
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

1Abstract—With the widespread use of embedded software

in consumer electronics, automotive industry, medical devices,

and industrial environments, embedded software testing is

gaining significance as an indispensable part of development

and deployment of embedded products. With more than 20

years of research, development, and testing of various

consumer technologies and products based on digital signal

processors (DSPs) and advanced reduced instruction set

computers (ARMs), we obtained insight into typical embedded

development process and testing, and the pros and cons of

various testing approaches and environments. In this paper, we

propose the Smart Multi-Agent Framework based on IoT and

Jenkins agents, customised for audio technologies in the Home

Audio domain. We evaluated our solution on several complex

immersive audio technologies implemented on a multicore

DSP. Our uniform, customised, fully automated approach

proved to be time efficient, error resilient, easy to replicate and

use across all development, certification, and deployment

phases of the product life cycle.

 Index Terms—Home Audio; Testing; Framework; IoT;

Jenkins; Automatization.

I. INTRODUCTION

For the past 10 years, the new generation of immersive

audio technologies extended its presence in consumer space

and therefore significantly increased complexity of home

theatre (HT) equipment. The first generation of audio

technologies is related to the reproduction of stereophonic

sound on two loudspeakers, with limited frontal sound field

[1], [2]. The second generation added a surround experience

[3], adding left, right, and back channels (5.1 or 7.1

loudspeaker configuration). Finally, immersive or 3D audio

technologies added height sound dimension, with

loudspeakers above and below the listener [4]–[6]. A richer

sound experience also implies higher bit rates (192 kHz

sampling frequency, 32 bits per sample, up to ~50 Mb/s

compressed bit rate), now, for the first time, comparable to

video bit rates. Typical audio/video receiver (AVR) or

sound bar (SB) software stack contains entire audio

portfolio with spatial sound technologies as their main

business driver: channel-based decoders, object-based

Manuscript received 16 November, 2022; accepted 17 January, 2023.

technologies, virtualisers, various post-processing

technologies (such as bass managers, dynamic volume

control, parametric equalizer, and the like), and all kinds of

custom-made audio which is providing differentiation

between manufacturers. A typical example of the audio

decoding and post-processing chain (Fig. 1 and Fig. 2)

shows the multiplicity of audio scenarios within audio video

receivers (AVR) and sound-bars systems (SB).

From the hardware point of view, HT products are based

on digital signal processor (DSP) and/or advanced reduced

instruction set computer (ARM) platforms, and they provide

various connectivity options and sources: multiple high-

definition multimedia interfaces (HDMI), different wireless

interfaces (for audio streaming), optical inputs, USB,

headphone jacks, and multiple surround and height effect

speakers layout. In our previous work, we discussed

complexity of such devices that comes from inner-

connectivity issues and latency. The root cause comes down

to the flow of the video signal, which must go through AVR

- an audio processing and traditionally central component of

HT [7].

The diversity of audio technologies and the variety of

audio concurrencies and scenarios of usage imply that

testing of such technologies and equipment is becoming

more complex as well.

The biggest part of the HT audio software stack is

protected by intellectual property (IP) rights, meaning that

prior to reaching the market, each technology/product must

achieve official certifications, done by IP providers. The

goal of certification from IP vendor perspective (such as

Dolby, DTS, Fraunhofer, or Dirac) is to ensure intended

audio quality, end-user experience, as well as correct

branding and usage of logos and trademarks. There are

typically two levels of certification: IC certification (chip

level) and product system certification.

IC certification means that algorithm implementation for

a particular embedded platform is tested to ensure that it is

functionally correct, that it meets qualitative acceptance

criteria, can perform in real time, and that it implements

specified application interface (API) correctly. IC certified

technologies are used in final system integration, most often

by original equipment/design manufacturers (OEM or

Smart Multi-Agent Framework for Automated

Audio Testing

Jelena Kovacevic1, *, Uros Radujko2, Miodrag Djukic1, Teodora Novkovic2
1Department of Computer Communications, Faculty of Technical Sciences, University of Novi Sad,

Serbia
2RT-RK Computer Based Systems,

Novi Sad, Serbia
*jelena.kovacevic@uns.ac.rs, uros.radujko@rt-rk.com, miodrag.djukic@uns.ac.rs,

teodora.novkovic@rt-rk.com

https://doi.org/10.5755/j02.eie.33222

59

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

ODM). Before reaching the market, the product (containing

several IP protected technologies) needs to be certified and

approved by IP providers, but this time with a focus on

integration of the certified IC library into the system and its

interaction with the rest of the products’ system. The

certified product goes to the market after additional

intensive in-house testing, such as spot and stress testing.

During product lifetime, testing is performed to replicate

and resolve all potential bugs, features, and issues reported

by users.

Before submitting audio technology to IC and Product

system certification, it is required to execute in-house

certification (on the developer’s site, often called “ready to

certificate” testing) and to prepare the certification package

containing the software and hardware to be assessed. After

successful in-house testing, the certification package is sent

to IP provider, and that starts the official certification

process.

