
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

1Abstract—This paper explores new methods to increase the

level of safety of data transfer between sensors and electronic

control units (ECUs) in automotive communication. A new

model of basic sensors to be used in automotive electronics is

proposed. This model contains hardware modules that

implement the end-to-end communication protection (E2E)

mechanism, as defined by the Automotive Open System

Architecture (AUTOSAR) standard. By adding this feature

inside the sensors, it is possible that, in addition to increasing

the safety level, these sensors can be directly connected to the

network ECUs via standard communication buses (e.g., Local

Interconnect Network (LIN), Controller Area Network (CAN),

Flexray, etc.). This paper describes the model, design, and

mapping (in a Field Programmable Gate Array device

(FPGA)) of the hardware E2E module capable of generating

the Cyclic Redundancy Code (CRC) and counter signal for a

customized message. This message represents the output of the

new sensor E2E module used in a safety communication as

requested by the automotive E2E standard. The model is

validated also by comparing the data output of the E2E

hardware with the data output of the AUTOSAR software E2E

library. Finally, future needs and directions are suggested in

this area.

 Index Terms—Automotive electronics; Vehicle safety; Data

buses; Cyclic redundancy check codes.

I. INTRODUCTION

To control the complex functionality of the nowadays

cars, there is a need to integrate not only electronic devices

based on microprocessors or microcontrollers, but also

peripheral devices such sensors and actuators. Currently, car

manufacturers design the architecture of the cars by using

tens or hundreds of Electronic Control Units (ECUs), all of

them sending or receiving data by using communication

buses specific to the automotive domain (Local Interconnect

Network (LIN), Controller Area Network (CAN), or

Flexray, etc.). These systems have a close interaction with

basic or smart sensors and actuators, can perform signal

Manuscript received 12 February, 2022; accepted 17 June, 2022.

This research was supported by the Continental Automotive Systems

Sibiu under Grant No. 3314/21.10.2020.

processing or run machine learning or other advanced

control algorithms [1]. Independent of the complexity of the

software that controls one process or another inside the car,

there is a great need to ensure the safety of the passengers.

The functional safety of road vehicles is defined and

standardized in ISO 26262 which is an international

standard for the functional safety of electrical and/or

electronic systems that are installed in road vehicles [2].

This paper proposes an improvement of the model for the

basic sensors that measure temperature, height level, speed,

vibrations, etc. to be connected directly to the car buses

while also respecting the safety level of communication.

The novelty of the proposed approach consists of the

migration of several software mechanisms in hardware

modules, with certain advantages related to safety

communication and optimal use of available resources. To

our knowledge, this approach has not yet been developed or

implemented in basic sensors for automotive applications.

This paper begins with related works on automotive

sensors and communication. Section III presents a brief

overview of the car electronics architecture and basic

notions about the safety levels in road vehicles. The

following subsections describe the Automotive Open

System Architecture (AUTOSAR) software architecture and

the End-to-End (E2E) communication protection library in

software [3]. Section IV describes the subject of the

research: a hardware model of the E2E protection

mechanism (designed for the sender node) proposed by the

authors to be implemented in basic sensors. The final

sections highlight the results and the conclusions of

migrating this software module to hardware using a Xilinx

Spartan 7 FPGA electronic device [4].

II. RELATED WORKS

Currently, the hardware/software implementations used in

automotive industry are complex. These implementations

are constantly evolving due to the need to bring new

features that will lead to the development of more advanced

cars in terms of traffic safety. The introduction of the

Improvement of Automotive Sensors by

Migrating AUTOSAR End-to-End

Communication Protection Library into

Hardware

Horia V. Caprita1, 2, *, Dan Selisteanu2
1Continental Automotive Systems,

8 Salzburg St., 550018 Sibiu, Romania
2Department of Automatic Control and Electronics, University of Craiova,

13 A.I. Cuza St., 200585 Craiova, Romania

horia.caprita@continental.com

http://dx.doi.org/10.5755/j02.eie.31154

34

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

AUTOSAR architecture allowed the standardization of the

software by describing the operating mechanisms,

communication, diagnosis, application modules, etc. This

standardization has also led to the development of

sensors/actuators that are controlled by Electronic Control

Units (ECUs). Current scientific work focuses on new

methods to streamline these hardware/software mechanisms.

