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1Abstract—In deep learning (DL), the deep generative model 

is helpful for data augmentation objectives to tackle the lack of 

datasets that have a significant impact on learning 

performance. Data augmentation or synthesis is expected to 

solve the issue in a small/sparse database. The problem of 

databasing also exists in the fingerprint-based indoor 

localisation system. The dense offline fingerprint database 

must be constructed with the accuracy requirement. However, 

this will affect the high cost, massive laborious work, and 

increase the complexity of the system. Therefore, this paper 

proposes to address these issues by generating synthetic data 

via a deep generative model. The generative adversarial 

network (GAN) is selected to generate the synthetic fingerprint 

database for indoor localisation. Our database consideration 

consists of power-based parameters, i.e., the received signal 

strength indicator (RSSI) from Wi-Fi devices obtained from 

the actual measurement campaign. Some of the literature 

mainly discusses how GAN works in a vast and complex 

dataset. Here, we consider applying GAN in a relatively small 

dataset and for a simple setup. Our results show that by only 

using the 20 % fraction of actual RSSI data combined with the 

synthetic RSSI, the accuracy validation performance is slightly 

higher than when using all actual data usage. Moreover, in 

only 60 % of actual data usage and in combination with 625 

samples of synthetic data, the accuracy performance is 

improved to 0.73 (1.37 times higher than the use of all actual 

data, 0.53). Thus, this result proves that the challenges of 

offline fingerprint databases can be alleviated by data synthesis 

through GAN by using only a small dataset. 

 
 Index Terms—Deep generative model; GANs; Fingerprint 

technique; Indoor localisation.  

I. INTRODUCTION 

Indoor localisation is still an active research topic today. 

The most widely used indoor localisation techniques are 

distance-based and distance-free. Distance-based refers to 

the technique when the parameter needs to be converted to a 

distance and use a specific method to find the location, e.g., 

trilateration, angle-based, and time-based methods. 

However, this technique is reliable only when achieving 

good quality from the parameter-distance conversion result. 

The complex indoor environment yields a multipath effect 

in radio propagation; the non-line-of-sight condition often 
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degrades the quality of the parameter [1], [2]. 

On the other hand, the distance-free method, i.e., the 

fingerprint method, does not need the parameter-distance 

conversion. It has benefit on using spatial information 

directly which consist of the location of the fingerprint 

points and their corresponding localisation parameter values. 

The multipath effect in the indoor environment does not 

affect the localisation process, because all these effects are 

considered in the recorded database [3]. 

The fingerprint technique has been a central and exciting 

topic in indoor localisation. Despite its accuracy, 

performance, and simplicity of parameters, the fingerprint 

technique has a significant drawback in its offline database 

construction. This database needs to be densely designed to 

ensure the reliability of accuracy performance. However, 

much laborious and cost efforts are needed to build a very 

dense database. Instead of collecting the dense database in 

the offline phase, this paper tackles this problem. The small 

number or scarce location of fingerprints is emphasized. 

Then, data synthesis is applied to make the database denser 

[4]. 

Previous publications offered some approaches to the 

fingerprint issue in offline fingerprint construction, 

including the crowd-sourcing data; unfortunately, active 

participants are needed in the data collection process. The 

basic idea of our proposal is how we can generate 

synthesis/fake database to compensate for the low density of 

the fingerprint database. We apply deep generative model-

based data synthesis as deep learning (DL) implementations 

have been widely proven to be helpful in a wide area of 

research [5], [6]. 

The deep generative model comprises two main types: 

implicit and explicit density interpretation [7]. One type of 

explicit density is the generative adversarial network (GAN) 

[8]. Explicit density is a generating function that draws a 

sample from the actual input distribution. Some preliminary 

works on GAN for indoor localisation are in [9]–[11]. 

Especially for the work in [12], we cite this publication as 

our primary reference. Other proposals implemented 

variational autoencoders (VAE) that utilised received signal 

strength indicator (RSSI) and channel state information 

(CSI) [13]–[15]. 

Furthermore, the modified VAE and GAN to semi-

supervised method also proved promising for indoor 
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localisation [15]–[19]. Semi-supervised, on the other hand, 

needs a source of unlabelled data. However, there are many 

rooms to improve and implement the deep generative model, 

especially for the small and scarce fingerprint database. 

