
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

1Abstract—This paper describes a study on the power and

energy consumption estimation models that have been defined

to facilitate the development of ultra-low power embedded

applications. During the study, various measurements have

been carried out on the instruction and application level to

challenge the models against empirical data. The study has

been performed on the multicore heterogeneous hardware

platform developed for ultra-low power Digital Signal

Processors (DSP) applications. The final goal was to develop a

tool that can provide insight into power dissipation during the

execution of embedded applications, so that one can refactor

the source code in an energy-efficient manner, or ideally to

develop an energy-aware C compiler. The side effect of the

research presents interesting insight into how the custom

hardware architecture influences power dissipation. The

selected platform has been chosen simply because it represents

R&D state of the art ultra-low power hardware used in

hearing aids. The presented solution has been developed and

tested in an Eclipse environment using Java programming

language.

 Index Terms—Power measurement; Energy dissipation;

CMOS integrated circuits; Embedded software; Performance

evaluation.

I. INTRODUCTION

Energy consumption represents one of the key properties

of embedded devices, especially for gadgets that run on

batteries. Optimal power dissipation leads to greater

autonomy, making a device more competitive on the market,

in addition to making the product more “green”. The

problem that is addressed by this research is how to develop

energy-efficient embedded software solutions for digital

signal processors (DSP) hardware platforms with ultra-low

power consumption. This paper presents a follow-up of

studies published by the authors in [1]–[4]; therefore, if one

would like to gain more information on the research, I

would highly recommend reading these studies first.

To create an optimal software solution, energy- and

performance-wise, one needs to have a clear insight into the

execution flow and its influence on overall power

dissipation. This statement was taken as a starting point for

Manuscript received 6 May, 2022; accepted 12 September, 2022.

This research was partially funded by the Ministry of Education and

Sciences of the Republic of Serbia under Grant No. TR-32031. This

research was performed in cooperation with RT-RK Institute for Computer

Based Systems.

the research. More generally, software tools like compilers,

assemblers, profilers, etc., or Integrated Development

Environments that comprise all the above, facilitate

development of optimal solutions and provide developers

with abstraction of the system. In most cases, this helps, but

when it comes to fine-tuning of the system, one needs to

have direct connection to the hardware. During this

research, such a connection has been made. The entire

vertical has been observed, from the highest level of

abstraction, like C or assembler instruction, down to

complementary metal-oxide-semiconductor (CMOS)

transistors that are engaged in its execution and the

associated energy footprint. One of the key challenges of the

research was how to establish such a connection, which

methodology to use, and how to measure accuracy against

empirical data. This is the essence of this research. Different

approaches have been used in various research, which is

described in the following section.

The practical goal of this research was to develop an

energy estimation tool that can provide software engineers

with information about the energy dissipation related to

instruction set selection and source code organization, as

well as core utilization. This information is used during the

entire project lifecycle:

 In the early stage of the project (rapid prototyping),

where engineers learn about the system how different

cores and clock cycle, instruction set selection, and

source code structure can impact energy consumption;

 In the late project phase, when final tweaks and system

optimization occur.

To reach this goal, it was first necessary to identify all

key contributors and establish an appropriate methodology

to measure energy consumption at the instruction level, the

inter-instruction effect, static and dynamic power dissipation

[2], [3], as well as the influence of different peripherals and

cores on the overall energy balance. Section III provides a

brief description of the target hardware platform on which

these experiments have been performed.

Section IV of the paper describes dissipation components,

such as static and dynamic. Section V describes the

measurement methodology used.

The estimation models of overall energy consumption and

average power dissipation are presented in Section VI.

These models are derived from numerous experiments and

Power and Energy Consumption Models for

Embedded Applications

Momcilo V. Krunic

Department of Computer Engineering and Communications, Faculty of Technical Sciences,

University of Novi Sad,

Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

momcilo.krunic@rt-rk.com

http://dx.doi.org/10.5755/j02.eie.31345

45

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

are used as the core of the estimation tool. The models are

fed with obtained data, and useful information is generated.

In Section VII, the models are put under scrutiny. The

general idea was to take a typical DSP application, like

finite impulse response (FIR) filter, and to measure power

dissipation on two different cores against estimated values.