Years of supporting audio technology certifications with

different IP providers and OEMs/ODMs showed that it is a

complicated and a time-consuming process. The testing

ecosystem, development board and appropriate software

package, as a part of certification package, needs to be

properly setup in IP providers laboratory, prior to official

certification testing starts. That process, initial hardware and

software setup, is often lasting for weeks due to

documentation flows or not thorough reading of provided

documentation (which is very often happening), different

hardware/software setup, different equipment, inexperienced

testers who are executing tests, various problems with

drivers and software versions, software installations, and

wrong assumptions. Our experience shows that high

percentage of reported test failures are related to a bad

HW/SW setup and not the technology itself.

Testing methodologies, processes, tools, level of test

automation, and test hardware varies even within teams

working on the same product (for example, software

developers and application engineers rarely use the same

tools and test setups). Off-the-shelf testing tools are seldom

used due to specific home audio test equipment, price, and

inability to cover all test phases.

This poses several problems. How can we simplify and

speed up the certification process? How to ensure the same

software and hardware setup on different premises, across

different teams and companies (IP provides laboratory,

product developers laboratories, ODMs, OEMs)? How to

exclude all human-related errors? How to enable robust

remote testing, as working from home becomes standard

after Covid? How can we use the same testing ecosystem

throughout the lifetime of the product?

PCM data – up to 12 channels

Custom mixer

Used for any additional custom

mixing

Band Expander

Used for PCM input

streams only

PCM with deemphasis

AAC

Signal Generator

DSD decoder

DTS:X E1MR-I with support for legacy decoders (MA, HRA, LBR, DTS-ES, DTS, DTS 96/24) and IMAX

Dolby Atmos includes decoders DDPlus (decodes

AC3), Dolby TrueHD, Dolby MAT

Dolby Atmos Object Audio

Renderer

Dolby Atmos Object Audio

Renderer

Encoded

data

Up to

8ch

Down by2

Up to

8ch

Up to

8ch

Down by4 BXR

2ch 2ch

Crossbar 32

Up to

32ch

Up to

32ch

Atmos CAR

(standalone mode)

Neural:X

(standalone mode)

Smart Mixer

Up to

8ch

Up to

8ch

Up to

32ch

Up to

32ch

Up to

16ch

Up to

16ch

Up to

32ch

Up to

32ch

Pl2Z
Up to

8ch

Up to

10ch

Fig. 1. Typical audio decoding chain in an HT system.

Calibration

IRC Tone Ctrl Bass Mgr
Parametric

EQ
Delay Audio Mgr

2ch

14ch 14ch

14ch

Custom Postprocessing Modules

PP_Remap Tone Ctrl Bass Mgr DES Bass Mgr
Parametric

EQ
Delay Audio Mgr14ch 14ch

Delay Audio Mgr
CinemaEQ

(NSP)

Fig. 2. Example of audio post-processing in HT system.

In this paper, we try to solve those problems by proposing

a comprehensive, automated, highly efficient testing

approach named “Smart Multi-Agent Framework for

Automated Audio Testing”, with intention to cover testing

through the entire audio product life cycle. The proposed

framework is as follows:

 Easy to use - enables on-click installation of complete

software package (tools and technology to be evaluated)

and simple hardware setup. This allows easy replication

of the same testing ecosystem on different premises,

which simplifies and accelerates the certification process

significantly;

 Comprehensive - the same testing ecosystem can be

used in development, certification, deployment, and

product support phase;

60

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

 Automated - excluding human errors from both test

execution and test setup;

 Versatile - enabling both local and remote testing with

the same testing environment. Local testing is used

mainly for unit tests on developers’ computers, and the

remote approach relies on dedicated test stations. Remote

testing could be used for both internal testing and

certification testing;

 Hardware efficient - highly efficient usage of all test

stations. The same dedicated test stations could be used

across all teams and development phases, 24/7;

 Stable - the framework enables stable over

night/weekend testing based on smart plugs and IoT

technology;

 Scalable - allows one to add tests stations and expand

the testing throughput easily;

 Time efficient - this framework is highly customised for

Home Audio, and it has no redundant or unnecessary

feature.

The Smart Multi-Agent Framework is evaluated during

the development and certifications of various immersive

audio technologies on a 4 core DSP CS49844 processor [8].

II. RELATED WORKS

Testing is one of the last and probably the most important

parts of the development of new product life cycle. In [9],

Bajer, Szlagor, and Wrzesniak provide a description of the

chosen aspects of testing software for embedded devices,

describe the advantages of automated testing, give an

overview of many different types of tests (black and white

box testing, functional tests, integration tests, certification

tests, etc.) that are used in embedded systems. Knowledge of

the presented techniques is strongly recommended for all

scientists who design software for embedded devices.

Automation has been one of the main drivers of testing:

reducing human intervention meant not only predictable,

reliable, and reusable results, but also important cost

reduction and increased inter-vendor portability [10]. In

[10], Portolan showed how several innovations in the fields

of automated testing are slowed down or made unnecessary

complicated due to legacy implementation choices, which

are usually implicitly accepted and considered unavoidable.

