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Abstract—We present a general method to derive robust 

invariants of grayscale images under affine geometric 

transformation.  In the literature, there are well studied affine 

moment invariants of grayscale images. The problem is that only 

few of the invariants are low orders. Higher order affine 

moment invariants are sensitive to noise and hard to implement. 

In this paper, we extend the traditional definition of the 

geometric moment by encapsulating the image functions by 

some wrapper functions. A general theorem to construct the 

affine invariants consisting of the extended moments of a 

grayscale image is presented. Using this method, different forms 

of low order affine moment invariants are constructed. The 

traditional affine moment invariants are a special type of the 

proposed new affine moment invariants. These forms of 

invariants are less sensitive to noise and easy to implement.  

 
Index Terms—Affine moment invariants, computer vision, 

image recognition, moment methods. 

I. INTRODUCTION 

Invariants of an image are functions of the image that 

remain the same under some changes to the image [1]–[7]. A 

2D grayscale image is a function f(x, y) that corresponds to a 

3D scene. It captures geometrical and physical properties of 

objects in the 3D world. Under different situations, the same 

3D scene can have different images. One image is called a 

change of another image. There are two basic kinds of 

intrinsic changes to images. One is geometric changes and the 

other is lighting changes. We consider only geometric 

changes in this paper. 

Under the pinhole camera model, a 3D point (X, Y, Z) is 

projected into an image point (x, y) satisfying 
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M , (1) 

where M is a 3×4 matrix and κ is a scalar factor. When a 3D 
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scene is planar, the geometric relationship between two views 

of the same scene is 

 1 2 3 1 2 3

1 2 1 2

, .
1 1

a u a v a b u b v b
x y

c u c v c u c v

+ + + +
= =

+ + + +
 (2) 

The set of all invertible transformations of the form (2) 

constitutes the planar projective transformation group G. The 

action of a group element τ on an image f(x, y) is defined as 

1 2 3 1 2 3

1 2 1 2

( , ) , ( , )
1 1

a u a v a b u b v b
f x y f g u v

c u c v c u c v
τ

 + + + +
⋅ = = 

+ + + + 
,  (3) 

where f(x, y) is the original image and g(u, v) is the 

transformed image. An invariant of an image f(x, y) is a 

function I of f(x, y) such that 

 ( ( , )) ( ( , )),I f x y I f x y Gτ τ= ⋅ ∀ ∈ . (4) 

It is easy to compute projective invariants for a discrete 

point set [6]. Projective invariants of 2D shapes are well 

studied also [7]. However, Projective invariants of grayscale 

images are extremely hard to derive [8]–[12]. 

When there is no projective distortion, two images of the 

same planar scene undergo an affine transformation 

 1 2 3 1 2 3, .x a u a v a y b u b v b= + + = + +  (5) 

The most notable invariants of grayscale images with 

respect to affine transformations are affine moment 

invariants. Now it is possible to construct affine moment 

invariants up to any orders. The problem is that there are only 

a few low order independent invariants. Higher order affine 

moment invariants are sensitive to noise and hard to 

implement. 

This paper presents a method to construct low order 

invariants of images under affine transformation. We first 

generalize the classical definition of the geometric moment. 

In the definition of the moment, the image function is 

encapsulated by some wrapper functions. We then prove a 

general theorem for constructing affine moment invariants 

with respect to the generalized moments of images. As 

examples, some of the new affine moment invariants up to the 

third order are presented explicitly. Previously, we only have 

five independent affine moment invariants up to the third 
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order [3]. 

The paper is organized as follows. In Section II, we review 

a few related works on the moment invariants. In Section 3, 

we define the generalized geometric moment of 2D images. In 

Section IV, we study invariants of the generalized moments 

under affine transformations. In Section IV, we present 

experimental results for the proposed affine moment 

invariants. We conclude in Section IV. 