Since two cores have a different architecture and instruction

set, it was interesting to perform a comparative analysis of

two different implementations. To reduce the gap between

the quality of software diversity, an experienced engineer

developed both applications.

Section VIII not only elicits some conclusions, but also

provides some thoughts in regards to future research.

II. RELATED PAPERS

The diversity and exponentially increasing number of

low-power embedded systems that operate autonomously

under a small battery inspired this research. A variety of

different hardware solutions in most cases also implies

different tooling, instruction set, pin layout, hardware

resources, etc. The solution presented in this paper aims to

provide universal methodology and estimation models

regardless of the diversities of the systems mentioned above.

In this section, similar solutions have been described and

compared against ours.

Estimation models proposed by the authors in [5]

introduce Hamming distance and weight of the instructions,

instead of coping directly with inter-instruction effect to

optimize measurements. Such a model would be highly

inaccurate if applied to the hardware platform used in this

research, since inter-instruction effect, in some cases, has a

similar contribution as the base cost (single instruction

energy footprint).

Some research, such as in [6]–[8], approximated dynamic

power dissipation as a uniform distribution over the entire

instruction set. This approach can probably provide a good

enough estimation for the overall power dissipation, but

when it comes to the cycle level, it highly depends on the

underlaying architecture and instruction set base cost

deviation. The hardware platform used in this research has

quite diverse instructions energy footprints, therefore, such

approach would not provide accurate estimation.

The power and energy estimation models presented in [9]

have been used during the hardware design process to

optimize the system at the architectural level. This research,

on the other hand, is more focused on the application level

and optimizations that can be performed on the given

hardware.

In [10], the prerequisite for the estimation model is

hardware virtualization. Such an approach is simply

unapplicable for the target platform used in this research

since the digital twin of the hardware is not available. Also,

it has been proven in [10] and [11] that estimations based on

real hardware measurements are more accurate than those

from a simulated environment.

The research presented in [12] compares twenty-seven

well-known software languages to draw conclusions, which

one offers the best ratio between performance and energy. It

was no surprise that the C language took the win, where

energy and time were the main objectives. It is worthwhile

to emphasize that this kind of measurement highly depends

on implementation and the used compiler. The C is also the

language of choice in this research. One of the future

objectives of the research presented in this paper is to feed a

C compiler with measured values (base costs and inter-

instructions effect) and to use this information during the

compilation (instruction selection and scheduling), thus

making it an energy-aware compiler. Furthermore, in [12],

the different influence of static and dynamic components on

energy consumption is not explicitly considered, thus not

making clear conclusions on how energy and time relate,

which is clearly separated in this paper as two different

contributors in the estimation models.

As mentioned above, this paper represents a continuation

of the research published by the authors in [1]–[4]. In the

first paper [1] in the series, basic models and a general idea

regarding energy and power estimations have been

presented. In this paper, the basic model from [1] has been

extended and parameterized with effective capacity as the

quantitative measure of dynamic dissipation, clock

frequency, and power supply voltage. In [2]–[4], the focus

was on dissipation components and measurement

methodologies as essential ingredients of this study. This

paper briefly recaps this in Sections IV and V, respectively,

since it is important for the overall context. The main

contribution of this paper is presented in Section VI, where

the models of power and energy estimation are derived

using the empirical data and methodologies described by the

authors in [2] and [3]. Finally, this research validates not

only conclusions and methodologies presented by the

authors in [1]–[4], but also derived models in this paper

using the classic embedded algorithm such as Finite Impulse

Response (FIR) Filter.

III. DESCRIPTION OF TARGET PLATFORM

The block structure of the target DSP platform that has

been used during the research is presented in Fig. 1.

The presented ultra-low power hardware platform uses a

small battery as a power supply, therefore any optimization

of power dissipation influences device autonomy, one of the

key properties.

The most interesting segments of the platform are five

heterogeneous DSPs. Two DSPs are designed for

accelerated numerical processing (naDSP), while the

remaining three cores play the role of general-purpose DSPs

(gpDSP). One of the three gpDSPs takes the role of a

microcontroller (uC), which synchronizes and controls the

entire system. All these DSPs, as well as the whole system

in general, are designed to operate in a very low power

consumption mode. Also, it is important to emphasize that

the DSP pipeline structure has three consecutive phases:

1. Fetching instruction;

2. Decoding instruction;

3. Executing instruction.

During each cycle, the current instruction is being

executed whilst the next one is fetched and decoded. This

implies that only two adjacent instructions are involved in

each cycle, thus making a two-phase pipeline.