We propose investigating how using a small dataset, then 

compensating it with the synthetic data, will yield similar or 

better performance than using all available data. We 

hypothesise that by applying database synthesis, the 

database grid will increase, resulting in a denser database. 

We would like to see that these denser data will improve the 

localisation performance of the fingerprint technique. 

Hopefully, by inspecting how the synthetic data are helpful, 

we can tackle the sparse/small dataset issue in fingerprint-

based indoor localisation. 

We organise this paper as follows. The introduction is 

given in Section I, including key references to preliminary 

works. In Section II, we present materials and methods. We 

then discuss the implementation of GAN, the results, and the 

discussion in Section III. Finally, Section IV is the 

conclusions and future work. 

II. MATERIALS AND METHODS 

This section will introduce the fingerprint technique, 

GAN, and our measurement campaign system and setup, 

system model, and data splitting.  

A. Fingerprint Technique 

The fingerprint technique involves a two-stage process to 

estimate the target location. The offline stage is the essential 

stage where the fingerprint database is obtained based on the 

parameter and fingerprint location. In the online stage, the 

new parameter values exhibited by the target or object will 

be compared to those in the offline database [20]. 

Figure 1 shows the overall process of the fingerprint 

technique. For example, when the parameter used for 

localisation is RSSI values exhibited from 3 (three) 

reference nodes (RNs), then the fingerprint database is a 

collection of RSSI from three RNs in a specific location as 

the fingerprint location. The fingerprint technique applies 

spatial information to obtain the target location. In the 

online phase, the pattern matching algorithm is employed. 

This algorithm has the task of finding the similarity between 

the target and the database. The algorithm used can be a 

simple distance metric or an advanced method that employs 

machine learning (ML) algorithms. 

 
Fig. 1.  Illustration of the fingerprint technique. 

B. Generative Adversarial Network (GAN) 

The basic idea of GAN is to generate new data through 

the adversarial process of two networks. GAN was first 

introduced by the authors in [8] and consists of two 

networks, e.g., generative as G and discriminative as D. 

These two networks will duel in a minimax two-player 

game. The training of G aims to maximise the probability 

that D is making a mistake in discrimination. Finally, in an 

arbitrary function space, G can recover the training/input 

data distribution while D is equal to 0.5 everywhere or 

achieve the Nash equilibrium. In this state, the quality of the 

data generated by G has been like the input, so that D cannot 

distinguish it anymore.  

Let us assume that both networks are in the form of 

multilayer perceptron (MLP) networks. MLP is a fully 

connected class of feedforward artificial neural networks 

(ANNs) so that the entire GAN can be trained with 

backpropagation. Compared to other methods, GAN does 

not need the Markov chain or unrolled approximate 

Bayesian inference either in training or in generating the 

sample data. The GAN illustration is depicted in Fig. 2. 

As we assumed that both networks are MLP, we can 

describe the GAN process as follows: 

1. Defining a prior distribution of the input noise, such as 

pz(z) to learn the distribution of the network G, pg over the 

input data, x; 

2. Mapping to the data space, ( , ),gG z   is a differentiable 

function by MLP with parameter ;g  

3. The second MLP, ( , )dD x   has an output single scalar. 

D(x) represents the probability that x comes from the 

actual data rather than from the G, pg; 

4. The D is trained to minimise    log 1 D G z  or 

value function of V(D, G) as a two-player minimax game 

as 
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( , )V D G  in practise is approached by an iterative, 

numerical procedure. In this manner, we alternate between 

the k steps of optimising D and one step optimising G, 

resulting in D is being maintained near its optimal solution 

if G is slowly changing. In (1), we can observe that instead 

of minimising   1 log D G z , we can train to maximise 

  log .D G z  

 
Fig. 2.  Illustration of GAN. 

C. Measurement Campaign 

We consider the low-cost and straightforward 

measurement campaign system and setup. The primary 

device we used was the Wi-Fi-based ESP32. Table I shows 

the details of the devices, tools, and other properties of the 
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measurement campaign.  

We consider the flow of the measurement system by 

using the illustration in Fig. 3. First, we send the personal 

computer (PC) command to the sink node for RSSI 

broadcast via the server node. Then, the sink node will 

collect the RSSI from a total of 8 reference nodes. The last 

step is to send RSSI values back to the server node and to 

acquire the RSSI values and store them on the PC. 

