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1Abstract—With the widespread use of embedded software 

in consumer electronics, automotive industry, medical devices, 

and industrial environments, embedded software testing is 

gaining significance as an indispensable part of development 

and deployment of embedded products. With more than 20 

years of research, development, and testing of various 

consumer technologies and products based on digital signal 

processors (DSPs) and advanced reduced instruction set 

computers (ARMs), we obtained insight into typical embedded 

development process and testing, and the pros and cons of 

various testing approaches and environments. In this paper, we 

propose the Smart Multi-Agent Framework based on IoT and 

Jenkins agents, customised for audio technologies in the Home 

Audio domain. We evaluated our solution on several complex 

immersive audio technologies implemented on a multicore 

DSP. Our uniform, customised, fully automated approach 

proved to be time efficient, error resilient, easy to replicate and 

use across all development, certification, and deployment 

phases of the product life cycle.  

 
 Index Terms—Home Audio; Testing; Framework; IoT; 

Jenkins; Automatization. 

I. INTRODUCTION 

For the past 10 years, the new generation of immersive 

audio technologies extended its presence in consumer space 

and therefore significantly increased complexity of home 

theatre (HT) equipment. The first generation of audio 

technologies is related to the reproduction of stereophonic 

sound on two loudspeakers, with limited frontal sound field 

[1], [2]. The second generation added a surround experience 

[3], adding left, right, and back channels (5.1 or 7.1 

loudspeaker configuration). Finally, immersive or 3D audio 

technologies added height sound dimension, with 

loudspeakers above and below the listener [4]–[6]. A richer 

sound experience also implies higher bit rates (192 kHz 

sampling frequency, 32 bits per sample, up to ~50 Mb/s 

compressed bit rate), now, for the first time, comparable to 

video bit rates. Typical audio/video receiver (AVR) or 

sound bar (SB) software stack contains entire audio 

portfolio with spatial sound technologies as their main 

business driver: channel-based decoders, object-based 
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technologies, virtualisers, various post-processing 

technologies (such as bass managers, dynamic volume 

control, parametric equalizer, and the like), and all kinds of 

custom-made audio which is providing differentiation 

between manufacturers. A typical example of the audio 

decoding and post-processing chain (Fig. 1 and Fig. 2) 

shows the multiplicity of audio scenarios within audio video 

receivers (AVR) and sound-bars systems (SB).  

From the hardware point of view, HT products are based 

on digital signal processor (DSP) and/or advanced reduced 

instruction set computer (ARM) platforms, and they provide 

various connectivity options and sources: multiple high-

definition multimedia interfaces (HDMI), different wireless 

interfaces (for audio streaming), optical inputs, USB, 

headphone jacks, and multiple surround and height effect 

speakers layout. In our previous work, we discussed 

complexity of such devices that comes from inner-

connectivity issues and latency. The root cause comes down 

to the flow of the video signal, which must go through AVR 

- an audio processing and traditionally central component of 

HT [7]. 

The diversity of audio technologies and the variety of 

audio concurrencies and scenarios of usage imply that 

testing of such technologies and equipment is becoming 

more complex as well. 

The biggest part of the HT audio software stack is 

protected by intellectual property (IP) rights, meaning that 

prior to reaching the market, each technology/product must 

achieve official certifications, done by IP providers. The 

goal of certification from IP vendor perspective (such as 

Dolby, DTS, Fraunhofer, or Dirac) is to ensure intended 

audio quality, end-user experience, as well as correct 

branding and usage of logos and trademarks. There are 

typically two levels of certification: IC certification (chip 

level) and product system certification. 

IC certification means that algorithm implementation for 

a particular embedded platform is tested to ensure that it is 

functionally correct, that it meets qualitative acceptance 

criteria, can perform in real time, and that it implements 

specified application interface (API) correctly. IC certified 

technologies are used in final system integration, most often 

by original equipment/design manufacturers (OEM or 
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ODM). Before reaching the market, the product (containing 

several IP protected technologies) needs to be certified and 

approved by IP providers, but this time with a focus on 

integration of the certified IC library into the system and its 

interaction with the rest of the products’ system. The 

certified product goes to the market after additional 

intensive in-house testing, such as spot and stress testing. 