In addition, the DSP platform hosts six different

categories of peripherals:

46

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

1. Analog - Audio Front End (AFE) and Audio Back End

(ABE);

2. System - Clock and reset distribution block;

3. Input/Output (I/O) - I2C, Universal Asynchronous

Receiver/Transmitter (UART), General-purpose

input/output (GPIO), Touch switch, etc.;

4. Local Processing Unit (LPU) - Responsible for Direct

Memory Access (DMA) transfer, setting: interrupt

handlers, timers, watchdogs, and external address

context;

5. Utility - Sine generator, traffic lights, mailboxes, and

decompression blocks;

6. Wireless Data Module (WDM) system block.

All peripherals can be turned on and off independently,

so that power dissipation can be optimized depending on the

use. The energy consumption of the peripherals has been

included in the model described in the following section.

Fig. 1. Ultra-low power target DSP platform used during the research.

IV. DISSIPATION COMPONENTS

There are two major dissipation components present in

CMOS integrated circuits [13]:

1. Static dissipation;

2. Dynamic dissipation.

Figure 2 depicts the relation between the two components

and how power dissipation, energy consumption, and time

relate. In Fig. 2, energy is represented as an area of the

rectangle (light and dark areas). Static energy consumption

(dark rectangle area) increases over time linearly, whilst

dynamic energy (light rectangle area) remains constant.

Regarding power dissipation, the story is opposite; static

power dissipation is constant over time, and dynamic

linearly decreases over time. These are important properties

that were used during measurements and calculations.

A. Static Dissipation

Static power dissipation, also known as leakage

dissipation, emerges as the sum of all leakage currents (Ileak)

multiplied by voltage supply (VDD):

1

leak(m)

0

,
M

stat

m

I I

 (1)

 .stat stat DDP I V (2)

Static energy consumption is calculated when static

power dissipation is multiplied by the time during which

energy was consumed

 .stat stat stat DDE P T I V T (3)

Fig. 2. Static and dynamic dissipation components.

B. Dynamic Dissipation

Dynamic power dissipation arises during the transition

from one logic state to another. The key property of

dynamic power dissipation is effective capacity (Ceff), which

represents nothing but the capacity that is being transferred

during the logic state change. Effective capacity is important

since it can be associated as a constant instruction property

used to estimate instruction energy consumption at various

clock frequencies (f)

2 .dyn DD effP V f C (4)

47

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

V. MEASUREMENT METHODOLOGY

It is important to emphasize that there were three

important distinguished dissipation contributors for which

different measurement methodologies have been used; those

are: static dissipation, base instruction cost, and inter-

instruction effect.

A. Static Dissipation

Methodology for empirical measurement of static

contribution is based on the previously explained property

that static power dissipation (Pstat) does not depend on clock

frequency, and on the other hand, dynamic component (Pdyn)

scales linearly (Fig. 3).

Fig. 3. Empirical data obtained during Static dissipation measurements.

Therefore, two measurements have been taken (Pm1 and

Pm2) at different clock frequencies, where d represents their

quotient. Taking all into account, one can easily set up two

equations, of which Istat can be derived and calculated:

1,dyn stat mP P P (5)

 2 ,
dyn

stat m

P
P P

d
 (6)

1,dyn stat mI I I (7)

 2 ,
dyn

stat m

I
I I

d
 (8)

 2 1 .
1

m m

stat

d I I
I

d

 (9)

B. Base Instruction Costs

The term “Base Instruction Cost” is coined to express the

isolated energy drift induced by a single instruction running

on the chip. Figure 4 represents the source code built and

deployed on the target hardware platform to measure the

base cost of instruction “SUB x1 b0 b0”. The methodology

is quite simple: the current is measured before (Istat) and

after (IM) deployment and execution of the test code (Fig.