TABLE I. MEASUREMENT DEVICES AND TOOLS. 

Name Device Specification Use 

Reference, 

server, sink 

(target) node 

ESP32 

Toolkit 

IEEE 

802.15.11 

standard, 

Memory 520 

kB 

Transceiver for 

RSSI values 

Software 

Arduino 

IDE, Jupyter 

Notebook 

1.8.5 version 

(for windows), 

Python 3.7, 

TensorFlow, 

Keras 

ESP32 basic 

program, 

algorithm 

implementation 

Personal 

Computer 

(PC) 1 

CPU (AMD 

Ryzen 5 

3600) 

GPU 

(NVIDIA 

GeForce 

GTX 1660) 

RAM 16 GB 

For collecting the 

data, program 

ESP32 

Personal 

Computer 

(PC) 2 

CPU (AMD 

Ryzen 9 

3900X), 

Windows 10 

(64-bits), 

GPU 

(NVIDIA 

GeForce 

RTX 2080) 

12-Core 

Processor, 

3.79 GHz. 

RAM 32 GB, 

VRAM 8 GB 

and shared 

memory 

16 GB (total 

24 GB) 

Algorithm 

implementation 

 
Fig. 3.  Illustration of the measurement system. 

We conducted the measurement setup in a typical 

classroom with a total area of 15.14 m × 10 m. The area of 

interest that we built is 5 m × 5 m divided into 25 fingerprint 

locations with a grid of 1 m × 1 m. The measurement layout 

and actual can be depicted in Figs. 4 and 5, respectively. 

The total data obtained from the illustration in Fig. 3 is 

the 1,250 rows (samples) and 8 column RSSI values data (-

dBm). The rows indicate the number of all RSSI values 

from 25 fingerprint locations (each location has 50 RSSI 

samples), while the columns indicate the 8 (eight) reference 

nodes (RNs). Figure 6 shows the structure of the 

measurement data obtained. 

 
Fig. 4.  Layout of measurement setup. 

 
Fig. 5.  Actual measurement setup. 

 
Fig. 6.  Structure of the measurement data. 

D. System Model 

The system model of this approach is based on the work 

in [12]. We make a difference in terms of class dataset 

point-of-view due to the small dataset. We refer to “class” as 

the location of the fingerprints, not a classroom. Let 

( , )CF x  with 1 Mx  be a column vector of RSSI values, 

with M is 8 RNs. C  is the parameter of deep learning 

during training and C represents the class output ℝ nodes. In 

vector form, the equation of the system model can be written 

as 

 
1

ˆ( ) log .
N T

C i ii



  y y  (2) 

1 C

i ,y   0,1 .  yi is one encoded, if 1, we will have 

 
1

1 0 0 ... 0 ,   
2

0 1 0 ... 0 ,  … … 

 0 0 0 ... 1
C

 and ˆ
iy  is a real number between 0 and 1 

predicted by the deep model. The log function satisfies the 

hard selection of a single class. 

Backpropagation is used to train the system via 

minimising the log-likelihood cost function. We utilised the 

Adam optimiser to obtain ( , ),CF x  such that the maximum 

value of the outputs of C nodes constitutes the class 

predicted for a given input vector by the trained system 

model. 
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The idea is to observe how the synthetic RSSI added to 

fraction variation of the actual dataset can enhance the 

performance compared to only using the actual data. The 

RSSI dataset, Rc, can be described as 

 

11 12 1

21 22 2

1 2

,

M

M

c

K K KM

r r r

r r r

r r r

 
 
 
 
 
 

R  (3) 

with rij is the magnitude of the i-th observation from the j-th 

reference node. Each column of the matrix constitutes a 

distribution over the desired class. We define 
1x M  such 

that the generator’s goal is to map prior noise latent variable 
1z L  to the distribution of Rc. The process of producing 

the synthetic data is based on the cost function in (1). 

