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Abstract—Mobile robotic systems offer valuable test 

platforms due to their shared features with autonomous 

vehicles, including features such as sensor technologies, 

navigation algorithms, and control systems. However, 

constraints in laboratory environments or technical resources, 

along with the need for extensive testing, often necessitate the 

use of virtual test laboratories. While line-following is a widely 

preferred application in mobile robotics, research on this topic 

within virtual laboratories is limited. This study pioneers the use 

of a car-like robotic vehicle in conducting line-following tests 

within a virtual laboratory environment. To facilitate these tests, 

a virtual simulator was developed to meet the requirements of 

realistic simulations. This simulator includes simulated 

elements, such as roads and environmental features, along with 

virtual sensors designed to collect and process dynamic motion 

data. An exceptional aspect of this study is its ability to collect 

consistent dynamic travel data by sampling realistic sensor 

information within a virtual environment. The developed line-

following algorithm employs a controller to minimise lateral 

deviation while the robotic vehicle follows a road line during its 

movement. The study conducted virtual driving tests using two 

different manoeuvre modes on four distinct road segments, 

exploring how the manoeuvring style influences the driving 

quality. It was demonstrated that in the low manoeuvre mode, 

the ride is more comfortable, but exhibits a greater route 

deviation due to reduced oscillation, while the high manoeuvre 

mode exhibits the opposite behaviour. 

 
Index Terms—Autonomous drive; Virtual laboratory; 

Mobile robot; Manoeuvre analysis; Driving simulation; Line 

following.  

I. INTRODUCTION 

Mobile robots are frequently used in various research areas 

due to their superior mobility, ease of operation, and 

relatively low cost [1]–[6]. These robotic vehicles find 

applications in education [7], [8], research [9]–[11], 

surveillance [12], industry [13], and military purposes [14]. 

Moreover, while more advanced hardware and software 

examples of these robots are used in space research [15], [16], 

their potential applications continue to grow [17], making 

them increasingly indispensable. In particular, wheeled 

mobile robots have seen substantial improvements in 

performance and capabilities, thanks to advances in both 

software and hardware. These advances have prompted the 

scientific community to embark on more comprehensive 

studies to maximise the efficiency of these robots [18]. 

Among the various types of mobile robotic vehicles, the most 

preferred are differential-drive mobile robots. Their simple 

architecture and well-established kinematic and dynamic 

models make them the best choice [19]. As the name implies, 

differential-drive robotic vehicles feature independent right 

and left wheels that share a common axis, as well as other 

wheels responsible for stabilising the robotic platform [20]. 

In addition to established kinematic and dynamic models, 

system identification methods are commonly used to analyse 

these robotic vehicles [21], [22]. Among the various 

approaches, the identification of data-driven systems based 

on input and output data is particularly favoured [23], as it is 

often straightforward to implement in laboratory tests [24]. 

Notably, this method is not confined to mobile robots; it is 

widely applied in the analysis of various other autonomous 

systems [25]. 

Line-following is one of the common research areas for 

testing mobile robotic vehicles [26]. These robots are 

typically equipped with a built-in wired control circuit and 

infrared (IR) sensors for precise line-tracking [27]. In line-

following applications, a proportional controller (P) is 

commonly utilised, as discussed by the authors in [28]. The 

deviation from the desired path is determined by the distance 

between the IR sensor unit on the line and the central IR 

sensor unit. Many studies focus on enhancing the 

proportional controller by establishing a linear model of the 

robotic system. Maintaining a consistent line-following 

algorithm and a well-defined path for the robot to follow 

significantly enhances the functionality of these robotic 

vehicles. This approach enables full automation of numerous 

applications, thereby improving their overall efficiency. 

The ability to independently control the motors of 

differential-drive mobile robotic vehicles gives them 

exceptional manoeuvrability, greatly improving their 

functionality [29]. The similarity between these robotic 

vehicles and conventional automobiles becomes more 

pronounced with the rapid advancements in MEMS sensors 

and automation technology, which have led to increased 

automation in road vehicles in the past decade. Today, nearly 

all mobile robotic vehicles have common features with 

conventional cars, with the primary distinction being the 
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absence of an internal combustion engine. Considering the 

ongoing advancements in electric vehicle technology, even 

this distinction is likely to diminish over time. If researchers 

in the field of mobile robotic vehicles take this trend into 

account, it could potentially herald a new era in transportation 

technology. 