4.). The calculated value (IB) represents the base current, but

the more important dynamic property is the base effective

capacity (CBEC) which was defined in the previous section:

 ,B M statI I I (10)

2 2

.
dyn B DD B

BEC

DD DD DD

P I V I
C

V f V f V f

 (11)

C. Inter-instruction Effect

The inter-instruction effect represents additional energy

that is being consumed when two adjacent instructions with

different Operational (OP) codes are being executed. The

measurement methodology for this effect is the following.

First, base costs for both instructions must be determined

(IB1, IB2), as well as the leakage current (Istat). Then, the code

from Fig. 5 is executed, and the measured value (IM) is

constituted from three main components: inter-instruction

effect, leakage current, and mean average base cost current.

Again, since this effect belongs to dynamic power

dissipation scope, the main property that needs to be

calculated is inter-instruction effective capacity CIIEC, based

on base cost capacities (CBEC1, CBEC2) of two adjacent

instructions whose effect is being measured, and other

already mentioned elements:

 1 2 ,
2

B B

M I stat

I I
I I I

 (12)

 1 2 .
2

M stat BEC BEC

IIEC

DD

I I C C
C

f V

 (13)

Fig. 4. Example source code used to measure the base cost of the

instruction “SUB x1 b0 b0”.

Fig. 5. Example source code used to measure the inter-instruction effect.

48

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

VI. POWER AND ENERGY ESTIMATION MODELS

Estimation models represent the essence and epilogue of

this research. In this section, two estimation models will be

derived: Estimation model for mean power dissipation and

Estimation model for overall energy consumption.

A. Estimation Model for Mean Power Dissipation

The mean power dissipation Pn can be defined as the

arithmetic mean of the power dissipation Pc caused by each

individual clock cycle n that was executed during the

observed period

1

()

0

1
.

n-

n c k

k

P = P
n

 (14)

Power dissipation during one cycle can be defined as the

sum of static and dynamic components

 .c stat DD dynP I V P (15)

Dynamic dissipation can be observed as the sum of two

independent contributions: Peripherals and Cores

 .dyn Peripherals MCoreP P P (16)

If there are N peripherals present in the system, then

overall power dissipation caused by peripherals PPeripherals

can be calculated as the sum of all individual dissipations

Pp, where Cp represents effective capacity of the peripheral:

 (i)

1

,
N

Peripherals P

i

P P

 (17)

 2(, ,) ,P DD PP V f C V f C (18)

 2

(i)

1

(, ,) .
N

Peripherals DD P

i

P V f C V f C

 (19)

Similarly, power dissipation, which is induced by cores

execution PMCore, can be defined as the sum of power

dissipations PDSP caused by all active cores K

(i)

0

.
K

MCore DSP

i

P P

 (20)

The dynamic power dissipation of the DSP core is

defined by the following (21), where CB and CI represent

the effective capacities of all instructions running on the

core

 2

B(, ,) .DSP DD IP V f C V f C C (21)

Combining (20) and (21), dynamic power dissipation

PMCore is derived in (22)

 2

B(i) (i)

1

(, ,) .
K

MCore DD I

i

P V f C V f C C

 (22)

Now, all individual contributors are defined: static

dissipation in (2), dynamic dissipation in (16), dissipation

caused by peripherals (19), and dissipation induced by core

execution. Using the dissipation contributions mentioned

above, the overall power dissipation during one clock cycle

PC is derived (23)

2

(i)

1

2

B(i) (i)

1

2

(i) B(i) (i)

1 1

.

N

C stat DD DD P

i

K

DD I

i

C stat DD DD

N K

P I

i i

P I V V f C

V f C C

P I V V

f C C C

 (23)

Multicore embedded application power dissipation Pn, is

defined as an arithmetic mean of all Pc during the number of

clock cycles n, through which the application is being

executed. Using (14) and (23), one can derive the

application power dissipation Pn as:

1

2

(i,k) B(i,k) (i,k)

0 1 1

1
,

n- N K

n stat DD DD P I

k i i

P = I V V f C C C
n

 (24)

2 1

(i,k) B(i,k) (i,k)

0 1 1

,
n- N K

DD

n stat DD P I

k i i

V f
P = I V C C C

n

 (25)

1

(i,k) B(i,k) (i,k)

0 1 1

,
n- N K

DD

n DD stat P I

k i i

V f
P = V I C C C

n

 (26)