Luckinger and Sauter [5] explore a new way of clock

synchronization over the CAN bus. This fully AUTOSAR-

compliant software method (with a direct impact on the

CAN hardware) achieves a synchronization accuracy of

around 400 microseconds, which leads to increased

communication security between the car’s ECUs. Another

method to optimize communication on the CAN bus is

presented in [6]. The authors propose an innovative method

for packing frames on the Controller Area Network with

Flexible Data Rate (CAN-FD) bus to optimize message

traffic in communication networks. The optimization

consists in packing in a single frame the signals that are

transmitted cyclically in the same period, which leads to the

reduction of the number of messages on the CAN-FD bus.

Another direction of research is to optimize the sensors used

in automotive. In [7], the authors present a multi-criteria

optimization method based on Markov chains to obtain an

efficient multi-sensor system that can be used in Advanced

Driver Assistant System (ADAS) applications. Another

approach in the development of electronic modules used in

communication is to migrate software functionality to

hardware. The purpose of migration is to increase the

efficiency of the transmission/reception mechanisms to

ensure the integrity and security of the data on the

communication bus. In [8], the authors propose the

migration to Field Programmable Gate Array (FPGA) of the

transmission software for the standard AFDX messages

used in satellite module communication, while in [9], they

propose the migration to FPGA of the 32-bit Cyclic

Redundancy Code (CRC-32) calculation algorithm.

III. ARCHITECTURE OF A CAR: HARDWARE/SOFTWARE

OVERVIEW

A. Overview of the Car’s Architecture

Each functionality of today’s cars is controlled using one

or several electronic control units based on microcontrollers

or microprocessors. There are dedicated ECUs inside the car

for controlling functionalities like engine control, braking

system control, interior control or driving system

(autonomous or not), etc. (Fig. 1). All these ECUs are

interconnected through communication buses directly or via

gateways. The logical data are transported over these buses

and organized into messages (each message may contain

one or more signals). There are several standardized

communication protocols for automotive (but not limited to

these): LIN, CAN/CAN-FD, or Flexray.

The Local Interconnect Network (LIN) protocol specifies

a master-slave communication in which a master node can

address one of the up to 16 slaves to ask for data. LIN is

used in applications that require slow data rates (up to

20 kb/s). The Controller Area Network (CAN) protocol is a

serial protocol with a data rate up to 1 Mb/s. CAN uses a

message-oriented protocol. No addresses are defined for

node addressing; an ECU can start to transmit if there are no

messages on the bus. An arbitration policy is applied when

several ECUs try to emit data simultaneously on the bus.

Fig. 1. Various automotive functionalities inside cars.

The ECU, which will try to send the message with the

lowest identifier, will win the bus. The other ECUs will

become receivers for providing the acknowledge and

eventually storing the data [10]. Flexray is a time-driven

protocol (serial data) used in safety critical systems due to

the channel redundancy (there are two channels defined). It

is based on internal timers and synchronization between

nodes; the access to the bus is periodic, leading to a

deterministic and predictable behaviour. The

communication structure is organized into 64 cycles, each

cycle having 5 milliseconds with a data rate of 10 Mb/s

[11].

B. Safety in Automotive

Communication within the vehicle is an important part of

the functional safety; Data transfer between ECUs and

sensors/actuators must meet the ISO 26262 requirements.

ISO 26262 specifies several safety levels (Automotive

Safety Integrity Level (ASIL)) to be covered by the

hardware/software/system defined for every ECU in the

vehicle (Table I).

TABLE I. LEVELS OF SAFETY FACTORS IN AUTOMOTIVE.