Convergence occurs when ( , ) 0.5,dD  x  meaning that the 

discriminator can no longer distinguish between actual and 

synthetic data. After this, the generator is ready to produce 

synthetic samples for the desired class via the same prior 

noise distribution ( ).zp zz  

We consider the classification through MLP used for 

training by combining actual and synthetic RSSI data. Thus, 

the full set of RSSI (𝐅𝐑) data, consisting actual RSSI (A) 

and synthetic RSSI (𝐒𝐑) data for the desired class C, can be 

defined as follows 

 ,
C

C

C

 
  
 

A
FR

SR
 (4) 

where ,K M

C

A  ,Q M

C

SR  ( ) ,K Q M

C

 FR  and Q 

is the number of added synthetic samples to class C. In our 

case, Q is the two-times number of fractions of the actual 

dataset use.  

E. GANs Implementation in Keras 

We implemented GAN for our dataset on Python 3.7 

using Keras (https://github.com/fchollet/keras) (see 

Algorithm 1). The GAN parameter is detailed in Table II. 

 
Algorithm 1. GAN implementation: Pseudo-Code. 

          Input: RSSI dataset 

          Output: RSSI actual + synthesis (full RSSI dataset) 

1.       Keras, TensorFlow, and other libraries 

2.       Data parameter (25 labels), MLP parameter, GAN Parameter 

3.       Set the percentage of actual and data to generate (synthesis) 

4.       Import dataset and data pre-processing (data frame, drop) 

5.            MLP classification with actual data 

6.       Generating synthetic data: Generator and Discriminator 

7.       GAN training 

8.             MLP classification with actual + synthetic data 

9.       Save results 

 

The standard procedure begins with the importing 

libraries needed. Then, the parameters are defined, e.g., the 

number of labels, 25, as we discussed related to each 

fingerprint locations as a label. The MLP parameter is set, 

including the number of iterations (epochs) and validation 

splitting. The GAN parameter includes the number of latent 

dimensions and epochs for GAN training.  

The percentage or fraction of data use is set in the 

beginning. Dataset is imported and pre-processed for the 

next stage. Then, MLP classification (only actual data) is 

utilised to observe the system performance by comparing 

training and validation for accuracy and loss. 

 / 100true totalN N   calculates accuracy. trueN  is the number 

of correct predictions, while the loss is calculated by (2). 

The next step is to build GAN (D and G networks) to 

produce the synthetic RSSI data. We considered having 125 

and 625 additional samples for each class by RSSI 

synthesis. After GAN training, the actual + synthetic data 

classification procedure is similar to the MLP classification 

for only actual data usage. Save results containing accuracy 

and losses for both training and validation, respectively.  

As our dataset contains 1,250 samples collected from 8 

reference nodes, for training and testing, we divide this 

dataset by half. We focus on training and validation for both 

accuracy and testing. For every fingerprint location that we 

label as “class”, we have 25 classes, and each class then has 

25 RSSI samples. We evaluate the actual percentage data 

use compared to the actual and synthetic data performance. 

We observed that the increment data of 10 % compensated 

for it with the synthetic data we set to 125 and 625 samples. 

We expected that by having more synthetic data, even if 

we only use a small percentage of training data (actual RSSI 

values), the accuracy and loss performance should be 

comparable to or even better than those that use 100 % of 

only actual data. 

TABLE II. GAN PARAMETER. 

Hyperparameter Value 

Number of Data Parameters 25 

Data Shape 8 × 1 

MLP Parameters: Epochs and 

Validation Split 
20 and 0.1 

GAN Parameter: Latent Dimension 

and GAN Epochs 
50 and 2,500 

Generator: Dense Layer 
3, Activation Function: 

Leaky ReLU, Alpha: 0.2 

Discriminator: Dense Layer 

Same with Generator, 

Different Size of Dense 

Layer 

Learning Rate 0.0002 

Normalisation Technique 
Batch Normalisation with 

Momentum: 0.8. 

Training Batch Size 128 

Loss Function GAN Loss 

Optimiser in Generate Data Process 
Adaptive Moment Estimation 

(Adam) 

III. RESULTS AND DISCUSSION 

We discuss our findings on the performance comparison 

of increment of actual data usage compared to the full set of 

RSSI data. As in (4), the full RSSI set contains the actual 

and synthetic data. Then, training and validation for 

accuracy and loss for the actual and full set of RSSI. 

Synthetic database exploration, including the description of 

actual vs. synthetic data distribution, will also be discussed. 