II. GEOMETRIC MOMENT INVARIANTS 

A. Moments 

Hu introduced the concept of moments of images into the 

pattern recognition field in 1962 [5]. The geometric moments 

of order (p, q) of an image f(x, y) are defined by 

 ( , )
p q

pqm x y f x y dxdy
+∞ +∞
−∞ −∞= ∫ ∫ , (6) 

where p and q are nonnegative integers. If f(x, y) is piecewise 

continuous and has nonzero values only in a finite domain, 

moments of all orders exist. The central moments are defined 

as 

 ( ) ( ) ( , )
p q

pq x x y y f x y dxdyµ +∞ +∞
−∞ −∞= − −∫ ∫ ,        (7) 

where 

 10 01

00 00

,
m m

x y
m m

= = . (8) 

For decades, researchers have extended the concept of 

moments in various ways. The most notable idea is using 

orthogonal polynomials as kernels in the definition of 

moments. Teague introduced the first two orthogonal 

moments, Legendre moments and Zernike moments [9].  

From the point of view of information theory, orthogonal 

moments are superior to geometric moments. However, it is 

hard to derive invariants of orthogonal moments beyond the 

similarity transformations. Invariants of geometric moments 

are relatively easy to derive. 

B. Invariants of Geometric Moments under Similarity 

Transformation 

The excellence of moments is that we can construct 

invariants of images from them for object recognition. By 

means of classical algebraic invariant theory [4], Hu derived 

seven functions of normalized central moments that are 

invariant with respect to translation, scale, and rotation.  

 Researchers proposed various methods to derive similarity 

invariant moments of higher orders. Mostafa and Psaltis 

introduced the idea of using complex moments for deriving 

invariants [1]. The complex moments of order (p, q) of an 

image f(x, y) are defined as 

 ( ) ( ) ( , )
p q

pqc x iy x iy f x y dxdy
+∞ +∞
−∞ −∞= + −∫ ∫ . (9) 

Flusser proposed a general method to construct rotational 

invariants of images based on complex moments [3]. Let n ≥ 1 

and let ki, pi , and qi (i = 1, . . . , n) be nonnegative integers such 

that 

 
1

( ) 0
n

i i i
i

k p q
=

− =∑ . (10) 

Then 

 
1

i

i i

n
k

p q
i

I c
=

= ∏  (11) 

is rotational invariant. Translation invariance is obtained by 

using central complex moments. Scaling invariance can be 

achieved by the same normalization proposed by Hu. 

C. Invariants of Geometric Moments under Affine 

Transformation 

Invariants of geometric moments with respect to affine 

transformations are generally called affine moment invariants. 

Many researchers contribute to the development of affine 

moment invariants. Hu presented a fundamental theorem of 

affine invariants in his paper. Later, several researchers 

revised the theorem independently [3], [8].  

Different research groups have used different mathematical 

tools to derive moment invariants. At first, only a few affine 

moment invariants were published. Flusser and Suk derived a 

set of four affine moment invariants based on classical 

algebraic invariant theory [2]: 

 2 4
1 20 02 11 00( ) /I µ µ µ µ= − , (12) 

 

2 2
2 30 03 30 21 12 03

3 3 2 2 10
30 12 21 03 21 12 00

( 6

4 4 3 ) / ,

I µ µ µ µ µ µ

µ µ µ µ µ µ µ

= − +

+ + −  (13)
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2 7
02 30 12 21 00
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I µ µ µ µ µ µ µ µ µ

µ µ µ µ µ

= − − − +

+ −  (14)
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µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ µ µ

= − − +
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+ − −

− − +

+ + −

− +

 

(15)

 

Graph theory, tensor algebra, and Lie group theory are also 

used to construct affine moment invariants [3], [10]. It is now 

possible to get affine moment invariants up to any orders. 

Higher order affine moment invariants are sensitive to 

noise. They are also hard to express and to implement. This is 

the motivation that we propose the affine invariants of 

generalized geometric moments. 

III. GENERALIZED GEOMETRIC MOMENTS 

We give the definition of generalized geometric moments 

in this section. The idea is quite simple. We encapsulate the 

image function by another function in the definition of 

moments. We call such a function the wrapper function. 