 .n DD stat dynP =V I I (27)

B. Estimation Model for Overall Energy Consumption

The overall energy consumption En represents the sum of

contributions that were consumed during each individual

cycle Ec(k)

1

()

0

.
n

n c k

k

E E

 (28)

The energy consumed during one cycle is defined as a

product of the cycle power dissipation Pc and the clock

period T

 .c c stat dyn stat DD dynE P T P P T I V T E (29)

Dynamic energy consumption Edyn is defined as the sum

of contributors consumed by peripherals and DSP cores

 .dyn peripherals MCoreE E E (30)

49

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

The energy consumed by all peripherals can be calculated

as in (31), where N represents the number of peripherals,

and the energy footprint Ep(i) of the i-th peripheral

(i)

1

.
N

Peripherals P

i

E E

 (31)

Since the main property of dynamic energy consumption

is the effective capacity Cp, the energy consumed by a single

peripheral can be defined as in (32)

 2(,) .P P DD PE V C P T V C (32)

From equations (31) and (32), one can derive the overall

dynamic energy consumed by all peripherals (33)

 2

(i)

1

(,) .
N

Peripherals DD P

i

E V C V C

 (33)

Similarly, the dynamic energy consumed by all cores can

be defined (34), where K represents the number of DSP

cores being active in the current clock cycle

 (i)

0

.
K

MCore DSP

i

E E

 (34)

During one clock cycle, the energy that is spent on one

DSP core depends strictly on the instruction being executed

at the moment, and its properties: base effective capacity CB

and inter-instruction effective capacity CI (35)

 2

B(,) .DSP DSP DD IE V C P T V C C (35)

Combining (34) and (35), one can derive (36)

 2

B(i) (i)

0

(,) .
K

MCore DD I

i

E V C V C C

 (36)

Based on (30), (33), and (36), one can derive an equation

for dynamic energy consumption (37), parametrized with

supply voltage V, and effective capacities

2 2

(i) B(i) (i)

1 0

2

(i) B(i) (i)

1 0

(,)

(,) .

N K

dyn DD P DD I

i i

N K

dyn DD P I

i i

E V C V C V C C

E V C V C C C

 (37)

The energy consumed during one clock cycle Ec (38) is

derived from (29) and (37)

 2

(i) B(i) (i)

1 0

.

c stat DD

N K

DD P I

i i

E I V T

V C C C

 (38)

Finally, the overall energy consumption En (39) can be

derived from (28) and (38)

2

1 () () ()

1 0

2

(,) (,) (,)

1 1 0

.

stat DD DDn

N K
n

i P i B i I i

i i

n stat DD DD

n N K

P k i B k i I k i

k i i

I V T V

E
C C C

E I V T n V

C C C

 (39)

C. Discussion

The equations derived for mean power dissipation (26)

and for overall energy consumption (39), are parametrized

with the following parameters:

 Supply voltage - VDD;

 Clock period - T;

 Effective capacities;

 Number of cores;

 Number of clock cycles.

This parametrization is important because it provides

flexibility in estimating power and energy using different

supply voltages, clock periods, different instructions,

number of cores, and number of clock cycles to refine

energy cost on ultra-low power target platforms.

Also, it is interesting to note that for the expression of the

mean power dissipation (26) the static component is

independent of the operating clock frequency, while for the

expression of the overall energy consumption (39), the

dynamic component is not in function of the operating clock

frequency. Figure 2 illustrates the derived conclusions.

VII. EXPERIMENTAL RESULTS AND VALIDATION

To prove methodology and estimation models described

and derived in this paper, it was necessary to run estimation

models against real-world embedded applications. For this

purpose, the Finite Impulse Response (FIR) filter has been

selected, as one of the most common applications found in

the DSP domain.

The target platform contains two different flavors of DSP

cores, one dedicated mostly to data transfer - gpDSP, and

the other designed for number crunching - naDSP. It was

interesting to do a comparative analysis using this hardware

and software diversity. To mitigate the implementation

quality gap, the same developer created both applications,

for the gpDSP and for the naDSP.

The instruction sets used in both cases have been profiled

using measurement methodologies described in Section V,

and then the estimation models from the previous section

have been applied. On the other hand, both applications

were deployed, executed, and measurements were taken on

real hardware at four different clock frequencies. When

completed, estimated and measured values were compared.