Finally, we discuss it related the computational time. 
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A. Actual and Full Set of RSSI Performance Comparison 

The basic idea of GANs implementation for RSSI 

synthesis is how we can employ small datasets and still have 

acceptable accuracy. In this result, we compare the 

percentage actual and synthesis data combination. We 

considered adding the actual data in a 10 % increment, while 

the sample generation of synthetic data is 125 and 625 

samples. These numbers are selected based on the number 

of synthetic data generated in the final 3 and 11 times 

greater than the actual data size. We expect that increasing 

the number of data will increase the performance of the 

MLP in classifying data. 

Figure 7 shows that the accuracy is low when only actual 

data applied to MLP are used. Although all data training 

considered was used, the mean accuracy is 0.53 (53 %). 

Thus, by adding the synthetic data, as observed, e.g., by 

only using 20 % actual data and combining with the 

synthetic data both 125 and 625 samples from GANs, the 

mean accuracy is 0.54 (54 %), slightly higher with less use 

of actual training data. 

 
Fig. 7.  Mean accuracy: actual vs. full set of RSSI. 

If using only 60 % of the actual data, the mean accuracy 

and loss are 0.35 (35 %) and 2.41, respectively. Then, we 

added the synthetic data of 125 RSSI samples from the 60 % 

training data by GANs and combined it to the data as the 

data combination of 15 actual and 125 synthetics for each 

class. From this new combination dataset, we got the mean 

accuracy and loss of 0.65 (65 %) and 1.36, respectively. The 

improvement in accuracy is 1.85 times higher and 1.7 times 

better than the loss from using actual data only. 

Furthermore, when we added the synthetic to 625 samples to 

each class, the mean accuracy improved to 0.73 (73 %) or 

twice better accuracy than using only 60% of the actual data 

for training. The loss performance also improved almost two 

times (1.95x) better. 

Interestingly, when we used 100 % actual data only, we 

obtained the accuracy and loss of only 0.53 (53 %) and 1.76, 

respectively. Compared to the 60 % actual data and 

combined with 125 samples of synthetic data, we obtained a 

much improvement in accuracy and loss for 0.65 and 1.36, 

respectively. So, using only 60 % data and a synthetic 

combination, we can achieve a better performance by about 

1.2 times. Thus, the synthetic data method by implementing 

GANs can be used to tackle data scarcity and alleviate the 

burden in offline database construction by taking only the 

small dataset for the fingerprint database. 

Moreover, as expected, when we added the 100 % usage 

of actual data with the synthetic data, e.g., adding the 125 

samples of synthetic data, the mean accuracy improved to 

0.76 (76 %) and loss of 0.85. When increasing the number 

of synthetic data samples to 625, the mean accuracy 

becomes 0.79 (79 %), and the mean loss is 1.03.  

Table III shows that the mean accuracy performance is 

improved by adding synthetic data. However, when adding 

the 645 samples, some loss performance decreased. This 

high number of additional samples means that the synthetic 

data have some optimal numbers. Here, we are not yet 

considering the optimal number. However, seeing some 

improvement by adding 125 samples, it is accepted that that 

number of samples can be applied. An additional 125 

samples to each fingerprint location/class give better 

performance in accuracy and loss in all the increments of 

data percentage used. Thus, the synthetic dataset became 

3,125 samples (almost three times larger than the actual 

data; 1,250). 

TABLE III. PERFORMANCE COMPARISON. 

 Real 

Syn 

20 % 60 % 100 % 

Accuracy Loss Accuracy Loss Accuracy Loss 

0 20 % 3.04 35 % 2.41 53 % 1.76 

125 54 % 2.52 65 % 1.36 76 % 0.85 

625 55 % 4.26 73 % 1.23 79 % 1.03 

B. Training and Validation: Accuracy and Loss 

Our dataset is 10 % smaller than our primary reference 

dataset [12]. However, the trend is similar; when we 

combined this small dataset with the synthetic data, we 

generated by GANs, the performance of both accuracy and 

loss in classification is comparable to even better than using 

all the actual training datasets. 

As an additional number of samples of 625 is giving 

marginal improvement, we will consider only the synthetic 

data sample of 125 in the following discussion. Figure 8 

shows how synthetic databases can improve performance in 

training and validation, accuracy, and loss. The 20 % actual 

data usage performed will be compared with the synthetic 

data combination.  