During product lifetime, testing is performed to replicate 

and resolve all potential bugs, features, and issues reported 

by users. 

Before submitting audio technology to IC and Product 

system certification, it is required to execute in-house 

certification (on the developer’s site, often called “ready to 

certificate” testing) and to prepare the certification package 

containing the software and hardware to be assessed. After 

successful in-house testing, the certification package is sent 

to IP provider, and that starts the official certification 

process. 

Years of supporting audio technology certifications with 

different IP providers and OEMs/ODMs showed that it is a 

complicated and a time-consuming process. The testing 

ecosystem, development board and appropriate software 

package, as a part of certification package, needs to be 

properly setup in IP providers laboratory, prior to official 

certification testing starts. That process, initial hardware and 

software setup, is often lasting for weeks due to 

documentation flows or not thorough reading of provided 

documentation (which is very often happening), different 

hardware/software setup, different equipment, inexperienced 

testers who are executing tests, various problems with 

drivers and software versions, software installations, and 

wrong assumptions. Our experience shows that high 

percentage of reported test failures are related to a bad 

HW/SW setup and not the technology itself. 

Testing methodologies, processes, tools, level of test 

automation, and test hardware varies even within teams 

working on the same product (for example, software 

developers and application engineers rarely use the same 

tools and test setups). Off-the-shelf testing tools are seldom 

used due to specific home audio test equipment, price, and 

inability to cover all test phases. 

This poses several problems. How can we simplify and 

speed up the certification process? How to ensure the same 

software and hardware setup on different premises, across 

different teams and companies (IP provides laboratory, 

product developers laboratories, ODMs, OEMs)? How to 

exclude all human-related errors? How to enable robust 

remote testing, as working from home becomes standard 

after Covid? How can we use the same testing ecosystem 

throughout the lifetime of the product? 
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Fig. 1.  Typical audio decoding chain in an HT system. 
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Fig. 2.  Example of audio post-processing in HT system. 

In this paper, we try to solve those problems by proposing 

a comprehensive, automated, highly efficient testing 

approach named “Smart Multi-Agent Framework for 

Automated Audio Testing”, with intention to cover testing 

through the entire audio product life cycle. The proposed 

framework is as follows: 

 Easy to use - enables on-click installation of complete 

software package (tools and technology to be evaluated) 

and simple hardware setup. This allows easy replication 

of the same testing ecosystem on different premises, 

which simplifies and accelerates the certification process 

significantly; 

 Comprehensive - the same testing ecosystem can be 

used in development, certification, deployment, and 

product support phase; 
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 Automated - excluding human errors from both test 

execution and test setup; 

 Versatile - enabling both local and remote testing with 

the same testing environment. Local testing is used 

mainly for unit tests on developers’ computers, and the 

remote approach relies on dedicated test stations. Remote 

testing could be used for both internal testing and 

certification testing; 

 Hardware efficient - highly efficient usage of all test 

stations. The same dedicated test stations could be used 

across all teams and development phases, 24/7; 

 Stable - the framework enables stable over 

night/weekend testing based on smart plugs and IoT 

technology; 

 Scalable - allows one to add tests stations and expand 

the testing throughput easily; 

 Time efficient - this framework is highly customised for 

Home Audio, and it has no redundant or unnecessary 

feature. 

The Smart Multi-Agent Framework is evaluated during 

the development and certifications of various immersive 

audio technologies on a 4 core DSP CS49844 processor [8]. 

II. RELATED WORKS 

Testing is one of the last and probably the most important 

parts of the development of new product life cycle. In [9], 

Bajer, Szlagor, and Wrzesniak provide a description of the 

chosen aspects of testing software for embedded devices, 

describe the advantages of automated testing, give an 

overview of many different types of tests (black and white 

box testing, functional tests, integration tests, certification 

tests, etc.) that are used in embedded systems. Knowledge of 

the presented techniques is strongly recommended for all 

scientists who design software for embedded devices. 

Automation has been one of the main drivers of testing: 

reducing human intervention meant not only predictable, 

reliable, and reusable results, but also important cost 

reduction and increased inter-vendor portability [10]. In 

[10], Portolan showed how several innovations in the fields 

of automated testing are slowed down or made unnecessary 

complicated due to legacy implementation choices, which 

are usually implicitly accepted and considered unavoidable. 