Simultaneously, the field of intelligent transportation 

systems (ITS) is progressing rapidly and presents new 

demands due to these advances. These needs encompass 

issues such as autonomous control [30], optimal utilisation of 

IoT [31], and immediate access to transportation data [32]. 

Incorporation of a wide array of sensors, microprocessors, 

and embedded measurement and control mechanisms into 

vehicles and transportation infrastructure underscores the 

rapid convergence of these seemingly distinct technologies. 

When applying the insights garnered from mobile robotic 

vehicle research to ITS, numerous transportation challenges 

can be resolved more efficiently and quickly. For example, 

emerging ITS applications can be initially tested using 

robotic vehicles, saving time and cost while minimising 

potential accident risks. This dual approach could establish 

precisely controlled line-following robotic vehicles as a 

pivotal component of the future of intelligent transportation. 

These vehicles serve as an invaluable platform for testing, 

validating, and enhancing ITS. Their controlled operating 

environment, cost-effectiveness, and safety advantages 

position them as a cornerstone in the development of future 

transportation systems that are safer, more efficient, and more 

intelligent. 

Establishing the required line trajectory for line-following 

robot applications often requires a spacious laboratory 

environment. Moreover, setting up multiple tracks with 

diverse features simultaneously within the same laboratory is 

usually impractical. A highly effective solution is to simulate 

line-following experiments through the creation of an 

interactive virtual laboratory on a computer. An offline 

virtual laboratory is a powerful and valuable tool for practice 

and further experimentation [33]. While resources for line-

following mobile robotic vehicles are abundant, the literature 

shows a relative scarcity of simulation studies in this field. To 

address this gap, this study primarily caters to this need by 

examining the line-following capabilities of a car-like robotic 

vehicle within a virtual laboratory. Developed using the 

Unity’s game engine, this virtual laboratory accounts for the 

potential integration of mobile robotic vehicles into ITS in the 

future and investigates the consistency of the virtual robotic 

vehicle in line-following across various types of roads. 

II. SIMULATION ENVIRONMENT 

A modelling and simulation environment was developed to 

simulate various driving tests. This software serves as a 

virtual testing simulator that can be configured to mimic real-

world conditions. It allows the creation of a wide range of 

features within the virtual test environment, such as road 

lanes, buildings, various objects, and obstacles. It also 

enables the collection and processing of data using virtual 

sensors that replicate the behaviour of real sensors embedded 

in a virtual car-like robot (VCLR). Furthermore, there is the 

capability to create numerous virtual robots to act as testbeds 

to simulate more complex transportation scenarios. The 

controller code developed for a specific application operates 

seamlessly on both physical robots with similar features and 

virtual robots. The VCLR and the entire simulation domain 

are managed by a configuration code organised in XML that 

oversees the number of robots, their properties, and the types 

and criteria of all objects within the simulation environment. 

Depending on the type of test conducted, a variety of objects 

of different types and sizes can be placed in relevant parts of 

the simulation environment. In this particular study, where 

the VCLR is required to follow a designated line trajectory 

on the road, the ground properties of the virtual environment 

can be adjusted accordingly. Users have the flexibility to 

define the geometric properties of these lines to be followed 

and make any necessary modifications. Simulation consists 

mainly of three main submodules: visualisation, VCLR 

kinematics, and sensor sampling. The details of each 

submodule are provided in the following section. 