Let {hI(x), I = 0, 1, 2,…} be a set of functions that are 
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continuous in the range of an image f(x, y). The generalized 

geometric moments of order (p, q) of the image with the 

wrapper function hI(x) are defined by the integral 

 2 ( ( , ))
I p q
pq IR

m x y h f x y dxdy= ∫ , (16) 

where p and q are nonnegative integers and R is the interval 

(-∞, +∞). 

The generalized central moments with the wrapper function 

hI(x) are defined as 

 2 ( ( , ))
I p q
pq IR

X Y h f x y dxdyµ = ∫ , (17) 

where 

 , ,X x x Y y y= − = −  (18) 

where 10 01

00 00

, .
I I

I I

m m
x y

m m
= =  

The standard geometric moments are a special type of the 

generalized geometric moments with the wrapper function 

h(x) = x. 

The generalized geometric moments with different wrapper 

functions convey varied information about the image f(x, y). 

This is useful for object recognition. It is easy to see that the 

generalized central geometric moments are translational 

invariant. Following the method of Hu, we can normalize the 

moments to achieve scaling invariance. 

Although the selection of the set of functions {hI(x)} can be 

arbitrary, it is preferable to use functions as simple as 

possible. The elementary functions such as log2(x), sin(x), 

cos(x), and x
a
 are good choices. In this paper, we choose 

{h0(x) = x, h1(x) = x
1/2

, h2(x) = x
-1/2

, h3(x) = log2x, h4(x) = x
-1

} 

as the set of wrapper functions. This is the basic set of wrapper 

functions that we will use in this paper. The symbols to denote 

these types of the generalized geometric moments are given 

below: 
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2
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( , ) ,

( ( , )) ,

( ( , )) ,
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( ( , )) .

p q

pq
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p q

pq
R

p q
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p q

pq
R

p q
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R

m x y f x y dxdy

m x y f x y dxdy

m x y f x y dxdy

m x y f x y dxdy

m x y f x y dxdy

−

−

 =

 =



=


=

 =

∫
∫
∫
∫
∫

 (19) 

The generalized central moments
I

pq
µ are denoted similarly. 

Intuitively, we should choose functions hI(x) such that hI(f(x, 

y)) will not amplify f(x, y) too much. Amplifying f(x, y) will 

amplify noise and distortion of f(x, y). Suitably reducing f(x, 

y) may sometime reduce the noise level in f(x, y). 

IV. INVARIANTS OF GENERALIZED MOMENTS UNDER AFFINE 

TRANSFORMATION 

In this section, we shall derive affine moment invariants of 

the generalized geometric moments. The derivation 

techniques are common in the literature. 

The Jacobian determinant of the transformation (5) is 

 1 2 2 1

x x

u v
D a b a b

y y

u v

∂ ∂

∂ ∂= = −
∂ ∂
∂ ∂

. (20) 

The transformation (5) is invertible if and only D is 

nonzero. We always consider invertible transformations. 

Let f(x, y) be an image function. Let g(u, v) be the image 

function transformed from f(x, y) by (5). Let hI(x) be the 

wrapper function to define the moments. Let 
I

pq
mɶ represent 

the generalized geometric moments of g(u, v) with respect to 

(5). It is easy to see that 

 
2

2

00

00

( ( , ))

( ( , )) .

I
IR

I
IR

m h f x y dxdy

h g u v D dudv D m

= =

= =

∫

∫ ɶ

 
(21)

 

From (21), we immediately obtain the following affine 

invariants of the generalized geometric moments of f(x, y) 

 00
0 0

00

I
I m

Inv
m

= . (22) 

This form of invariants is remarkably simple. With respect 

to the set of basic wrapper functions, we can derive the 

following four affine moment invariants: 

 

1 2 3 4
1 2 3 400 00 00 00
0 0 0 00 0 0 0

00 00 00 00

, , , .
m m m m

Inv Inv Inv Inv
m m m m

= = = =  (23) 

With respect to affine transformation (5), the first order 

generalized moments satisfy: 
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( ) ( ( , ))
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I
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I I I

m xh f x y dxdy
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= =

= + + =

= + +

∫

∫
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(24)

 

 

2

2
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1 2 3

1 10 2 01 3 00

( ( , ))

( ) ( ( , ))

( ).