He introduced a more nuanced flow based on the experience

of computer science, to be able to overcome most of the

actual technological locks, and propose a solution better

suited for future evolution.

In [11], Garousi, Felderer, Karapicak, and Yilmaz gave an

overview of the current state of the art and practise of

embedded software testing. The paper shows that the largest

number of works in the field of testing refers to test

execution, test evaluation, and test automation.

During the research, we focused on the related literature

that seemed most relevant:

 Embedded systems testing;

 Framework for automated testing;

 Multi-agent testing;

 IoT Testing Framework.

To identify relevant studies and articles in our field of

work, we used the following search terms: “Automated

testing framework”, “Automatic testing”, “Multi-agent

testing framework”, “IoT testing systems”, “Embedded

system testing”, etc.

We found papers [12]–[14] that propose similar multi-

agent testing frameworks, but none of them use Smart Plugs

and IoT technology. Smart Plugs save a lot of time during

testing, allowing testers to remotely troubleshoot problems

in the event of a power outage or hardware lockup.

Multi-agent systems have been used in a variety of fields,

such as transportation, healthcare, and manufacturing, to

improve efficiency, flexibility, and scalability. These

systems consist of multiple agents working together to

achieve a common goal. In the context of automated audio

testing, Multi-agent systems can be used to improve testing

efficiency and effectiveness by dividing the testing process

into multiple tasks, which can be performed simultaneously

by different agents. Falco and Robiolo [15] proposed a

systematic review of the literature to understand the

progress of multi-agent systems from 2009 to the present.

Agents are autonomous, proactive, adaptive, and aware of

context. They often deliver the functionality through

emergent behaviours that involve many agents. Thus, the

correctness of their behaviours must be judged in the context

of the dynamic and open environments and the histories they

have experienced in previous executions.

The rapid development of communication and computer

technology has accelerated the application of cloud

computing. Cloud testing can refer to testing cloud-based

systems (testing of the cloud) or to leveraging the cloud for

testing purposes (testing in the cloud): both approaches (and

their combination into testing the cloud in the cloud) have

drawn research interest [16]. Bertolino et al. [16] have

published a systematic review of the literature that covers

these research directions of cloud testing.

Communication between the Gateway and Smart Plugs

based on the ZigBee protocol will be described in Section

IV. This WISE protocol was described in detail by Papp,

Pavlovic, and Antic [17], and we will use it in our work for

the mutual communication of smart plugs and gateway.

In general, related works show that there is a small

number of works related to frameworks for automated

testing of embedded systems based on IoT technologies.

III. OVERVIEW OF THE SMART MULTI-AGENT FRAMEWORK

SYSTEM

Key components of the Smart Multi-Agent Framework

are illustrated in Fig. 3. Each component will be described

in more detail in separate chapters, but first a system

overview is given, with a short description of the

components and the way they are connected.

The heart of the proposed system is test station, a

hardware and software ecosystem designed to cover all

audio-specific testing. In addition to a regular PC, several

specific hardware components are an important part of the

station. Their purpose is to generate and deliver inputs and

capture outputs of the device under test (Device Under Test

(DUT)), as well as to control it. Test stations also require

specific software stack to be able to receive and understand

test requests, to properly execute required tests and control

the mentioned specific hardware components, to assess and

report results, etc. Some part of the software stack depends

on a particular technology/product being tested, but

61

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

hardware setup usually does not need to change.

All electrically powered components of the test station are

connected to the power grid through Smart plugs. That way

they can be automatically restarted, if needed. This feature

ensures that a test station can always recover the test setup

and continue its work.

Fig. 3. Overview of the Smart Multi-Agent Framework System.

The test stations are connected to the Local Area Network

(LAN) using Transmission Control Protocol/Internet

Protocol (TCP/IP). That is the channel for reporting results

and communicating with the automation server, which can

send jobs to test stations. Automation servers can also

perform load balancing when multiple test stations execute a

single test group.

Smart plugs, on the other hand, are connected to the IoT

network. It is based on the ZigBee protocol [18], has one

central gateway, and multiple smart plugs are organised in

the mesh topology. The plugs are controlled by the test

stations through an IoT cloud service.

IV. TEST STATION

The Test Station is a central part of Smart Multi-Agent

Framework. It is a testing environment tailored for testing of

audio-based products. It includes both dedicated hardware

and a specially designed software stack.