A. Visualisation 

Although simulation platforms like CoppeliaSim or 

Gazebo are well-suited for the type of work presented here, 

this study specifically favoured Unity. Each of these 

simulation platforms is popular and comes with its own 

distinct advantages and use cases, with selection largely 

based on the specific requirements of a given project. The 

primary rationale for opting for Unity in this context is its 

exceptional ability to create visually immersive and realistic 

3D environments. Unity boasts powerful rendering 

capabilities and supports high-quality graphics, making it 

particularly suitable for projects where visual fidelity plays a 

crucial role. This attribute proves invaluable in scenarios that 

require a lifelike visual representation, such as training 

simulations or applications in the field of augmented reality. 

Moreover, Unity is equipped with robust physics simulation 

capabilities, an indispensable feature for modelling the 

intricate dynamics of robot vehicles, encompassing their 

interactions with the environment, various objects, and other 

entities. Furthermore, Unity’s extensive Asset Store features 

a wide array of pre-built 3D models, environments, and 

assets, significantly expediting the development of 

simulations. This vast library can substantially streamline the 

process and contribute to the creation of realistic virtual 

environments, ultimately saving both time and effort. One 

particular advantage of Unity is its capability to collect 

dynamic data through consistent sensor simulation. The 

visualisation engine initiates the simulation by reading the 

properties of the simulation environment and the file that 

contains all user-defined system input objects and specific 

configurations. Then it advances all definitions in the input 

file at user-defined time intervals, typically set at 20 ms. 

Through the developed user interface, users can interact with 

options such as changing the view mode during the 

simulation. They have the flexibility to observe the 

simulation from within the VCLR, essentially experiencing it 

from the driver’s perspective, or as an observer from a fixed 

point outside the VCLR. A screenshot of the simulation 

interface in top view is presented in Fig. 1. Additionally, 

essential metrics such as the distance covered during the 

driving test can be displayed and monitored during the 

simulation. 
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Fig. 1.  Top-down view of the simulation environment launched in plain 

mode. 

B. Kinematic Model of the VCLR 

Modelling of the VCLR can be performed based on the 

basis of a rigid body balanced by wheels. With the flat-earth 

assumption, the VCLR body is assumed to be completely 

parallel to the ground, so it moves in a horizontal plane. 

VCLR (𝑥𝑅 , 𝑦𝑅) and inertial (𝑥𝐼 , 𝑦𝐼) coordinate frames are 

defined as shown in Fig. 2(a). The instant state of the VCLR 

in the inertial frame is represented by Γ𝐼 = [𝑥 𝑦 𝜃]𝑇, with 

𝑥 and 𝑦 being the position and 𝜃 being the orientation. The 

instant state is defined by Γ̇𝑅 = 𝑅(𝜃)Γ̇𝐼 in the local VCLR 

framework, where 𝑅 is the rotation matrix. From Fig. 2(b), 

where 𝑑 is the width of the chassis of the VCLR, the right and 

left wheel velocities can be expressed as 𝑣𝑟 = 𝜔(𝑟 + 𝑑 2⁄ ) 
and 𝑣𝑙 = 𝜔(𝑟 − 𝑑 2⁄ ), respectively, where ICR denotes the 

instantaneous centre of rotation. With a trigonometric 

approach, the motion of the VCLR can also be expressed as 

follows: 

  cos ,x v   (1) 

  sin ,y v   (2) 

 ,   (3) 

where 𝜔 is the angular velocity and is expressed by 

(𝑣𝑟 − 𝑣𝑙) 𝑑⁄ . 𝑣 is the velocity of the geometry centre of the 

VCLR and is expressed by (𝑣𝑟 + 𝑣𝑙) 2⁄ . By integrating and 

rearranging (1)–(3), the following equations of motion are 

obtained: 
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Like with sensor sampling, the game engine processes a 

series of samples at a specified sampling rate. Therefore, it is 

more advantageous to use the discrete form below 
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Thus, by sampling the VCLR wheel velocities at a fixed 

time interval, ∆𝑡, the time-varying position is obtained with 

(7) in the inertial frame. 

 
Fig. 2.  (a) Inertial coordinate system and VCLR’s local coordinate system; (b) Illustration of differential-drive feature of the VCLR. 