He introduced a more nuanced flow based on the experience 

of computer science, to be able to overcome most of the 

actual technological locks, and propose a solution better 

suited for future evolution. 

In [11], Garousi, Felderer, Karapicak, and Yilmaz gave an 

overview of the current state of the art and practise of 

embedded software testing. The paper shows that the largest 

number of works in the field of testing refers to test 

execution, test evaluation, and test automation. 

During the research, we focused on the related literature 

that seemed most relevant: 

 Embedded systems testing; 

 Framework for automated testing; 

 Multi-agent testing; 

 IoT Testing Framework. 

To identify relevant studies and articles in our field of 

work, we used the following search terms: “Automated 

testing framework”, “Automatic testing”, “Multi-agent 

testing framework”, “IoT testing systems”, “Embedded 

system testing”, etc. 

We found papers [12]–[14] that propose similar multi-

agent testing frameworks, but none of them use Smart Plugs 

and IoT technology. Smart Plugs save a lot of time during 

testing, allowing testers to remotely troubleshoot problems 

in the event of a power outage or hardware lockup. 

Multi-agent systems have been used in a variety of fields, 

such as transportation, healthcare, and manufacturing, to 

improve efficiency, flexibility, and scalability. These 

systems consist of multiple agents working together to 

achieve a common goal. In the context of automated audio 

testing, Multi-agent systems can be used to improve testing 

efficiency and effectiveness by dividing the testing process 

into multiple tasks, which can be performed simultaneously 

by different agents. Falco and Robiolo [15] proposed a 

systematic review of the literature to understand the 

progress of multi-agent systems from 2009 to the present. 

Agents are autonomous, proactive, adaptive, and aware of 

context. They often deliver the functionality through 

emergent behaviours that involve many agents. Thus, the 

correctness of their behaviours must be judged in the context 

of the dynamic and open environments and the histories they 

have experienced in previous executions. 

The rapid development of communication and computer 

technology has accelerated the application of cloud 

computing. Cloud testing can refer to testing cloud-based 

systems (testing of the cloud) or to leveraging the cloud for 

testing purposes (testing in the cloud): both approaches (and 

their combination into testing the cloud in the cloud) have 

drawn research interest [16]. Bertolino et al. [16] have 

published a systematic review of the literature that covers 

these research directions of cloud testing. 

Communication between the Gateway and Smart Plugs 

based on the ZigBee protocol will be described in Section 

IV. This WISE protocol was described in detail by Papp, 

Pavlovic, and Antic [17], and we will use it in our work for 

the mutual communication of smart plugs and gateway. 

In general, related works show that there is a small 

number of works related to frameworks for automated 

testing of embedded systems based on IoT technologies. 

III. OVERVIEW OF THE SMART MULTI-AGENT FRAMEWORK 

SYSTEM 

Key components of the Smart Multi-Agent Framework 

are illustrated in Fig. 3. Each component will be described 

in more detail in separate chapters, but first a system 

overview is given, with a short description of the 

components and the way they are connected. 

The heart of the proposed system is test station, a 

hardware and software ecosystem designed to cover all 

audio-specific testing. In addition to a regular PC, several 

specific hardware components are an important part of the 

station. Their purpose is to generate and deliver inputs and 

capture outputs of the device under test (Device Under Test 

(DUT)), as well as to control it. Test stations also require 

specific software stack to be able to receive and understand 

test requests, to properly execute required tests and control 

the mentioned specific hardware components, to assess and 

report results, etc. Some part of the software stack depends 

on a particular technology/product being tested, but 
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hardware setup usually does not need to change. 

All electrically powered components of the test station are 

connected to the power grid through Smart plugs. That way 

they can be automatically restarted, if needed. This feature 

ensures that a test station can always recover the test setup 

and continue its work. 

 
Fig. 3.  Overview of the Smart Multi-Agent Framework System. 

The test stations are connected to the Local Area Network 

(LAN) using Transmission Control Protocol/Internet 

Protocol (TCP/IP). That is the channel for reporting results 

and communicating with the automation server, which can 

send jobs to test stations. Automation servers can also 

perform load balancing when multiple test stations execute a 

single test group. 