I
IR

IR

I I I

m yh f x y dxdy

b u b v b h g u v D dudv

D b m b m b m

= =

= + + =

= + +

∫

∫

ɶ ɶ ɶ

 

(25)

 

From (21), (24), and (25), we obtain 

 1 2 3 1 2 3, .x a u a v a y b u b v b= + + = + +  (26) 

By definition, the first order central geometric moments are 

constant zero. 

Let (x1, y1) and (x2, y2) be two cogredient points in the 

plane. That is they undergo the same form of affine 

transformation 

 1 2 3 1 2 3, , 1, 2,i i i i i ix a u a v a y b u b v b i= + + = + + =  (27) 
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where (u1, v1) and (u2, v2) is the corresponding transformed 

points. From (26) and (27), we have 

 

1 2 1 2

1 2 1 2 .

1 1 1 1 1 1

x x x u u u

y y y D v v v=  (28) 

That is 

 1 2 2 1 1 2 2 1( )X Y X Y D U V U V− = − , (29) 

where 

 

( ),

( ),

( ),

( ), 1,2.

i i

i i

i i

i i

X x x

Y y y

U u u

V v v i

= −
 = −


= −
 = − =

 (30) 

Now we present a basic theorem for constructing the new 

affine invariants of the generalized moments.  

Theorem. Let f(x, y) be an image function. Let hI(x), hJ(x), 

hK(x), and hL(x) be four wrapper functions that are continuous 

in the range of the image. With respect to (5), the following 

functions of the generalized central moments of f(x, y) 

 

, , ,
, , , , , 0 4

00

0 0 0 0 0 0

, ,

,

1

( )

( 1)

I J K L
p q r s t w p q r s t w

p q r s t w
i j k l m n

i j k l m n

I J
p q r i j k i j k s t i l m p i l m

K
w n j l q s j l n

Inv

p q r s t w

i j k l m n

µ

µ µ

µ

+ + + + + +

+ + + + +

= = = = = =

+ + − − − + + + + − − − + +

− + + + − − +

= ×

× − ×

      
× ×      

      

× ×

×

∑ ∑ ∑ ∑ ∑ ∑

, ...L
k m n r t w k m nµ + + + + − − − ×

 

(31)

 

are affine invariant (up to a sign), where p, q, r, s, t, and w are 

nonnegative integers.  

There are certainly other forms of affine moment 

invariants. For simplicity, we do not present them in this 

paper. We guess that invariants of the form (31) with 

moments up to the third orders are enough for most 

applications. Below we will present some of the new affine 

moment invariants with moment orders less than four. 

When (p, q, r, s, t, w) = (2, 0, 0, 0, 0, 0), we obtain from (31) 

the first type of invariants 

 
, 20 02 11 11 02 20

1 0 4
00

2
.

( )

I J I J I J
I J

Inv
µ µ µ µ µ µ

µ

− +
=  (32) 

This type of invariants corresponds to the affine moment 

invariant I1 defined in (12). That is 00

1 1
2Inv I= . 

When (p, q, r, s, t, w) = (1, 1, 0, 1, 0, 0), we obtain from (31) 

the second type of invariants 

, ,
20 11 11 20 022 0 6

00

1
(( )

( )

I J K I J I J K
Inv µ µ µ µ µ

µ
= − −  

 20 02 02 20 11 11 02 02 11 20( ) ( ) ).I J I J K I J I J Kµ µ µ µ µ µ µ µ µ µ− − + −  (33) 

The affine moment invariants of the type (32) and (33) 

contain generalized central moments up to the second order. 

They are homogeneous of the orders of the generalized 

central moments. The type (32) invariants are symmetric with 

respect to hI(x) and hJ(x). That is , ,

1 1

I J J I
Inv Inv= . The type 

(33) invariants are symmetric with respect to hI(x), hJ(x), and 

hK(x). They are also constant zero when two of the wrapper 

functions are equal. 