C. Sensor Sampling 

The simulation of the embedded robot sensors is achieved 

through the use of submodules, each dedicated to a specific 

type of sensor. In a virtual robot with predetermined physical 

and geometric characteristics, virtual sensors can be added or 

removed as needed. The selection of these sensors is 

dependent upon the requirements of the driving test, ensuring 

that they are seamlessly integrated into the robot to accurately 

collect data during testing. The road segments designated for 

testing are depicted in Fig. 3. These segments represent 

typical road scenarios that are often favoured in studies 

related to intelligent transportation systems.

 
Fig. 3.  Four different routes used in the simulation.
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For this particular study, the VCLR is tasked with 

following a line trajectory, and to fulfil this function, a set of 

infrared (IR) sensors is defined within the simulation. This 

virtual array of IR sensors is positioned at the front of the 

VCLR, as depicted in Fig. 4. The downward-facing IR sensor 

array comprises eight individual sensor units, each composed 

of an illuminator and a detector. These sensors operate on the 

basis of the detection of IR light emitted by the illuminator. 

When the detector successfully registers the returning IR 

light, it outputs a value of 1; conversely, it returns 0 if no 

detection occurs. For example, the sensor would return a 

value of 0 when the IR signal is directed at a dark spot on a 

light background as it cannot be reflected. In contrast, it 

would return 1 when the IR light is directed at a light spot, 

detectable by the detector. This approach employs eight 

sensors operating in this manner, positioned alongside each 

other to collectively send eight IR lights toward the ground 

simultaneously, providing information about the geometric 

location of the line to be followed. By selecting a brightness 

threshold value, the system ensures that the detector outputs 

1 if the detected light exceeds this threshold, and 0 if it falls 

below it. This threshold-setting approach is better aligned 

with the emulating of real-world conditions compared to the 

straightforward black-and-white differentiation, as often used 

in experiments. In practical settings, it is not uncommon to 

encounter scenarios where black route lines on a white 

background may not be readily discernible. Hence, 

establishing this threshold value equips the IR sensor set to 

effectively differentiate between the ground and the line 

under diverse conditions, ensuring its reliability in various 

real-world scenarios. 

D. Simulation of the VCLR Kinematics 

The visualisation engine serves as the core component for 

simulating VCLR kinematics by employing a third-order 

electric motor model. The model takes as input the pulse 

width modulation (PWM) signal sent to the motors 

responsible for controlling the VCLR’s wheels, and its 

corresponding output provides the rotational speeds of these 

wheels. It is important to note that the model factors in the 

contribution of the entire robot’s weight to the motor 

response, as this model was derived during the open-loop 

VCLR operation. Given the differential-drive characteristics 

of the VCLR, the model is executed individually for each 

wheel throughout the simulation. 

 
Fig. 4.  Infrared (IR) sensor schematic. 

E. Control of the VCLR 

The developed line-following algorithm incorporates a 

controller aimed at minimising lateral deviation when the 

VCLR follows the road line during its motion. The offset, 

which signifies the distance from the line to be tracked, is 

determined by the IR sensor set and is conveyed as an eight-

bit reading. Taking into account the simulation design and the 

thickness of the road line, a maximum of two IR sensor units 

can be placed on the line simultaneously. The eight-bit sensor 

reading is 00000001 when the VCLR is positioned at the far 

left of the line, and 10000000 when it is at the far right. In the 

ideal scenario, when the VCLR is perfectly centred on the 

line, the reading will be 00011000, indicating that the two IR 

sensor units in the middle are precisely on the line. This 

alignment, where the robot is perfectly centred on the line 

with zero error, serves as a reference, and any deviations from 

this value are recorded as errors. The controller processes this 

eight-bit real-time sensor reading to adjust the VCLR 

movement if it deviates from the line, thus maintaining its 

course. 