 

 
                              (a)                                                        (b)                            

Fig. 8.  Training and validation: accuracy and loss for (a) actual vs. (b) full 

set of RSSI (20 % actual data). 

Naturally, when we added more data for training, the 
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accuracy and loss performance improved. The benefit of 

additional synthetic data is that we can start improving only 

by 20 % and later for actual data usage. Let us compare the 

60 % and 100 % data usage as shown in Fig. 9 and Fig. 10. 

 

 
                               (a)                                                       (b)                                 

Fig. 9.  Training and validation: accuracy and loss for (a) actual vs. (b) full 

set of RSSI (60 % actual data). 

 

 
                               (a)                                                      (b)                            

Fig. 10.  Training and validation: accuracy and loss for (a) actual vs. (b) full 

set of RSSI (100 % actual data). 

C. Synthetic RSSI Exploration 

We need to explore the description of the actual and 

synthetic database, e.g., the mean, standard deviation (std), 

max, and min values. In this example, we consider exploring 

within the 20 % data usage. We observed how its data 

distribution properties differ or are similar between the 

actual and the synthesis. This discussion evaluated the RSSI 

values from AP1 or reference node one as an example. 

From Figs. 11 and 12 in the AP1 description, we can 

observe that the mean, std, max, and min values both for 

actual and synthesis are relatively similar. For instance, the 

mean RSSI and std discrepancies are -0.13 dBm and -0.27, 

respectively. As the discrepancy is relatively low, the 

synthetic data distribution is similar to the actual data. We 

concluded that GANs implementation is working as 

expected for our RSSI synthesis.  

Figures 13 and 14 show the RSSI distribution for AP1 in 

both actual and synthetic data, respectively. The x axis 

shows the RSSI values in dBm and y axis as the probability 

density. We can observe that the RSSI values are seen to be 

normally distributed. Both also range from around -80 dBm 

to -50 dBm, while the peak RSSI value is around -6 dBm.  

 
Fig. 11.  Description of actual data. 

 
Fig. 12.  Synthetic data description (20 %, 125 samples). 

 
Fig. 13.  Actual RSSI distribution for AP1. 

 
Fig. 14.  Synthetic RSSI distribution for AP1. 

D. Computational Time 

GAN is an iterative method to generate the samples. By 

setting the hyperparameters as in Table IV, we obtained the 

varied computational time considering the number of actual 

data and the number of samples that were produced. For 

each iteration for 25 classes, the iteration time ranges from 

124 s to 200 s.  

TABLE IV. MLP ARCHITECTURE. 

Hyperparameter Value 

Number of Input Neurons 8 

Number of Hidden Layers 3 

Number of Neurons in Hidden Layer 300 

Number of Output Neurons 1 

Activation Functions of Hidden Layers ReLU 
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Hyperparameter Value 

Activation Functions of Output Layers Softmax 

Learning Rate 0.0002 

Normalisation Technique  

Batch Size  

Loss Function Categorical Crossentropy 

Optimiser 
Adaptive Moment 

Estimation (Adam) 

 

So, considering the actual percentage and number of 

synthetic samples took around from ~50 minutes to ~90 

minutes. These results are based on the PC and its 

specification stated in Table I and considering both 

hyperparameters of Table II and Table IV. 

IV. CONCLUSIONS 

We presented the effort to alleviate the drawbacks in 

offline database fingerprint construction by generating a 

synthetic database. This paper focused on how the deep 

learning approach can improve a small fingerprint database 

containing RSSI values. GAN has successfully generated 

the synthetic RSSI data. Both actual and full sets of RSSI 

have been compared by applying MLP to test the class 

output; in our case, the fingerprint location with a total of 25 

locations. Our dataset is relatively small, by seeing the 

results of MLP classification, even by using all data, the 

accuracy is still relatively low (53 %). 

On the other hand, by combining 20 % of actual data with 

its synthetic RSSI values, the accuracy is 0.54 (54 %). 

Moreover, when we used only 60 % of the actual data and 

combined them with the 625 generated RSSI samples for 

each fingerprint location, we can improve both performance 

accuracy and loss, with an accuracy of 0.73 %. As discussed 

earlier, the additional percentage of actual data improved the 

performance, naturally. We can apply synthetic data 

generated by GANs to consider less data when 

implementing fingerprint-based indoor localisation for real 

applications.  
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