Severity Exposure Controllability

S0 No injuries E0
Incredibly

unlikely
C0

Controllable in

general

S1

Light to

moderate

injuries

E1
Very low

probability
C1

Simply

controllable

S2

Severe to

life-

threatening

injuries

E2
Low

probability
C2

Normally

controllable

S3

Life-

threatening

to fatal

injuries

E3
Medium

probability
C3

Difficult to

control or

uncontrollable

- - E4
High

probability
- -

Each ECU is ranked according to the determined ASIL

level. This level is strictly related to the following factors

(Table I): severity (damages in case of system failure),

exposure (probability of failure occurrence), and

controllability (the degree of control of the system made by

the driver or external actions).

ISO 26262 defines four levels of ASIL, denoted from A

to D. ASIL A is the minimum level of risk, and ASIL D is

35

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

the maximum. The standard also defines an additional level

for not safety relevant applications - Quality Management

(QM). The ASIL level of an automotive application (ECU)

is determined by correlating all factors defined in Table I

and using the matrix depicted in Fig. 2 [2].

Fig. 2. Determining the ASIL level based on severity, exposure, and

controllability [2].

C. Automotive Open System Architecture (AUTOSAR)

The complexity of automotive software requires hardware

resources able to perform many tasks in parallel having

limited computing power and memory resources. The

current ECUs are based on multi-core processors integrated

within microcontrollers. The management of an ECU is

performed by a multi-core Real-Time Operating System

(RTOS). The software that controls an ECU must be robust

enough to meet the ASIL level required by its functionality.

Robustness can be achieved if the software is standardized,

which, in turn, will improve the performance and assure the

required level of safety. This is the reason why automotive

manufacturers defined a standardized software architecture

to be used in automotive applications: AUTOSAR [12].

AUTOSAR is a layered software architecture with

benefits in decreasing the dependence between hardware

and software, decoupled software development, and

software reusability. Currently, two platforms of

AUTOSAR are defined: classic platform and adaptive

platform. The classic platform is used for embedded systems

with hard real-time and safety constraints, while the

adaptive platform is used for high-performance computing

ECUs to build fail-operational systems (e.g., autonomous

driving) [13].

The layered software architecture defined in the classic

platform is depicted in Fig. 3. There are three main software

layers: Basic Software layer (BSW), Runtime Environment

layer (RTE), and Application Software layer (ASW).

The basic software layer is used to control the hardware

of the ECU and to provide services for communication,

diagnostics, safety assurance, or access to different types of

memories (Fig. 4).

The microcontroller abstraction layer contains software

drivers with direct access to the microcontroller (MCU) and

its peripherals. By using this layer, the higher software

layers will be independent of the MCU. The ECU

abstraction layer provides a set of Application Programming

Interfaces (APIs) for accessing the peripherals/devices

regardless of their location (MCU internal/external) and

may contain drivers for external devices. Services layer

provides basic services for BSW and ASW like OS

functionality, network management and communication,

memory management, diagnostics, state management, etc.

AUTOSAR RTE is a “glue” layer that allows

communication between BSW modules and ASW modules

called “Software Components” (SWCs), states transitions,

tasks mapping, and more. Using this layer creates

independence between basic and application software

development. The AUTOSAR metamodel is a necessary

input for both parties involved in the development of the

mentioned software layers (BSW and ASW). This

metamodel contains the interfaces, ports, runnable, and

other structures used in BSW/ASW communication and is

also used as input for the RTE software generation process.

For this generation, there are several applications on the

market [14] developed by automotive stakeholders such as

Vector, Elektrobit, Continental, etc.

Fig. 3. AUTOSAR layered software architecture [13].

Fig. 4. A view inside the BSW layer in AUTOSAR [13].

D. Communication Stack in AUTOSAR

The communication (COM) stack is used to implement

the logical communication between ECUs in a car. It

consists of three different modules placed in BSW layers:

communication drivers, communication hardware

abstraction (interfaces), and communication services (Fig.

5).

Communication drivers represent software modules that

have protocol-specific implementations and that control the

36

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

protocol-specific hardware (e.g., LIN, CAN, Flexray).