III. RESULTS 

Before conducting tests in the virtual laboratory, a series of 

line-following experiments were performed in a real 

laboratory using two different robots. The purpose of these 

experiments was to demonstrate the correct functionality and 

applicability of line-following based on IR sensor readings 

with physical robots. Figure 5 illustrates the test robotic 

platforms and the experimental setup used. Both robots have 

a differential-drive feature, and their instantaneous position 

and heading information can be tracked using the developed 

kinematic model (7). They were equipped with the same set 

of IR sensors, consisting of eight IR sensors, mounted on the 

front of the robots, facing the ground. These robots were 

subjected to tests in a controlled environment where routes 

were defined using black electrical tape on a white cardboard 

background for line-following purposes. The reference line to 

be followed and the paths taken by both robots are depicted 

in Fig. 6. 

As evident from the figure, both robots successfully 

completed the tests by following the line, albeit with some 

degree of deviation. Robot-1 exhibited an average heading 

error of 4.07 degrees, while Robot-2 had an average heading 

error of 2.51 degrees. On the basis of these results, it was 

anticipated that even lower errors would be observed in the 

virtual laboratory tests, as various unpredictable factors in the 

real environment, such as uneven terrain and wheel slippage, 

would not be present. Furthermore, taking into account 

current autonomous driving standards, lateral deviations of 

up to 0.2 metres and a maximum head error of 1.5 degrees are 

considered acceptable in the context of highway navigation 

[34]. Therefore, the evaluation of virtual laboratory tests 

would be based on these two criteria. 

The algorithm designed for line-following governs the 

wheel speeds of the VCLR using the kinematic model to steer 

the robotic vehicle. In the initial simulation trial, three distinct 

steering commands are issued to the VCLR in response to 

three types of deviations detected by the IR sensor array. 

These steering commands are referred to as mid-slow, mid-

fast, and fast-sharp, corresponding to the binary readings 
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00110000, 01100000, and 11000000, respectively. These 

binary readings indicate that the tracked line is to the left of 

the position of the robotic vehicle. In this scenario, the right 

wheel of the VCLR accelerates in response to the binary 

value, leading the robot to turn left. On the contrary, binary 

readings 00001100, 00000110, and 00000011 are used when 

the line is to the right of the centre of the VCLR. However, in 

each iteration, the algorithm initially checks if the line is 

already centred. If so, no steering commands are executed. If 

the line is not centred, it identifies the deviation from the line 

based on the binary reading from the IR sensor array and 

applies the appropriate steering command: mid-slow, mid-

fast, or fast-sharp. 

 
Fig. 5.  Test robots and experimental line-following setup. 

 
Fig. 6.  Reference route and the trajectories followed by both robots on this 

route. 

In the second simulation trial, five different steering 

commands are sent to the VCLR in response to five distinct 

deviations detected by the IR sensor array. These steering 

commands are labelled slow, mid, mid-fast, fast, and sharp, 

corresponding to binary readings 00010000, 00100000, 

01100000, 01000000, and 10000000. Similarly, when the line 

is to the right, these readings are mirrored. The angular 

velocity profiles of the robotic vehicle corresponding to these 

different steering commands are presented in Fig. 7(a). An 

illustration of the angular velocity graph for both 

manoeuvring modes of the vehicle on Route-3 is displayed in 

Fig. 7(b). In this graph, positive angular velocity values 

denote a clockwise manoeuvre, while negative angular 

velocity values signify a counterclockwise manoeuvre. 

Figure 8 illustrates the variation in the VCLR’s heading as 

it traverses four distinct routes. It is important to note that in 

the graphs presented in Fig. 8, the x-axis represents the 

position, denoted as r, which indicates the distance from the 

initial starting point of the movement. Route-1, a straight road 

segment, provides an ideal scenario for investigation. To 

facilitate a more comprehensive analysis, the VCLR is 

initially placed with its IR sensor binary readings set to 

00011000, indicating that it is centred on the line but 

orientated 35 degrees to the left (θ = 125 °) from its intended 

direction (θ = 90 °). This setup allows for observation of how 

the robot performs the necessary manoeuvres to follow the 

line, accounting for the significant errors present in the initial 

heading values for Route-1. On Route-1, operating in the 3-

manoeuvre mode, the VCLR approaches the target line after 

covering approximately four metres. 