A. Finite Impulse Response (FIR) Filter - Case Study

1. Implementation for the gpDSP

Instruction histogram (Fig. 6) reveals an unequal

distribution, since gpDSP is not designed for such

processing as FIR filter.

50

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

Fig. 6. Represents the FIR filter instruction histogram used for implementation on the gpDSP.

In Table I, there are estimated power dissipation values

PE and measured values PM. Estimations have been made

based on the model (26), and measurements were taken on

the board whilst the FIR filter application was running.

TABLE I. ESTIMATED AND MEASURED VALUES OF POWER

DISSIPATION ON gpDSP.

Freq. IE [µA] PE [µW]
IM

[µA]
PM [µW] Acc

10,24 MHz 1216.73 1520.916 1253 1566.25 97.11 %

5,12 MHz 786.89 983.6126 809 1011.25 97.27 %

2,56 MHz 571.80 714.7553 583 728.75 98.08 %

1,28 MHz 464.26 580.3266 471 588.75 98.57 %

Table II presents estimated and measured values of the

energy consumed during a processing loop that lasts 1485

clock cycles. Estimations have been made on the model (39)

derived from the previous section.

TABLE II. ESTIMATED AND MEASURED VALUES FOR

CONSUMED ENERGY ON gpDSP.

Freq. N EE [nJ] EM [nJ] Acc

10,24 MHz 1485 220.56 227.14 97.11 %

5,12 MHz 1485 285.29 293.30 97.27 %

2,56 MHz 1485 414.61 422.73 98.08 %

1,28 MHz 1485 673.27 683.04 98.57 %

Both tables (I and II) contain column Acc, abbreviated

from “accuracy”, which was calculated for all values. The

values obtained on gpDSP verify that the model and

measurement methodologies, presented in this paper,

provide a high level of accuracy.

2. Implementation for the naDSP

The histogram in Fig. 7 represents the number of

instructions used for the implementation of the FIR filter on

naDSP. It is obvious that the distribution of used

instructions is much more even since the core is designed

for such processing.

Table III contains the measured PM and estimated values

PE for power dissipation while the FIR filter application was

running on the naDSP.

TABLE III. ESTIMATED AND MEASURED VALUES OF POWER

DISSIPATION ON naDSP.

Freq. IE [µA] PE [µW]
IM

[µA]
PM [µW] Acc

10,24 MHz 1532.28 1915.352 1573 1966.25
97.41

%

5,12 MHz 944.50 1180.625 964 1205
97.98

%

2,56 MHz 650.61 813.2613 659 823.75
98.73

%

1,28 MHz 503.66 629.5796 506 632.5
99.54

%

Table IV contains estimated EE and measured values for

energy that has been consumed during one processing loop

of the FIR filter application running on the naDSP.

TABLE IV. ESTIMATED AND MEASURED VALUES FOR

CONSUMED ENERGY ON naDSP.

Freq. N EЕ [nJ] EM [nJ] Acc

10,24 MHz 307 57.42 58.95 97.41 %

5,12 MHz 307 70.79 72.25 97.98 %

2,56 MHz 307 97.53 98.79 98.73 %

1,28 MHz 307 151.00 151.70 99.54 %

Similarly, the accuracy of the gpDSP estimation is quite

high (above 97 %), implying that the presented

measurement methodology and the model (39) derived

provide reliable information about the energy footprint of

the embedded application.

51

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

Fig. 7. Represents the FIR filter instructions histogram used to implement on the naDSP.

B. Discussion

The activity diagram (Fig. 8.) presents the time necessary

for one FIR filter processing loop on two different cores,

gpDSP and naDSP.

Figure 9 depicts the mean power dissipation on gpDSP

and on naDSP. It is interesting to note that the mean power

dissipation on naDSP is slightly higher than on gpDSP.

But the trend presented in Fig. 10 provides another

insight into the overall energy consumption of the

application, which implies that the overall energy

consumption on gpDSP is around 4.5 times lower than on

gpDSP. This comparative analysis derives the conclusion

that hardware design can have a huge impact on energy

consumption.

52

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

Fig. 8. Core activity (naDSP and gpDSP) during one processing loop in the FIR filter.