Communication hardware abstraction is a group of

modules (protocol-specific) that provide an equal

mechanism to access a bus channel regardless of its location

(on-chip/on-board) [13]. Communication services consist of

a set of software functions used to send/receive data,

pack/unpack signals in/from a message, etc. These services

are independent of the bus channel or the protocol used in

communication.

Fig. 5. BSW COM stack in AUTOSAR [8].

From a safety point of view, communication between

ECUs must be protected at the two levels: hardware and

software. Communication is protected on the hardware level

by using a specific bus driver (ASIC). As an example, in

case of a transmission ordered by the communication layer,

this integrated circuit will pack the message (Data Field)

into a frame to be sent on the bus as defined by the standard

protocol. On the receiving side, error detection is performed

in hardware based on the Cyclic Redundancy Code (CRC)

sequence field.

The hardware verification mechanism is not enough from

a safety perspective. As an example, a received message

(Data field in frame) can be validated at the destination. As

a result, it will be provided to the software modules in the

communication stack, which, in turn, will provide the

received data to ASW. In such a case, the data received and

validated by the hardware can be altered along the transfer

between software modules due to several factors: wrong

configured identifiers, wrong configuration of the message

inside AUTOSAR modules, wrong configured data paths,

etc. To prevent such faults and to ensure the required safety

level, AUTOSAR introduced a mechanism responsible for

communication protection on the software level: end-to-end

communication protection (E2E).

E. End-to-End (E2E) Communication Protection in

AUTOSAR

The concept of end-to-end communication was first

presented in 1973 by Branstadt [15]. The concept has been

implemented on a large scale in banking application systems

for high-level auditing procedures as a matter of policy and

legal requirement [16]. The concept of E2E evolved over

the years and the number of areas of applications has been

increased. Therefore, E2E has been adopted by the industry

as a standardized functions library. This library contains

algorithms for data protection; the responsibility for the

correct use of the library lies with the calling software

module.

Using the AUTOSAR E2E library in software

development guarantees a higher level of safety

communication and allows for the runtime detection of

hardware- or software-related errors (Fig. 6).

Fig. 6. Examples of faults mitigated by E2E protection in AUTOSAR applications [18].

The protection achieved by the E2E library consists in

computing the CRC over the data to be sent/received in

BSW [17], [18]. E2E data protection is based on the CRC

calculation method defined in the CRC-8-SAE J1850

standard [19], [20] which specifies the computation

procedures for different lengths of the CRC (8-bit, 16-bits,

24-bits, etc.). According to the E2E standard, the data must

contain a counter which is incremented on each

transmission. This counter will be used at the destination for

timeout detection (incomplete received sequence of data)

[21], [22]. Moreover, to calculate the CRC, a data identifier

is needed (a fixed value defined for the application). This

37

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

Data ID can be implicit or explicit transmitted on the bus.

E2E defines several profiles to be used in AUTOSAR

applications, such as:

 E2E Profile 1 (1A, 1B, and 1C variants) with 8 bits

CRC, 16 bits of Data ID used for CRC computation

(implicit or explicit transmitted on the bus), a 4 bits

Counter (for timeout detection) and using the polynomial

value 0x1D (Fig. 7 and Fig. 8);

 E2E Profile 2 - 8 bits CRC, a list of 8 bits Data ID

addressed by the Counter, 4 bits Counter, polynomial

value 0x2F;

 E2E Profile 4 - 32 bits CRC, 32 bits Data ID explicit

transmitted on the bus, 16 bits Counter, polynomial value

0x1F4ACFB13;

 E2E Profile 5 - 16 bits CRC, 16 bits Data ID implicit

transmitted on the bus, 8 bits Counter, polynomial value

0x1021;

 E2E Profile 6 - 16 bits CRC, 16 bits Data ID implicit

transmitted on the bus, 8 bits Counter, polynomial value

0x1021, 16 bits Length field for variable length data.

The principle of using the E2E mechanism in AUTOSAR

is depicted in Fig. 9.

Fig. 7. Message content according to E2E Profile 1A (implicit transmission

of Data ID) [17].