Smart plugs, on the other hand, are connected to the IoT 

network. It is based on the ZigBee protocol [18], has one 

central gateway, and multiple smart plugs are organised in 

the mesh topology. The plugs are controlled by the test 

stations through an IoT cloud service. 

IV. TEST STATION 

The Test Station is a central part of Smart Multi-Agent 

Framework. It is a testing environment tailored for testing of 

audio-based products. It includes both dedicated hardware 

and a specially designed software stack. 

A. Test Station Hardware 

The Test Station hardware setup is shown in Fig. 4, and it 

consists of the following: 

1. Computer (PC) as main station; 

2. Device Under Test (DUT): development board, 

evaluation board, or actual product such as AVR or SB; 

3. External sound card. The sound card is used to deliver 

signals from computer to DUT and record digital outputs 

from DUT. It is usually custom made as it must allow the 

reproduction of compressed multichannel audio signals 

up to 192 kHz/32-bit resolutions. Likewise, this sound 

card must be capable of recording uncompressed raw 

data, which implies the possibility of recording more than 

15-channel outputs. The Test Station is based on in-house 

developed audio grabber, named “Real Time Audio 

Grabber” (RT-AG) [19]–[21]; 

4. Nvidia graphic card is used to generate HDMI input, 

as some IP providers specifically rely on an application 

for input stream generation that is based on this card; 

5. Audio Analyzer is used typically in System and Product 

Level Testing, for simultaneous analyses of analog 

multichannel signals. It is used to capture analog audio 

signals and provide HDMI input for DUT. We use 

Analog Precision APx585 [22], but only one Test Station 

has this equipment due to the APx585 very high price; 

6. Smart IoT-based power plug: computer, DUT, RT-AG, 

and APx585 are all connected to the smart plug, which 

allows remote hardware resetting of the station. 

 
Fig. 4.  Test Station hardware and interfaces. 

B. Test Station Software Stack 

Test Station software stack is designed in three software 

layers (Fig. 5): 

1. Application Layer includes the following software 

components: 

 Jenkins agent: The test station is designed for both local 

and remote testing. Installation of Jenkins agent (client) 

and adding station to the network allow connection to 

local Jenkins server (Automation server) and remote 

testing. Additionally, Jenkins server enables distribution 

of test cases on multiple Test stations; 

 Test execution framework: Tool for the automated 

execution of test cases. It executes tests from the test plan 

sequentially. The test plan can be full test cycle coverage 

or partial, along with the technology-specific test 

environment configuration file, it makes input parameters 

for test execution; 

 Technology-specific test environment: The software 

component of the test environment, result of the 

installation of the technology-specific test environment 

(explained in Chapter VII in more details); 

2. Middleware layer: The middleware layer is the Test 

Executor Interface. The Test Executor will be described 

further in a separate chapter; 

3. Hardware abstraction layer: This software layer 

includes all necessary low-level software: drivers for 

external sound cards (RT-AG), Audio Precision driver, 

SDK development platform, and Nvidia graphic card 

driver. 

In some specific cases, audio technology environment 

may require installation of additional software: a specific 

version of the Python interpreter or tools for Unix-like 

system support for Windows (VM). 
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Fig. 5.  Test Station software stack. 

V. IOT-BASED SMART PLUG 

If during a test cycle the DUT becomes unresponsive, it 

effectively stops the cycle. Usually, a simple restart of the 

device, followed by repeated test setup, is enough to 

continue running other tests in the cycle. The reasons that 

can cause the device to not respond can be various. There 

are some environmental reasons, such as power surge or 

something similar. For example, the device under testing is 

often on a development board, and it tends to be more 

sensitive to such things. Also, software that is being tested 

can fail in such a way that it leaves the device in an 

unresponsive state (by accessing unintended parts of 

memory, etc.). In any case, the goal of our test framework 

was to enable automated detection of those occurrences and 

automated recovery and continuation of testing. When these 

things are done manually, several hours or days of testing 

time can be lost. The recovery itself does take some time, 

but the main problem is that often when tests are being run 

(over night or during the weekend), there is no one available 

to detect the problem and do the recovery. 