A. Test Station Hardware

The Test Station hardware setup is shown in Fig. 4, and it

consists of the following:

1. Computer (PC) as main station;

2. Device Under Test (DUT): development board,

evaluation board, or actual product such as AVR or SB;

3. External sound card. The sound card is used to deliver

signals from computer to DUT and record digital outputs

from DUT. It is usually custom made as it must allow the

reproduction of compressed multichannel audio signals

up to 192 kHz/32-bit resolutions. Likewise, this sound

card must be capable of recording uncompressed raw

data, which implies the possibility of recording more than

15-channel outputs. The Test Station is based on in-house

developed audio grabber, named “Real Time Audio

Grabber” (RT-AG) [19]–[21];

4. Nvidia graphic card is used to generate HDMI input,

as some IP providers specifically rely on an application

for input stream generation that is based on this card;

5. Audio Analyzer is used typically in System and Product

Level Testing, for simultaneous analyses of analog

multichannel signals. It is used to capture analog audio

signals and provide HDMI input for DUT. We use

Analog Precision APx585 [22], but only one Test Station

has this equipment due to the APx585 very high price;

6. Smart IoT-based power plug: computer, DUT, RT-AG,

and APx585 are all connected to the smart plug, which

allows remote hardware resetting of the station.

Fig. 4. Test Station hardware and interfaces.

B. Test Station Software Stack

Test Station software stack is designed in three software

layers (Fig. 5):

1. Application Layer includes the following software

components:

 Jenkins agent: The test station is designed for both local

and remote testing. Installation of Jenkins agent (client)

and adding station to the network allow connection to

local Jenkins server (Automation server) and remote

testing. Additionally, Jenkins server enables distribution

of test cases on multiple Test stations;

 Test execution framework: Tool for the automated

execution of test cases. It executes tests from the test plan

sequentially. The test plan can be full test cycle coverage

or partial, along with the technology-specific test

environment configuration file, it makes input parameters

for test execution;

 Technology-specific test environment: The software

component of the test environment, result of the

installation of the technology-specific test environment

(explained in Chapter VII in more details);

2. Middleware layer: The middleware layer is the Test

Executor Interface. The Test Executor will be described

further in a separate chapter;

3. Hardware abstraction layer: This software layer

includes all necessary low-level software: drivers for

external sound cards (RT-AG), Audio Precision driver,

SDK development platform, and Nvidia graphic card

driver.

In some specific cases, audio technology environment

may require installation of additional software: a specific

version of the Python interpreter or tools for Unix-like

system support for Windows (VM).

62

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

Fig. 5. Test Station software stack.

V. IOT-BASED SMART PLUG

If during a test cycle the DUT becomes unresponsive, it

effectively stops the cycle. Usually, a simple restart of the

device, followed by repeated test setup, is enough to

continue running other tests in the cycle. The reasons that

can cause the device to not respond can be various. There

are some environmental reasons, such as power surge or

something similar. For example, the device under testing is

often on a development board, and it tends to be more

sensitive to such things. Also, software that is being tested

can fail in such a way that it leaves the device in an

unresponsive state (by accessing unintended parts of

memory, etc.). In any case, the goal of our test framework

was to enable automated detection of those occurrences and

automated recovery and continuation of testing. When these

things are done manually, several hours or days of testing

time can be lost. The recovery itself does take some time,

but the main problem is that often when tests are being run

(over night or during the weekend), there is no one available

to detect the problem and do the recovery.

Smart Multi-Agent Framework uses the Oblo ZigBee

Smart Plug [23] to turn off the power of the device and turn

it back on, restarting it in that way. The plug is part of the

cloud-based Oblo IoT environment [17] and therefore can

be controlled remotely using the cloud API. That is why the

cloud API client application is part of the softer stack on test

stations.

When a test fails because the device is unresponsive, Test

Executor, which runs on the PC of the test station, will send

a command to the smart plug to turn off the power, then wait

for five seconds, and finally will send the command to turn

the power on again.

VI. TEST EXECUTOR - AUTOMATED TESTING TOOL

The Test Executor is a software tool for test case

automation. It enables automatic execution of the entire test

cycle.

A technology-specific test environment is prerequisite for

test execution in Smart Multi-Agent Framework, and it

consists of:

 Test database in the form of a CSV document, which

represents a summary of all tests defined in a package and

contains the following information on every test case:

name of the test, input and output test stream; location of

test folders, test streams/vectors; command-line

parameters for configuring firmware; number of channels

and sample rates, bit width, mode-specific configurations

of source code;

 Configuration file represented in the form of the .ini

file, defining technology-specific information such as tool

for preparing input file, DUT configuration tool (e.g.,

number of input/output channels, sampling frequency),

paths where other streams and tools are placed, etc.;

 Test handler (Technology-specific Test Executor

interface) is a Python implementation of a pre-defined

interface;

 Installation files - installers of any software which

needs to be installed for successful test execution such as

SDK, Python, Cygwin, etc.;

 Load files - flash boot image with developed audio

library to be downloaded to IC;

 Tools - various tools for formatting streams, DUT

configurations tool (enable/disable virtualisation (enhance

for speaker or headphones), set reproduction channels, set

dynamic range control, enable/disable upmix, etc.);

 Evaluation tools - evaluation tools provided by IP

house.