Fig. 9. Mean power dissipation on gpDSP and naDSP.

Fig. 10. Overall energy consumption on gpDSP and naDSP.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents measurement methodologies and

estimation models for the power and energy that are

consumed during the execution of embedded applications

on the heterogeneous multicore platform. The described

approach has been validated and verified using real-world

application (FIR filter) and proved to be quite accurate

(above 97 %). With that being taken into account, there is a

diversity of potential applications and future research. This

study has been inspired by the ultra-low power embedded

application development; therefore, two main tools can be

developed to facilitate this:

 Energy estimation tool that can provide insight into the

system energy footprint;

 Energy-aware compiler that will be fed by instruction

set measurement data, and accordingly execute selection

and scheduling.

The estimation tool would provide passive assistance

during development, but it would still teach users of the

system about its properties.

An energy-aware compiler would provide active support,

by making decisions about instruction selection and

scheduling based on empirical data.

CONFLICTS OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES

[1] M. V. Krunic, M. V. Popovic, V. M. Krunic, and N. B. Cetic, “Energy

consumption estimation for embedded applications”, Elektronika ir

Elektrotechnika, vol. 22, no. 3, pp. 44–49, 2016. DOI:

10.5755/j01.eie.22.3.15313.

[2] M. Krunic, N. Cetic, M. Popovic, and J. Kovacevic, “Methodology

for measuring the static power dissipation of embedded DSP

platform”, Serbia Patent P-2016/0787, 20 September, 2016.

[3] M. V. Krunic, I. Povazan, J. V. Kovacevic, and V. M. Krunic, “An

empirical methodology for power analysis of CMOS integrated

circuits”, Elektronika ir Elektrotechnika, vol. 23, no. 5, pp. 46–53,

2017. DOI: 10.5755/j01.eie.23.5.19242.

[4] I. Povazan, M. Krunic, and M. Popovic, “A profiling tool for

heterogeneous multi-core systems”, in Proc. of 2015 4th Eastern

European Regional Conference on the Engineering of Computer

Based Systems, 2015, pp. 138–141. DOI: 10.1109/ECBS-

EERC.2015.31.

[5] M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate instruction-level

energy estimation model and tool for embedded systems”, IEEE

Transactions on Instrumentation and Measurement, vol. 62, no. 7, pp.

53

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

1927–1934, 2013. DOI: 10.1109/TIM.2013.2248288.

[6] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and Th.

Laopoulos, “Energy consumption estimation in embedded systems”,

in Proc. of IMTC 2006 - Instrumentation and Measurement

Technology Conference, 2006, pp. 235–238. DOI:

10.1109/IMTC.2006.328405.

[7] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos,

“Energy consumption estimation in embedded systems”, IEEE Trans.

Instrum. Meas., vol. 57, no. 4, pp. 797–804, 2008. DOI:

10.1109/TIM.2007.913724.

[8] A. Sinha and A. Chandrakasan, “Software energy profiling”, in Power

Aware Computing. Series in Computer Science. Springer, Boston,

MA, 2002, pp. 339–359. DOI: 10.1007/978-1-4757-6217-4_17.

[9] N. S. Kim, T. Austin, T. Mudge, and D. Grunwald, “Challenges for

architectural level power modeling”, in Power Aware Computing.

Series in Computer Science. Springer, Boston, MA, 2002, pp. 317–

338. DOI: 10.1007/978-1-4757-6217-4_16.

[10] B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling inter-

instruction energy effects in a digital signal processor”, in Proc. of

Power-Driven Microarch. Workshop in Conjunction with Int. Symp.

Comput. Arch., 1998.

[11] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded

software: A first step towards software power minimization”, IEEE

Trans. VLSI Systems, vol. 2, no. 4, pp. 437–445, 1994. DOI:

10.1109/92.335012.

[12] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,

and J. Saraiva, “Energy efficiency across programming languages:

How do energy, time, and memory relate?”, in Proc. of the 10th ACM

SIGPLAN International Conference on Software Language

Engineering, 2017, pp. 256–267. DOI: 10.1145/3136014.3136031.

[13] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. John

Wiley & Sons, 2011. DOI: 10.1002/9780470891179.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

54