Smart Multi-Agent Framework uses the Oblo ZigBee 

Smart Plug [23] to turn off the power of the device and turn 

it back on, restarting it in that way. The plug is part of the 

cloud-based Oblo IoT environment [17] and therefore can 

be controlled remotely using the cloud API. That is why the 

cloud API client application is part of the softer stack on test 

stations. 

When a test fails because the device is unresponsive, Test 

Executor, which runs on the PC of the test station, will send 

a command to the smart plug to turn off the power, then wait 

for five seconds, and finally will send the command to turn 

the power on again. 

VI. TEST EXECUTOR - AUTOMATED TESTING TOOL 

The Test Executor is a software tool for test case 

automation. It enables automatic execution of the entire test 

cycle. 

A technology-specific test environment is prerequisite for 

test execution in Smart Multi-Agent Framework, and it 

consists of: 

 Test database in the form of a CSV document, which 

represents a summary of all tests defined in a package and 

contains the following information on every test case: 

name of the test, input and output test stream; location of 

test folders, test streams/vectors; command-line 

parameters for configuring firmware; number of channels 

and sample rates, bit width, mode-specific configurations 

of source code; 

 Configuration file represented in the form of the .ini 

file, defining technology-specific information such as tool 

for preparing input file, DUT configuration tool (e.g., 

number of input/output channels, sampling frequency), 

paths where other streams and tools are placed, etc.; 

 Test handler (Technology-specific Test Executor 

interface) is a Python implementation of a pre-defined 

interface; 

 Installation files - installers of any software which 

needs to be installed for successful test execution such as 

SDK, Python, Cygwin, etc.; 

 Load files - flash boot image with developed audio 

library to be downloaded to IC; 

 Tools - various tools for formatting streams, DUT 

configurations tool (enable/disable virtualisation (enhance 

for speaker or headphones), set reproduction channels, set 

dynamic range control, enable/disable upmix, etc.); 

 Evaluation tools - evaluation tools provided by IP 

house. 

Every test case consists of the following steps: 

1. Fetch input stream; 

2. Prepare input stream for external sound card - audio 

grabber playback; 

3. Generate configuration file using configuration tool 

with parameters specified in test database; 

4. Load image file with generated configuration file; 

5. Play/Record stream; 

6. Prepare recorded stream for evaluation: align referent 

and output stream, split recorded stream if needed; 

7. Store recorded data in folder pre-defined by evaluation 

tool; 

8. Clean up. 

If necessary, test cases can be executed manually, via the 

command prompt. The Test Executor makes this process 

faster and more reliable, without inevitable human errors. 

Additionally, Test Executor as a tool allows automatisation 

of the complete testing process, not only execution. 

A. Test Executor Workflow 

To run Test Executor, the user must specify the path to 

the Configuration file that contains the test environment 

variables and tests to be executed during the test cycle. 

During execution, if the test is marked as FAIL or timeout 

expiries, the Test Executor will check the HW. If a test 

reaches a pre-defined timeout for the test execution, Test 

Executor will check the hardware status. If the hardware is 
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unresponsive, the Test Executor will trigger a smart plug 

reset via the integrated IoT client application. The test case 

that reaches timeout will be flagged as failed. The Test 

Executor will restart the hardware and resume testing, 

following the test case list. In this way, the entire test cycle 

will not be lost due to one or more bad test cases. Test 

Execution workflow is shown in Fig. 6. 

 
Fig. 6.  Workflow of the Test Executor. 

B. Software Architecture 

The Test Executor is designed in three interconnected 

software modules: Test Executor Framework, Test Executor 

Interface, and Test Executor Engine (Fig. 7.). 

 
Fig. 7.  Design of the Test Executor software. 

The Test Executor Framework (Fig. 8) is a module that 

provides a command-line user interface, receives input data, 

and passes it to the Test Executor Interface. It consists of 

command-line parsers (test plan parser and configuration 

parser), web client applications (IoT cloud client and 

MySQL database client), test report module (for creating 

and managing log files), and hardware communication 

status module that communicates with testing hardware to 

determine if hardware is unresponsive. 