Every test case consists of the following steps:

1. Fetch input stream;

2. Prepare input stream for external sound card - audio

grabber playback;

3. Generate configuration file using configuration tool

with parameters specified in test database;

4. Load image file with generated configuration file;

5. Play/Record stream;

6. Prepare recorded stream for evaluation: align referent

and output stream, split recorded stream if needed;

7. Store recorded data in folder pre-defined by evaluation

tool;

8. Clean up.

If necessary, test cases can be executed manually, via the

command prompt. The Test Executor makes this process

faster and more reliable, without inevitable human errors.

Additionally, Test Executor as a tool allows automatisation

of the complete testing process, not only execution.

A. Test Executor Workflow

To run Test Executor, the user must specify the path to

the Configuration file that contains the test environment

variables and tests to be executed during the test cycle.

During execution, if the test is marked as FAIL or timeout

expiries, the Test Executor will check the HW. If a test

reaches a pre-defined timeout for the test execution, Test

Executor will check the hardware status. If the hardware is

63

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

unresponsive, the Test Executor will trigger a smart plug

reset via the integrated IoT client application. The test case

that reaches timeout will be flagged as failed. The Test

Executor will restart the hardware and resume testing,

following the test case list. In this way, the entire test cycle

will not be lost due to one or more bad test cases. Test

Execution workflow is shown in Fig. 6.

Fig. 6. Workflow of the Test Executor.

B. Software Architecture

The Test Executor is designed in three interconnected

software modules: Test Executor Framework, Test Executor

Interface, and Test Executor Engine (Fig. 7.).

Fig. 7. Design of the Test Executor software.

The Test Executor Framework (Fig. 8) is a module that

provides a command-line user interface, receives input data,

and passes it to the Test Executor Interface. It consists of

command-line parsers (test plan parser and configuration

parser), web client applications (IoT cloud client and

MySQL database client), test report module (for creating

and managing log files), and hardware communication

status module that communicates with testing hardware to

determine if hardware is unresponsive.

Fig. 8. Software modules for the Test Executor Framework.

The Test Executor Interface is a technology-specific

implementation of test case steps. Every method of Test

Executor Interface represents one step in the test execution

flow. Implementation of those methods relies on pre-defined

functionalities in the Test Executor Engine, which is the

module that communicates with the hardware setup. The

inter-module dynamic is shown in Fig. 9.

Fig. 9. Inter-module dynamic of the Test Executor.

VII. AUTOMATION SERVER

The Jenkins server [24] enables automation of software

development related to building, testing, and deployment,

facilitating continuous integration and continuous delivery.

It is based on multiple clients’ severe topology.

A. Jenkins Job

To execute tests on the Jenkins server, a defined and

developed Jenkins job is required. Jenkins job is a set of

sequential user-defined tasks. In the Smart Multi-agent

Framework, one Jenkins job represents one test cycle:

turning on and checking the hardware setup, installing

technology-specific test environment, testing execution, test

validation, and final evaluation of audio technology.

Within Jenkins job, every step prior to test execution is

fully automated (Fig. 10). This automation enables testing

during non-working hours and weekends.

The Jenkins job is executed on the Jenkins agent, which

can be installed on a local computer or a dedicated Test

Station. This enables local and remote testing. Once created,

64

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

the Jenkins job can be called and executed across all

development and certification phases. Additionally, the

same Jenkins job can be used in both the deployment phase

and the product support phase, as it allows for easy

execution of customised test plans.

Fig. 101. Jenkins job - fully automated test cycle.

B. Multi-Agent Testing

One test cycle comprises several test cases (sometimes it

is up to a few thousand cases). The length of the input test

stream (test vector) dominates the execution time of a test.

Test streams for each test case differ in their duration: some

are a few seconds long, and some last for several minutes.

To obtain the duration of each test case, after the first

cycle is run, the test execution time is recorded and stored

on the local MySQL server. This information allows for fair

distribution and splitting of one test cycle on several Jenkins

agents simultaneously. In this way, the time required for one

test cycle could be significantly reduced. The main idea is to

divide the entire test cycle into multiple test stations: the

more Test Stations (Jenkins agents) are available, the less

time is needed for one test cycle.

Currently, the test division algorithm is quite simple and

is based on the number of available Jenkins agents and the

execution time of each test case. Before starting a new test

cycle, the Jenkins server triggers the MySQL client

application to fetch execution time from the database. Then,

it splits the test plan into several smaller tests plans of

approximately the same duration. Each newly generated test

plan subset is forwarded to the first idle test station.

This approach allows different test scenarios, e.g., we can

divide only tests flagged as failed or tests executed on faulty

test station to try at another one that works properly and the

like.

Since all test cases can be executed independently, it is

easy to utilise multiple test stations for a single test cycle.

The amount of speed gain that can be gained in this way

depend on how evenly the load can be distributed at the

available stations. The execution time of the test case is

linearly dependent on the input stream length, so this load

balancing can be reduced to the multi-way number

partitioning problem [25]. Furthermore, it is better that

partitioning happens ahead of time, for all test cases (instead

of dynamically sending one test case jobs to stations),

because that way only one job per station is created, which

reduces the communication overhead. That is why input

stream lengths are recorded on the first test run and that

information is used to partition test case set.