 
Fig. 7.  (a) Angular velocity profiles of the robot corresponding to different 

steering commands; (b) An example of the angular velocity variation of both 

manoeuvre modes of the vehicle moving on Route-3. 

 
Fig. 8.  Heading change according to the instant position of the VCLR tested 

on four different routes: (a) Route-1; (b) Route-2; (c) Route-3; (d) Route-4. 

Beyond this point, it proceeds with slight oscillations 

around the line, eventually completing the route. The 5-

manoeuvre mode, as expected, performs even better in Route-

1. It gets very close to the target line after about two metres, 

benefiting from its enhanced manoeuvrability and exhibiting 

fewer oscillations compared to the 3-manoeuvre mode. The 

mean square error (MSE) values for both manoeuvre modes 

on each route are compiled in Table I. Route-2 involves the 

VCLR initially aligned with its intended direction (θ = 90 °). 

It successfully completes the route by making periodic slight 

rightward manoeuvres. Similarly to Route-1, the 5-

manoeuvre mode outperforms the 3-manoeuvre mode, as can 

be seen in Table I. Route-3 commences with a straight 

segment, resembling Route-1. Consequently, the VCLR is 

initially placed to centre the line, but with an orientation of θ 

= 40 °. In the 3-manoeuvre mode, it aligns with the line 

approximately six metres into the movement, while the 5-

manoeuvre mode achieves this in about three metres. The 
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VCLR then follows the straight segment with minor 

oscillations. At the end of this segment, the VCLR executes a 

full 90-degree right turn, which it accomplishes in both 

manoeuvre modes. Proceeding for 15 metres towards θ = 0 °, 

it makes a full left turn, similar to the first turn. In particular, 

the 5-manoeuvre mode consistently outperforms the 3-

manoeuvre mode in these turns, as can be seen in Table I. The 

VCLR travels another 75 metres in the θ = 90 ° direction, 

concluding the route with another full turn to the left. 

Although it follows the line admirably along the straight 

segments, there is a slight delay in catching the line during 

turns. It should be noted that in each simulation trial, the 

robot’s initial position is established as (0, 0). Consequently, 

the variation in r for horizontal movements appears less 

pronounced than for vertical movements. This explains why, 

although the VCLR performance appears similar in both 

turns, there is a difference in the representation of the graph. 

During these turns, it is evident that the 5-manoeuvre mode 

consistently outperforms the 3-manoeuvre mode. On Route-

4, similar to the previous routes, the VCLR begins with an 

orientation of θ = 45 °, and, as expected, the 5-manoeuvre 

mode surpasses the 3-manoeuvre mode. On Route-2 and the 

circular section of Route-4, the VCLR delivered a 

performance even more remarkable than initially anticipated. 

It was projected to excel primarily on linear road segments, 

but it astoundingly completed these curved sections with 

minimal errors. Furthermore, taking into account the 

maximum heading error of 1.5 degrees (0.0262 radians), 

which is the autonomous driving standard mentioned at the 

beginning of this section, it is evident that the performance of 

VCLR falls within the acceptable limit for both manoeuvre 

modes on all routes, except for Route-3. 

TABLE I.  THE AVERAGE HEADING ERRORS. 

 Mean Square Error (rad) 

Route No. 3-Manoeuvre Mode 5-Manoeuvre Mode 

1 0.005662 0.004379 

2 0.000459 0.000151 

3 0.086536 0.051023 

4 0.012396 0.008152 

 

Figure 9 presents the total lateral deviation during the 

movement of the VCLR on each route. Across all four routes, 

the 5-manoeuvre mode consistently exhibits reduced lateral 

error. Routes 1, 3, and 4 exhibit significant initial lateral 

deviation errors, attributed to the initial orientation of the 

VCLR in varying directions. However, the robot rapidly 

rectifies these errors by implementing the required 

manoeuvres, quickly centring itself on the line as dictated by 

the algorithm. On Route-1, although the 5-manoeuvre mode 

appears to have minimal lateral deviation, the values of the y-

axis do not adequately represent this error due to the initially 

substantial error. The distinction between the 3-manoeuvre 

and 5-manoeuvre modes becomes apparent in the second 

route, where the former results in roughly twice as many 

lateral deviation errors compared to the latter. Notably, the 

large deviations during full right and left turns in Route-3 are 

evident. In all three turns, the 5-manoeuvre mode executes 

more effective manoeuvres, swiftly rejoining the line, and 

incurring fewer errors. In the circular segment of Route-4, it 

is evident that the robot performs admirably in both 

manoeuvring  modes,  outperforming   the   rest   of  the   route. 