 
Fig. 8.  Software modules for the Test Executor Framework. 

The Test Executor Interface is a technology-specific 

implementation of test case steps. Every method of Test 

Executor Interface represents one step in the test execution 

flow. Implementation of those methods relies on pre-defined 

functionalities in the Test Executor Engine, which is the 

module that communicates with the hardware setup. The 

inter-module dynamic is shown in Fig. 9. 

 
Fig. 9.  Inter-module dynamic of the Test Executor. 

VII. AUTOMATION SERVER 

The Jenkins server [24] enables automation of software 

development related to building, testing, and deployment, 

facilitating continuous integration and continuous delivery. 

It is based on multiple clients’ severe topology. 

A. Jenkins Job 

To execute tests on the Jenkins server, a defined and 

developed Jenkins job is required. Jenkins job is a set of 

sequential user-defined tasks. In the Smart Multi-agent 

Framework, one Jenkins job represents one test cycle: 

turning on and checking the hardware setup, installing 

technology-specific test environment, testing execution, test 

validation, and final evaluation of audio technology. 

Within Jenkins job, every step prior to test execution is 

fully automated (Fig. 10). This automation enables testing 

during non-working hours and weekends. 

The Jenkins job is executed on the Jenkins agent, which 

can be installed on a local computer or a dedicated Test 

Station. This enables local and remote testing. Once created, 
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the Jenkins job can be called and executed across all 

development and certification phases. Additionally, the 

same Jenkins job can be used in both the deployment phase 

and the product support phase, as it allows for easy 

execution of customised test plans. 

  
Fig. 101.  Jenkins job - fully automated test cycle. 

B. Multi-Agent Testing 

One test cycle comprises several test cases (sometimes it 

is up to a few thousand cases). The length of the input test 

stream (test vector) dominates the execution time of a test. 

Test streams for each test case differ in their duration: some 

are a few seconds long, and some last for several minutes. 

To obtain the duration of each test case, after the first 

cycle is run, the test execution time is recorded and stored 

on the local MySQL server. This information allows for fair 

distribution and splitting of one test cycle on several Jenkins 

agents simultaneously. In this way, the time required for one 

test cycle could be significantly reduced. The main idea is to 

divide the entire test cycle into multiple test stations: the 

more Test Stations (Jenkins agents) are available, the less 

time is needed for one test cycle. 

Currently, the test division algorithm is quite simple and 

is based on the number of available Jenkins agents and the 

execution time of each test case. Before starting a new test 

cycle, the Jenkins server triggers the MySQL client 

application to fetch execution time from the database. Then, 

it splits the test plan into several smaller tests plans of 

approximately the same duration. Each newly generated test 

plan subset is forwarded to the first idle test station. 

This approach allows different test scenarios, e.g., we can 

divide only tests flagged as failed or tests executed on faulty 

test station to try at another one that works properly and the 

like. 

Since all test cases can be executed independently, it is 

easy to utilise multiple test stations for a single test cycle. 

The amount of speed gain that can be gained in this way 

depend on how evenly the load can be distributed at the 

available stations. The execution time of the test case is 

linearly dependent on the input stream length, so this load 

balancing can be reduced to the multi-way number 

partitioning problem [25]. Furthermore, it is better that 

partitioning happens ahead of time, for all test cases (instead 

of dynamically sending one test case jobs to stations), 

because that way only one job per station is created, which 

reduces the communication overhead. That is why input 

stream lengths are recorded on the first test run and that 

information is used to partition test case set. 

There are several algorithms that find the optimal solution 

to a multiway partitioning problem, but they are relatively 

complex and computationally intensive. In practise though, 

very often, much simpler, heuristic algorithms give good 

enough results. We rely on simple Greedy partitioning 

algorithm (also known as longest processing time algorithm) 

where test stream times are sorted in non-increasing order 

and then algorithm goes through the list and places current 

test to the partition that has the shortest cumulative length of 

test streams. Ideal partitioning will result in completely 

equal partitions and their length (size) would be the total 

length divided by the number of partitions. Of course, ideal 

partitioning is usually not possible, so optimal is one where 

the difference between the largest and the smallest partition 

is minimal. Greedy partitioning algorithm that our solution 

uses will never give a result that is more than 1/3 worse than 

optimal [26]. However, that is very dependent on the input 

value set, and in general large sets with smaller values tend 

to cause even smaller deviation of the resulting partitioning 

from the optimal one. 