There are several algorithms that find the optimal solution

to a multiway partitioning problem, but they are relatively

complex and computationally intensive. In practise though,

very often, much simpler, heuristic algorithms give good

enough results. We rely on simple Greedy partitioning

algorithm (also known as longest processing time algorithm)

where test stream times are sorted in non-increasing order

and then algorithm goes through the list and places current

test to the partition that has the shortest cumulative length of

test streams. Ideal partitioning will result in completely

equal partitions and their length (size) would be the total

length divided by the number of partitions. Of course, ideal

partitioning is usually not possible, so optimal is one where

the difference between the largest and the smallest partition

is minimal. Greedy partitioning algorithm that our solution

uses will never give a result that is more than 1/3 worse than

optimal [26]. However, that is very dependent on the input

value set, and in general large sets with smaller values tend

to cause even smaller deviation of the resulting partitioning

from the optimal one.

VIII. RESULTS

For purposes of testing the Smart Multi-Agent

Framework, we used DSP evaluation board CRD49834 with

DSP CS49834 [8], [24], both made by Cirrus Logic, Inc.

(Fig. 11).

We evaluated our testing approach on several immersive

audio technologies implemented on CS49834 DSP.

Fig. 112. Test Station hardware setup: CRD49834 DSP Evaluation Board

and RT-AG.

Our first experiment was to compare manual vs.

automatic system setup as a prerequisite for any kind of

testing, including certification testing. When interviewing

tester engineers about the time it took to set up the Test

Station and install the certification package, the answer we

received was “not long”. Further investigation discovered

that “not long” is only happening when there are no

problems with software versions, when the operating system

is updated, when tools are already installed, etc., and this

was rarely happening.

To objectively evaluate the proposed full testing

automation, we performed full coverage testing of MPEG-H

65

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

3D Audio, implemented on four cores CS49834 DSP.

Testing was based on 1857 test vectors. Firstly,

technology-specific test environment was created according

to steps defined in Section VI. Then, we prepared

certification package which includes both hardware and

software needed for testing. Two identical Test Stations

were used. The first one was set up manually, and the

average time for set up was around 2 hours. During this

experiment, test engineers were focused on their work (no

coffee breaks, social media chats, or the like). After the

setup, the Test Executor was manually called, as well as

results evaluation.

On the other side, the full automated Jenkins job was run

on the other Test Station. The results, including detailed

time measurements of the Jenkins job steps, are given in

Table I.

TABLE I. FULL TEST AUTOMATION VS. MANUAL TEST

ENVIRONMENT SETUP.

Full test automation

(one Jenkins job)
Time Action Time

Download CL SDK 0:00:01 Setup of the manual test

station

~2:00:00

Install CL SDK 0:02:10

Prepare flash image 0:00:03

Flash-boot 0:02:18

Get test package from

SVN
0:15:00

Unzip tests 0:02:30

Copy input streams to

pre-defined location
0:02:15

Execute tests with Tests

Executor
11:32:58

Execute tests with the

Test Executor

12:00:00

Write to data base 0:01:55

Evaluate results 2:52:00
Evaluate

results
~3:00:00

14:51:10 17:00:00

We performed similar testing with other technologies as

well, with same results: automatic Test Station setup is

much faster, excluding human error, and fully repeatable.

Once developed, Jenkins job can be called and executed

during the entire audio product lifetime.

In the second experiment, we wanted to measure the

efficiency of our Smart Multi-Agent Framework on the

entire testing time of complex audio technology, composed

of several components. We performed testing with and

without Jenkins automation on the component level (single

component testing) and integration level (the entire audio

chain testing: decoder, renderer, and post-processing). The

number of test cycle that are run is the number of times that

the full coverage test is performed during development,

certification, and deployment of technology. The average for

this technology is around thirty-six, but this depends on how

complex technology is, how the project is managed, what is

the coding and development style, etc. As can be seen in

Table II, our approach saved time by up to 28 %.

In our third experiment, we wanted to evaluate multi-

agent approach of our framework, and how efficient it is

related to one cycle time.

In Table III, we show the resulting portioning for test sets

of four different technologies. In each case, we partition into

1 to 6 groups, using the Greedy partitioning algorithm. We

compare the longest partition to the average length (total

length divided by number of groups) and an express relative

deviation. At worst, the maximum partition length is 2 %

longer than the average length. Therefore, the results

confirm that real life test sets can be easily partitioned, and

that liner speedup can be expected with the increase of the

number of test stations.

In our final experiment, we wanted to evaluate Smart

Plugs. Analysing all 220 complete test cycle runs, we

determined that in about 7.7 % of the instances, the Smart

plug was used to reset the system and continue testing.

Almost all complete test cycle runs were done overnight or

during the weekend. Therefore, if manual recovery was the

only option, at least one full day would be lost in each case,

a total of 17 days. This just gives a rough quantification of

the usefulness of this approach, but it does consider that

very often test cycles are run close to a deadline, so the loss

of time is more critical.

