, cannot be copied 

in person recognition/classification problems, it is thought to 

provide very high security. 

In addition, the proposed method is thought to be used in 

wearable bioarmband sensor devices and to be used in real-

time person recognition/classification problems. 
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