Fig. 8. Content of the message according to the E2E Profile 1C (explicit

transmission of Data ID) [17].

Fig. 9. E2E communication protection principle in AUTOSAR [17].

On the sender side, the data to be transmitted are

protected by calling the E2E_Protect function that will

increment the Counter and will calculate the CRC over the

entire data, including Counter.

The message that will be sent on the bus will contain

along the data produced by the application (BSW or ASW)

also the calculated CRC and Counter. On the receiver side, a

similar E2E mechanism is applied. The consumer will call

the E2E_Check function, which will check the Counter to

be in the right sequence (for timeout detection) and will

calculate the CRC over the received data (excluding

received CRC).

Finally, it compares the calculated CRC with the received

CRC. If these values are equal, the data are safe to be used.

Otherwise, they are not. The result is communicated to the

consumer application that will use the data or not, according

to the safety requirements.

IV. MIGRATION OF E2E COMMUNICATION PROTECTION

LIBRARY TO HARDWARE

A. Hardware E2E Module for Basic Sensors

At this time, the basic sensors in automotive are

connected directly on an ECU through a standard interface

like SPI, I2C, PSI5, ADC, etc. (Fig. 10) [23]. In this case,

the physical data are read by the ECU1 which transforms

and protects the data (using the E2E mechanism) to use it

and to be sent on the configured bus channel. The other

ECUs will read the data from the bus, will check the E2E

status, and if it is valid, will use it inside the BSW or ASW

according to the specification.

Fig. 10. Connection of a basic sensor inside the car.

The aim of this paper is to design and evaluate an E2E

hardware module for basic sensors [24], [25] capable of

sending protected E2E data on an automotive

communication bus. Figure 11 depicts the integration of the

proposed sensor into an automotive communication

network.

Fig. 11. Basic sensor with E2E protection communicating in an automotive

network.

A customized message provided by the sensor has been

defined. It includes CRC, Counter fields (according to the

E2E Profile 1A), and Signal A, which represents the raw

value of the physical value measured by the sensor. The

format of the message on the bus is depicted in Fig. 12.

To realize the integration of the new sensor into an

38

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

automotive network, several changes are required:

 The sensor must have a converter able to transform the

physical value into the raw value (logic value) for

generating Signal A;

 Add logic able to handle the Counter value (rolling

value);

 Add logic able to provide the Data ID (fixed value);

 To implement a fast CRC calculation algorithm, the

sensor must have an internal ROM memory to store a

Look-Up Table (LUT) with 256 elements [26]. LUT

values will be used in XOR operations for generating the

CRC;

 Adding a hardware bus driver/transceiver (LIN, CAN

or Flexray) used in communication on the bus (this is not

in the scope of this paper).

Fig. 12. Sensor message format according to E2E Profile 1A.

The CRC computing algorithm is performed by the

sensor according to the E2E Profile 1A specifications. The

logic diagram of the algorithm is presented in Fig. 13.

Fig. 13. Logic diagram of the CRC computing algorithm (E2E Profile 1A).

B. Detailed Design of Hardware E2E Module

Field Programmable Gate Array (FPGA) is an integrated

circuit that can be programmed using a Hardware

Description Language (HDL) to be used for specific custom

applications. An FPGA contains an array of hierarchical

Configurable Logic Blocks (CLBs) and reconfigurable

interconnects that can be configured according to the

desired application [27].

The Xilinx Vivado 2021.2 tool [28] has been used to

design, synthesize, validate, and integrate the E2E module

in an FPGA device. Vivado allows the user to design the

hardware using basic block elements like basic registers,

logic gates, ALU units, etc. Moreover, Vivado allows user

to develop new logical blocks (user customized) by

supporting VHDL and Verilog hardware description

languages. After the design phase, the user has the

possibility to simulate the design, analyse the results,

synthesize it into FPGA, and finally run it directly on an

FPGA device [29], [30]. The results presented in this paper

were obtained using a Xilinx Spartan 7 FPGA device which

is the highest density device in the Spartan-7 family [31].