Also, there are some qualitative benefits that stem from

the fact that engineers can now work remotely.

TABLE II. COMPLEX AUDIO TECHNOLOGY TESTED WITH AND WITHOUT SMART MULTI-AGENT FRAMEWORK.

Technology
Number of

test cases

Number of

test cycle

runs

Cycle time

manual env.

setup (h)

Cycle time

with

Jenkins

automation

(h)

Entire

testing time,

manual env.

setup (h)

Entire testing

time with

Jenkins (h)

Time savings

Integration Level Testing

Lossy Audio Decoder
1647 57 28 26 1596 1482 7 %

Component-Level Testing

Lossy Audio Decoder
1674 51 9 6.4 459 326.4 29 %

Integration Level Testing

Audio Transmission Decoder
1228 32 23.5 21.6 752 691.2 8 %

Component-Level Testing

Audio Transmission Decoder
402 20 8.5 6.4 170 128 25 %

Integration Level Testing

Lossless Audio Decoder
681 40 13 10.9 520 436 16 %

Component-Level Testing

Audio Object Renderer
1192 20 7.51 5.4 150.2 108 28 %

66

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

TABLE III. PARTITIONING TEST SET BASED ON INPUT STREAM LENGTHS, USING GREEDY ALGORITHM.

Technology
Number

of tests
Partition lengths

Number of partitions (Test Stations)

1 2 3 4 5 6

Integration Level

Testing Lossy Audio

Decoder

1647

Average (ideal) (s) 89232.5 44616.25 29744.17 22308.13 17846.5 14872.08

Maximal (s) 89232.5 44620.9 29761.8 22360.8 17929 14980.1

Deviation from average (%) 0 0.01 0.06 0.24 0.46 0.73

Integration Level

Testing Audio

Transmission Decoder

1228

Average (ideal) (s) 72309.6 36154.8 24103.2 18077.4 14461.92 12051.6

Maximal (s) 72309.6 36164.4 24170.1 18129.3 14526.2 12089.5

Deviation from average (%) 0 0.03 0.28 0.29 0.44 0.31

Integration Level

Testing Lossless

Audio Decoder

681

Average (ideal) (s) 36675.2 18337.6 12225.07 9168.8 7335.04 6112.53

Maximal (s) 36675.2 18404 12325.6 9282.6 7461.3 6240.6

Deviation from average (%) 0 0.36 0.82 1.24 1.72 2.1

MPEG-H 1857

Average (ideal) (s) 43110 21555 14370 10777.5 8622 7185

Maximal (s) 43110 21557.6 14370.3 10786.8 8627.2 7190.3

Deviation from average (%) 0 0.01 0.01 0.09 0.06 0.07

IX. CONCLUSIONS

This paper proposes a Smart Multi-Agent Framework for

Automated Audio Testing, which utilises multiple agents to

perform various tasks related to audio testing. The

framework is designed to be flexible, adaptable, and

scalable, making it suitable for use in a wide range of audio

testing scenarios. Our results show that the use of this

framework can help improve the efficiency and

effectiveness of audio testing, reducing the cost and time

required for testing, and improving the overall development

process.

For our future work, we plan to minimise human

involvement in testing process, as much as possible. First,

we plan to enable runtime generation of test cases, currently

developed offline. Then automate generation of technology-

specific test environment, partially or fully, currently

developed by test engineers. Finally, our research will be

guided by feedback from IP providers, developers, system

integration and test engineers who are starting to use our

approach.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] R. Alexander, The Inventor of Stereo: The Life and Works of Alan

Dower Blumlein. Routledge, 2000.

[2] J. Maes and M. Vercammen, Digital Audio Technology: A Guide to

CD, MiniDisc, SACD, DVD(A), MP3 and DAT. Waltham: Focal

Press, 2001. DOI: 10.4324/9780080494531.

[3] J. Herre et al., “Spatial audio coding: Next-generation efficient and

compatible coding of multi-channel audio”, in Proc. of 117th Conv.

Aud. Eng. Soc., 2004, pp. 1–13.

[4] S. R. Quackenbush and J. Herre, “MPEG standards for compressed

representation of immersive audio”, Proceedings of the IEEE, vol.

109, no. 9, pp. 1578–1589, 2021. DOI:

10.1109/JPROC.2021.3075390.

[5] B. Van Daele, “The immersive sound format: Requirements and

challenges for tools and workflow”, Int. Conf. Spatial Audio (ICSA),

2014.

[6] J. Herre, J. Hilpert, A. Kuntz, and J. Plogsties, “MPEG-H audio - The

new standard for universal spatial/3D audio coding”, Journal of the

Audio Engineering Society, vol. 62, no. 12, pp. 821–830, 2014. DOI:

10.17743/jaes.2014.0049.