When (p, q, r, s, t, w) = (3, 0, 0, 0, 0, 0), we obtain from (31) 

the third type of invariants 

 
, 30 03 21 12 12 21 03 30

3 0 5
00

3 3
.

( )

I J I J I J I J
I J

Inv
µ µ µ µ µ µ µ µ

µ

− + −
=  (34) 

The index I and J should be different to obtain a nonzero 

affine invariant of this type. 

When (p, q, r, s, t, w) = (2, 1, 0, 1, 0, 0), we obtain from (31) 

the fourth type of invariants 

 

, ,
30 12 02 21 21 02 12 30 024

30 03 11 21 12 11 12 21 11 03 30 11

0 7
21 03 20 12 12 20 03 21 20 00

( 2

2 ) / ( ) .

I J K I J K I J K I J K

I J K I J K I J K I J K

I J K I J K I J K

Inv µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ

= − + −

− + + − +

+ − +

 

(35)

 

This invariant is the generalized form of the affine moment 

invariant I3 defined in (14). That is 000

4 3
2Inv I= . This type of 

affine invariants are symmetric with respect to hI(x) and hJ(x). 

That is , , , ,

4 4

I J K J I K
Inv Inv= . 

When (p, q, r, s, t, w) = (1, 1, 0, 1, 1, 1), we obtain from (31) 

the fifth type of invariants 

 

, , ,
5 0 9

00

11 21 12 03 30 30 03 12 21 11

12 30 30 12 02 03 21 21 03 20

20 21 12 02 03 11 12 03 20 21 02

03 21 11 12 20

1

( )

( (( )

( ) ( ) )

( ( ) ( )

( ))

I J K L

I J K J K J K J K L

J K J K L J K J K L

I J K L K L J K L K L

J K L K L

Inv
µ

µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ

= ×

× − + − +

+ − + − +

+ − + − +

+ − + 02 30 21 02 12 11

21 12 20 30 02 12 30 11 21 20

( ( )

( ) ( ))).

I J K L K L

J K L K L J K L K L

µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ

− +

+ − + − (36)

 

By choosing different wrapper functions hI(x), hJ(x), hK(x), 

and hL(x), we can produce an arbitrary number of affine 

invariants of the generalized geometric moments. In this 

paper, we choose x, x
1/2

, x
-1/2

, log2x, and x
-1

 as wrapper 

functions. They are indexed by 0, 1, 2, 3, and 4 in the 

denotation of invariants. For example, some explicit formulas 

of the type (32) affine moment invariants are: 

 

0 0 0 0 0 0
00 20 02 11 11 02 20
1 0 4

00

2
,

( )
Inv

µ µ µ µ µ µ

µ

− +
=  (37) 
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0 3 0 3 0 3
03 20 02 11 11 02 20
1 0 4

00

2
,

( )
Inv

µ µ µ µ µ µ

µ

− +
=  (38) 

 

3 3 3 3 3 3
33 20 02 11 11 02 20
1 0 4

00

2
.

( )
Inv

µ µ µ µ µ µ

µ

− +
=  (39) 

Some explicit formulas of the type (35) affine moment 

invariants are: 

013 0 1 3 0 1 3
4 30 12 02 21 21 020 7

00

0 1 3 0 1 3 0 1 3 0 1 3
12 30 02 30 03 11 21 12 11 12 21 11

0 1 3 0 1 3 0 1 3 0 1 3
03 30 11 21 03 20 12 12 20 03 21 20

1
( 2

( )

2 ),

Inv µ µ µ µ µ µ
µ

µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ

= − +

+ − + + −

− + − +

 

(40)
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1
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Inv µ µ µ µ µ µ
µ

µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ
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+ − + + −

− + − +

 

(41)

 

133 1 3 3 1 3 3
4 30 12 02 21 21 020 7

00

1 3 3 1 3 3 1 3 3 1 3 3
12 30 02 30 03 11 21 12 11 12 21 11

1 3 3 1 3 3 1 3 3 1 3 3
03 30 11 21 03 20 12 12 20 03 21 20

1
( 2

( )
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Inv µ µ µ µ µ µ
µ

µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ

= − +

+ − + + −

− + − +

 

(42)

 

We expect that low order invariants with the five basic 

wrapper functions are enough for most object recognition 

applications. If we need more invariants, we can either use 

low order invariants with new wrapper functions or use higher 

order invariants with the five basic wrapper functions. 