VIII. RESULTS 

For purposes of testing the Smart Multi-Agent 

Framework, we used DSP evaluation board CRD49834 with 

DSP CS49834 [8], [24], both made by Cirrus Logic, Inc. 

(Fig. 11).  

We evaluated our testing approach on several immersive 

audio technologies implemented on CS49834 DSP. 

 
Fig. 112.  Test Station hardware setup: CRD49834 DSP Evaluation Board 

and RT-AG.  

Our first experiment was to compare manual vs. 

automatic system setup as a prerequisite for any kind of 

testing, including certification testing. When interviewing 

tester engineers about the time it took to set up the Test 

Station and install the certification package, the answer we 

received was “not long”. Further investigation discovered 

that “not long” is only happening when there are no 

problems with software versions, when the operating system 

is updated, when tools are already installed, etc., and this 

was rarely happening. 

To objectively evaluate the proposed full testing 

automation, we performed full coverage testing of MPEG-H 
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3D Audio, implemented on four cores CS49834 DSP. 

Testing was based on 1857 test vectors. Firstly, 

technology-specific test environment was created according 

to steps defined in Section VI. Then, we prepared 

certification package which includes both hardware and 

software needed for testing. Two identical Test Stations 

were used. The first one was set up manually, and the 

average time for set up was around 2 hours. During this 

experiment, test engineers were focused on their work (no 

coffee breaks, social media chats, or the like). After the 

setup, the Test Executor was manually called, as well as 

results evaluation. 

On the other side, the full automated Jenkins job was run 

on the other Test Station. The results, including detailed 

time measurements of the Jenkins job steps, are given in 

Table I. 

TABLE I. FULL TEST AUTOMATION VS. MANUAL TEST 

ENVIRONMENT SETUP.  

Full test automation 

(one Jenkins job) 
Time Action Time 

Download CL SDK 0:00:01 Setup of the manual test 

station 

~2:00:00 

  

  

  

  

  

  

  

  

  

  

  

  

Install CL SDK 0:02:10 

Prepare flash image 0:00:03 

Flash-boot 0:02:18 

Get test package from 

SVN 
0:15:00 

Unzip tests 0:02:30 

Copy input streams to 

pre-defined location 
0:02:15 

Execute tests with Tests 

Executor 
11:32:58 

Execute tests with the 

Test Executor 

12:00:00 

  

  
Write to data base  0:01:55 

Evaluate results 2:52:00 
Evaluate 

results 
~3:00:00 

14:51:10 17:00:00 

 
We performed similar testing with other technologies as 

well, with same results: automatic Test Station setup is 

much faster, excluding human error, and fully repeatable. 

Once developed, Jenkins job can be called and executed 

during the entire audio product lifetime. 

In the second experiment, we wanted to measure the 

efficiency of our Smart Multi-Agent Framework on the 

entire testing time of complex audio technology, composed 

of several components. We performed testing with and 

without Jenkins automation on the component level (single 

component testing) and integration level (the entire audio 

chain testing: decoder, renderer, and post-processing). The 

number of test cycle that are run is the number of times that 

the full coverage test is performed during development, 

certification, and deployment of technology. The average for 

this technology is around thirty-six, but this depends on how 

complex technology is, how the project is managed, what is 

the coding and development style, etc. As can be seen in 

Table II, our approach saved time by up to 28 %. 

In our third experiment, we wanted to evaluate multi-

agent approach of our framework, and how efficient it is 

related to one cycle time. 

In Table III, we show the resulting portioning for test sets 

of four different technologies. In each case, we partition into 

1 to 6 groups, using the Greedy partitioning algorithm. We 

compare the longest partition to the average length (total 

length divided by number of groups) and an express relative 

deviation. At worst, the maximum partition length is 2 % 

longer than the average length. Therefore, the results 

confirm that real life test sets can be easily partitioned, and 

that liner speedup can be expected with the increase of the 

number of test stations. 