[7] N. Pekez, R. Celic, R. Peckai-Kovac, and J. Kovacevic, “Measuring

audio processing latency for lip-sync purposes in DSP-based home

theatre systems”, in Proc. of 2019 27th Telecommunications Forum,

2019, pp. 1–4. DOI: 10.1109/TELFOR48224.2019.8971274.

[8] CS49834/44 description page, Cirrus Logic Corporation. [Online].

Available: https://www.cirrus.com/products/cs49834-44/

[9] M. Bajer, M. Szlagor, and M. Wrzesniak, “Embedded software testing

in research environment. A practical guide for non-experts”, in Proc.

of 2015 4th Mediterranean Conference on Embedded Computing

(MECO), 2015, pp. 100–105. DOI: 10.1109/MECO.2015.7181877.

[10] M. Portolan, “Automated testing flow: The present and the future”,

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 39, no. 10, pp. 2952–2963, 2020. DOI:

10.1109/TCAD.2019.2961328.

[11] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yılmaz, “What we

know about testing embedded software”, IEEE Software, vol. 35, no.

4, pp. 62–69, 2018. DOI: 10.1109/MS.2018.2801541.

[12] S. Wang and H. Zhu, “CATest: A test automation framework for

multi-agent systems”, in Proc. of 2012 IEEE 36th Annual Computer

Software and Applications Conference, 2012, pp. 148–157. DOI:

10.1109/COMPSAC.2012.24.

[13] J. Gao and Y. Lan, “Agent-based distributed automated testing

executing framework”, in Proc. of 2009 International Conference on

Computational Intelligence and Software Engineering, 2009, pp. 1–5.

DOI: 10.1109/CISE.2009.5366469.

[14] C. Zhao, G. Ai, X. Yu, and X. Wang, “Research on automated testing

framework based on ontology and multi-agent”, in Proc. of 2010

Third International Symposium on Knowledge Acquisition and

Modeling, 2010, pp. 206–209. DOI: 10.1109/KAM.2010.5646259.

[15] M. Falco and G. Robiolo, “Tendencies in multi-agent systems: A

systematic literature review”, clei electronic journal, vol. 23, no. 1,

2020. DOI: 10.19153/cleiej.23.1.1.

[16] A. Bertolino et al., “A systematic review on cloud testing”, ACM

Computing Surveys, vol. 52, no. 5, pp. 1–42, 2019. DOI:

10.1145/3331447.

[17] I. Papp, R. Pavlovic, and M. Antic, “WISE: MQTT-based protocol for

IP device provisioning and abstraction in IoT solutions”, Elektronika

ir Elektrotechnika, vol. 27, no. 2, pp. 86–95, 2021. DOI:

10.5755/j02.eie.28826.

[18] P. Dhillon and H. Sadawarti, “A review paper on Zigbee (IEEE

802.15.4) standard”, International Journal of Engineering Research

& Technology (IJERT), vol. 3, no. 4, pp. 141–145, 2014.

[19] N. Pekez, A. Popovic, and J. Kovacevic, “Performance analysis on

TCP/IP audio streaming in point-to-point communication”, in Proc. of

2019 Zooming Innovation in Consumer Technologies Conference

(ZINC), 2019, pp. 70–75. DOI: 10.1109/ZINC.2019.8769384.

[20] N. Pekez, N. Kaprocki, and J. Kovacevic, “Implementation of PC

application for controlling RT-AG external sound card”, in Proc. of

2018 Zooming Innovation in Consumer Technologies Conference

(ZINC), 2018, pp. 135–139. DOI: 10.1109/ZINC.2018.8448593.

[21] N. Pekez, A. Popovic, and J. Kovacevic, “Ethernet TCP/IP-based

audio interface for DSP system verification”, IEEE Consumer

Electronics Magazine, vol. 10, no. 1, pp. 45–50. DOI:

10.1109/MCE.2020.2988616.

[22] Audio Precision Home page, Audio Precision, Inc. [Online].

67

https://ieeexplore.ieee.org/xpl/conhome/8433566/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8433566/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8433566/proceeding
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962380
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962380

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 29, NO. 1, 2023

Available: https://www.ap.com

[23] S. Jakovljev, M. Subotić, and I. Papp, “Realization of a smart plug

device based on Wi-Fi technology for use in home automation

systems”, in Proc. of 2017 IEEE International Conference on

Consumer Electronics (ICCE), 2017, pp. 327–328. DOI:

10.1109/ICCE.2017.7889340.

[24] J. F. Smart, Jenkins: The Definitive Guide: Continuous Integration for

the Masses. Newton, MA, USA: O’Reilly Media Inc., 2011.

[25] R. E. Korf, “Multi-way number partitioning”, in Proc. of the 21st

International Joint Conference on Artificial Intelligence, 2009, pp.

538–543.

[26] R. L. Graham, “Bounds for certain multiprocessing anomalies”, The

Bell System Technical Journal, vol. 45, no. 9, pp. 1563–1581, 1966.

DOI: 10.1002/j.1538-7305.1966.tb01709.x.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

68