V. EXPERIMENTS 

We have tested the proposed new affine moment invariants 

(AMIs) using Microsoft VC++ and Intel OpenCv. The first 

objective of the test is to confirm the invariance of the 

proposed new AMIs under affine transformation. The second 

goal of the experiment is to test the discriminating power of 

the new AMIs. We downloaded 96 gray level test images 

from the web. To validate the invariance of the new AMIs, we 

performed six affine transformations for each of the test 

images. The affine distortions of the images are depicted in 

Figure 1. They are transformed images of the second test 

image. 

To validate the invariance of the proposed new AMIs, we 

have tested all invariants of the type Inv1, Inv2, Inv3, and Inv4. 

A few of the invariants of the type Inv5 were tested also. The 

complete test results are too huge to include in this paper. So 

we only present the test results of the invariants 33

1
Inv and 

133

4
Inv on the first 20 test images in Table I and Table II. 

TABLE I. THE TEST RESULTS OF 
33

1
Inv ON THE FIRST 20 TEST IMAGES. 

No. 
Trans. 

1 

Trans. 

2 

Trans. 

3 

Trans. 

4 

Trans. 

5 

Trans. 

6 

1 5.6E-10 5.6E-10 5.6E-10 5.6E-10 5.6E-10 5.6E-10 

2 1.3E-09 1.3E-09 1.3E-09 1.3E-09 1.3E-09 1.3E-09 

3 1.2E-09 1.2E-09 1.2E-09 1.2E-09 1.2E-09 1.2E-09 

4 1.1E-09 1.1E-09 1.1E-09 1.1E-09 1.1E-09 1.1E-09 

5 4.0E-10 4.0E-10 4.0E-10 4.0E-10 4.0E-10 4.0E-10 

No. 
Trans. 

1 

Trans. 

2 

Trans. 

3 

Trans. 

4 

Trans. 

5 

Trans. 

6 

6 9.4E-10 9.4E-10 9.4E-10 9.4E-10 9.4E-10 9.4E-10 

7 4.0E-10 4.0E-10 4.0E-10 4.0E-10 4.0E-10 4.0E-10 

8 2.3E-09 2.3E-09 2.3E-09 2.3E-09 2.3E-09 2.3E-09 

9 6.9E-10 6.9E-10 6.9E-10 6.9E-10 6.9E-10 6.9E-10 

10 3.6E-10 3.6E-10 3.6E-10 3.6E-10 3.6E-10 3.6E-10 

11 3.0E-10 3.0E-10 3.0E-10 3.0E-10 3.0E-10 3.0E-10 

12 5.6E-09 5.6E-09 5.6E-09 5.6E-09 5.6E-09 5.6E-09 

13 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 

14 3.7E-09 3.7E-09 3.7E-09 3.7E-09 3.8E-09 3.7E-09 

15 6.3E-09 6.3E-09 6.3E-09 6.3E-09 6.3E-09 6.3E-09 

16 3.5E-09 3.5E-09 3.5E-09 3.5E-09 3.5E-09 3.5E-09 

17 5.3E-09 5.3E-09 5.3E-09 5.3E-09 5.3E-09 5.3E-09 

18 7.5E-09 7.5E-09 7.5E-09 7.5E-09 7.5E-09 7.5E-09 

19 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 

20 4.2E-09 4.2E-09 4.2E-09 4.2E-09 4.2E-09 4.2E-09 

 
Fig. 1.  Illustration of the six affine transformations. 