Regarding the established performance criterion, the average 

lateral deviation errors on Route-1, Route-2, and Route-4 for 

both manoeuvre modes were found to be below the upper 

limit of the autonomous driving standard of 0.2 metres, as 

shown in Table II. In the case of Route-3, while the lateral 

deviation in the 3-manoeuvre mode slightly exceeds this 

threshold, it remains within the acceptable limit when using 

the 5-manoeuvre mode. 

 
Fig. 9.  Total amount of lateral deviation during the movement of the VCLR 

on each route. 

TABLE II. THE AVERAGE LATERAL DEVIATION ERRORS. 

 Mean Square Error (m) 

Route No. 3-Manoeuvre Mode 5-Manoeuvre Mode 

1 0.07327 0.04282 

2 0.02999 0.01483 

3 0.20415 0.14176 

4 0.08672 0.05286 

 

Figure 10 provides insight into the speed differentials 

between the robot’s wheels along each route, providing a 

glimpse of instantaneous manoeuvres as reflected in the 

corresponding speed variations.  

It is important to note that the difference in speed between 

the wheels is directly related to the manoeuvrability of the 

robot. In essence, the ability to execute necessary manoeuvres 

with precision depends on how accurately the speed 

differential between the wheels is managed. When no 

manoeuvres are executed and both wheels rotate at the same 

speed, the speed differences are zero. Throughout the motion 

of the VCLR on all routes, the 5-manoeuvre mode aims to 

maintain a smoother line-following experience by 

minimising speed differentials. This is achieved through the 

design of the mode, which includes the selection of smaller 

control adjustments, enhancing its precision in manoeuvring. 

On Routes 1, 3, and 4, it is evident that the robot initiates more 

pronounced manoeuvres at the outset to quickly converge 

with the target line when employing the 5-manoeuvre mode. 

Similarly, as it approaches the line, it endeavours to remain 

in close proximity by executing more subtle manoeuvres. 

9
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Fig. 10.  Speed differences between the wheels of the robot along each route. 

IV. CONCLUSIONS 

Autonomous driving tests involving a car-like robot were 

simulated and studied within a virtual laboratory 

environment. The simulation environment, developed using 

the Unity game engine, underwent rigorous testing with 

various straightforward driving scenarios, confirming the 

high repeatability and reproducibility of the tests carried out. 

The results of these tests demonstrated that the developed 

kinematic model consistently represented the robot motion 

under optimal driving conditions. In simulations that included 

two distinct manoeuvre modes across a range of road types, 

the virtual car-like robot effectively navigated all phases, 

maintaining errors within the acceptable boundaries for 

autonomous driving, with only a few exceptional instances. 

A significant contribution of this study was the ability to 

sample realistic sensor data, which closely matched the 

sensor output obtained from real-world robot tests. This 

revealed that the virtual environment could support reliable 

and consistent testing. In cases where low manoeuvrability 

(3-manoeuvre mode) settings were applied to the virtual 

robotic vehicle, it displayed lateral deviations of up to 0.37 

metres from the intended route. However, when set to high 

manoeuvrability (5-manoeuvre mode), it exhibited up to 

65 % less lateral deviation. It is important to note that the high 

manoeuvrability mode, while more consistent in following 

the intended route, led to an increase in oscillation around the 

line due to the higher number of manoeuvres, which affected 

driving comfort. On the contrary, the low manoeuvrability 

mode offered a smoother overall ride experience. Although 

there was generally consistent performance in both driving 

modes, higher errors were observed during full turns, 

particularly on straight road segments or during circular 

motions. 
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