In our final experiment, we wanted to evaluate Smart 

Plugs. Analysing all 220 complete test cycle runs, we 

determined that in about 7.7 % of the instances, the Smart 

plug was used to reset the system and continue testing. 

Almost all complete test cycle runs were done overnight or 

during the weekend. Therefore, if manual recovery was the 

only option, at least one full day would be lost in each case, 

a total of 17 days. This just gives a rough quantification of 

the usefulness of this approach, but it does consider that 

very often test cycles are run close to a deadline, so the loss 

of time is more critical. 

Also, there are some qualitative benefits that stem from 

the fact that engineers can now work remotely. 

TABLE II. COMPLEX AUDIO TECHNOLOGY TESTED WITH AND WITHOUT SMART MULTI-AGENT FRAMEWORK. 

Technology 
Number of 

test cases 

Number of 

test cycle 

runs 

Cycle time 

manual env. 

setup (h) 

Cycle time 

with 

Jenkins 

automation 

(h) 

Entire 

testing time, 

manual env. 

setup (h) 

Entire testing 

time with 

Jenkins (h) 

Time savings 

Integration Level Testing 

Lossy Audio Decoder 
1647 57 28 26 1596 1482 7 % 

Component-Level Testing 

Lossy Audio Decoder 
1674 51 9 6.4 459 326.4 29 % 

Integration Level Testing 

Audio Transmission Decoder 
1228 32 23.5 21.6 752 691.2 8 % 

Component-Level Testing 

Audio Transmission Decoder 
402 20 8.5 6.4 170 128 25 % 

Integration Level Testing 

Lossless Audio Decoder  
681 40 13 10.9 520 436 16 % 

Component-Level Testing 

Audio Object Renderer 
1192 20 7.51 5.4 150.2 108 28 % 
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TABLE III. PARTITIONING TEST SET BASED ON INPUT STREAM LENGTHS, USING GREEDY ALGORITHM. 

Technology 
Number 

of tests 
Partition lengths 

Number of partitions (Test Stations) 

1 2 3 4 5 6 

Integration Level 

Testing Lossy Audio 

Decoder 

1647 

Average (ideal) (s) 89232.5 44616.25 29744.17 22308.13 17846.5 14872.08 

Maximal (s) 89232.5 44620.9 29761.8 22360.8 17929 14980.1 

Deviation from average (%) 0 0.01 0.06 0.24 0.46 0.73 

Integration Level 

Testing Audio 

Transmission Decoder 

1228 

Average (ideal) (s) 72309.6 36154.8 24103.2 18077.4 14461.92 12051.6 

Maximal (s) 72309.6 36164.4 24170.1 18129.3 14526.2 12089.5 

Deviation from average (%) 0 0.03 0.28 0.29 0.44 0.31 

Integration Level 

Testing Lossless 

Audio Decoder 

681 

Average (ideal) (s) 36675.2 18337.6 12225.07 9168.8 7335.04 6112.53 

Maximal (s) 36675.2 18404 12325.6 9282.6 7461.3 6240.6 

Deviation from average (%) 0 0.36 0.82 1.24 1.72 2.1 

MPEG-H 1857 

Average (ideal) (s) 43110 21555 14370 10777.5 8622 7185 

Maximal (s) 43110 21557.6 14370.3 10786.8 8627.2 7190.3 

Deviation from average (%) 0 0.01 0.01 0.09 0.06 0.07 

IX. CONCLUSIONS 

This paper proposes a Smart Multi-Agent Framework for 

Automated Audio Testing, which utilises multiple agents to 

perform various tasks related to audio testing. The 

framework is designed to be flexible, adaptable, and 

scalable, making it suitable for use in a wide range of audio 

testing scenarios. Our results show that the use of this 

framework can help improve the efficiency and 

effectiveness of audio testing, reducing the cost and time 

required for testing, and improving the overall development 

process.  

For our future work, we plan to minimise human 

involvement in testing process, as much as possible. First, 

we plan to enable runtime generation of test cases, currently 

developed offline. Then automate generation of technology-

specific test environment, partially or fully, currently 

developed by test engineers. Finally, our research will be 

guided by feedback from IP providers, developers, system 

integration and test engineers who are starting to use our 

approach.  
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