TABLE II. THE TEST RESULTS OF 
133

4
Inv ON THE FIRST 20 TEST IMAGES. 

No. 
Trans. 

1 

Trans. 

2 

Trans. 

3 

Trans. 

4 

Trans. 

5 

Trans. 

6 

1 2.2E-21 2.2E-21 2.2E-21 2.2E-21 2.2E-21 2.2E-21 

2 2.9E-20 2.9E-20 2.9E-20 2.9E-20 2.9E-20 2.9E-20 

3 8.7E-21 8.7E-21 8.8E-21 8.6E-21 9.3E-21 8.9E-21 

4 1.9E-21 1.8E-21 1.8E-21 1.9E-21 2.0E-21 2.0E-21 

5 8.8E-23 8.7E-23 8.5E-23 8.8E-23 8.5E-23 8.7E-23 

6 3.6E-21 3.5E-21 3.5E-21 3.4E-21 3.6E-21 3.5E-21 

7 5.4E-21 5.4E-21 5.4E-21 5.4E-21 5.4E-21 5.4E-21 

8 5.5E-20 5.5E-20 5.5E-20 5.4E-20 5.6E-20 5.5E-20 

9 9.9E-21 9.9E-21 9.9E-21 9.9E-21 1.0E-20 9.9E-21 

10 6.3E-22 6.2E-22 6.3E-22 6.3E-22 6.3E-22 6.3E-22 

11 1.0E-20 1.0E-20 1.0E-20 1.0E-20 1.0E-20 1.0E-20 

12 1.4E-17 1.4E-17 1.4E-17 1.4E-17 1.4E-17 1.4E-17 

13 1.1E-20 1.1E-20 1.1E-20 1.1E-20 1.2E-20 1.1E-20 

14 5.4E-19 5.3E-19 5.3E-19 5.3E-19 5.4E-19 5.4E-19 

15 3.6E-19 3.6E-19 3.6E-19 3.6E-19 3.3E-19 3.6E-19 

16 7.4E-20 7.1E-20 7.6E-20 7.1E-20 1.3E-19 6.3E-20 

17 1.8E-17 1.8E-17 1.8E-17 1.8E-17 1.8E-17 1.8E-17 

18 7.8E-20 8.3E-20 1.1E-19 9.3E-20 5.2E-20 1.1E-19 

19 2.2E-19 2.1E-19 2.2E-19 2.2E-19 2.1E-19 2.1E-19 

20 7.6E-19 7.5E-19 7.6E-19 7.5E-19 7.5E-19 7.5E-19 

 

The intra-class variances of the AMIs are caused by 

numerical imprecision of the digital images.  

To conserve space, we omit the experimental results on 

noisy conditions. From the experiment we have known that 

the traditional AMIs are robust to uniformly distributed noise 

and white noise. They are sensitive to the mean value of the 

Gaussian distributed noise. They lose discriminating power 

under dilation and erosion distortions. On the other hand, the 

proposed new AMIs have similar discriminating power under 

uniformly distributed noise and white noise.  They are less 
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sensitive to the mean value of the Gaussian distributed noise.  

They still have certain discriminating power under dilation 

and erosion distortions. We found that some of the new AMIs 

can be very stable for specific images under certain noise 

model. This is important for object recognition. It provides 

the possibility to obtain specific invariants that are stable for 

the special object. 

VI. CONCLUSIONS 

We have presented a novel method to construct affine 

moment invariants of grayscale images through the 

generalized moments of images. Using this method, we can 

derive an arbitrary number of invariants consisting of only 

low order moments. The method is clear, simple, and easy to 

implement. 

We have proposed a set of five wrapper functions. There 

are certainly other choices. When the number of wrapper 

functions is large, the number of affine invariants beyond the 

second order is huge. It is a hard problem to select the set of 

independent invariants from them. At present, we do not know 

whether one set of wrapper functions is superior to another 

set. This might be application sensitive. That is, for specific 

applications, one set of wrapper functions is better than 

another set. All these problems are the directions of future 

research.  
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