The block diagram of the E2E module for basic sensors is

presented in Fig. 14 and consists of input buffers (Data ID

and Signal A), clock generator, a 4-state state machine, a

CRC computing logic (including LUT), and output buffers

for generated signals (CRC, Counter, and Signal A).

Fig. 14. Block diagram of the E2E module for basic sensors (Profile 1A).

The 4-state state machine controls the CRC computing

logic. The meanings of the states mentioned in Fig. 13 are as

follows:

 State 0: The initialization value is read from the LUT

based on the Data ID and the start value 0xFF;

 State 1: The first intermediary CRC is calculated;

 State 2: The second intermediary CRC is calculated

using Counter value;

 State 3: The final CRC value is calculated using Signal

A and stored onto the output buffer.

Each state contains four-clock cycles along the value of

the CRC is calculated (Fig. 15):

 Clock 0: The address of a location in the LUT is

calculated (XOR operation);

 Clock 2: The data addressed in the LUT is read and

provided in an internal buffer for the next step (state);

 Clock 3 on state 3: The final values of the CRC,

Counter, and Signal A, are stored into output buffers. In

this step, the values of the signals are ready to be

processed by the bus driver to be sent on the

communication bus.

Five steps that are necessary to be performed in the

Vivado tool to implement the E2E hardware module in

FPGA (Figs. 16–18):

1. Create a block design based on the block diagram (Fig.

14). The design contains predefined or customized logical

blocks. Verilog hardware description language has been

used in designing the E2E module to describe the run-

time libraries (RTL) of customized inner blocks. The

detailed design of the CRC 8 computing logic block (Fig.

14) is shown in Fig. 16.

2. Create a detailed design. In this phase, the block design

is mapped on standard basic logical blocks (Fig. 17).

39

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

3. Synthesize the design. The next step consists of

mapping the synthesized design onto the FPGA structure.

Logical basic blocks are mapped onto the CLBs inside

the FPGA configured in the project. The schematic is

complex and hard to depict in one figure.

4. Implement the design. The synthesized design is placed

into FPGA onto specific CLBs. In this phase, it is

possible to make changes related to the placement of the

modules inside the FPGA area. Figure 18 shows the

design implemented inside the Xilinx Spartan 7 FPGA,

where the CLBs are marked with black rectangles.

5. Generate the bitstream and program the FPGA. It is

necessary to have the development kit connected to the

computer and to “write” the generated bitstream inside

the FPGA device.

The E2E block design is based on Profile 1A, in which

the CRC contains Data ID. Other E2E profiles require Data

ID to be explicitly sent to the bus, which leads to a design

change (due to a change in the sensor message).

Fig. 15. Waveforms of the state cycles and CRC values (E2E Profile 1A).

Fig. 16. Block design of the E2E module for the basic sensor. A view inside the CRC8 computing logic block.

40

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

Fig. 17. Detailed design of the E2E module for the basic sensor. A view inside the Data_selector_1 block.

Fig. 18. Implemented design of the E2E module in the Xilinx Spartan 7

FPGA.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The simulation of the E2E module (Vivado tool) is based

on a clock signal with a period of 62.5 microseconds. Using

this timing, the sensor will send a message on the bus on

every millisecond, which is a reasonable data rate for a

CAN bus, for example. The results reflect the functionality

of the E2E module. The generation of the Signal A and the

implementation of the bus driver are not within the scope of

this paper. The range of the Counter signal is 0x00…0x0E

(0x0F value represents an invalid value). Signal A had a

constant value (0xA5) during the experiments and is

represented on 8 bits (see Fig. 12), while Data ID was set to

the value 1. The output values of the hardware module E2E

are presented in Table II and Fig. 19.

TABLE II. OUTPUT VALUES OF CRC, COUNTER, AND SIGNAL A.

Cycle CRC Counter Signal A

0 0x55 0x00

0xA5

1 0x19 0x01

2 0xCD 0x02

3 0x81 0x03

4 0x78 0x04

5 0x34 0x05

6 0xE0 0x06

7 0xAC 0x07

8 0x0F 0x08

9 0x43 0x09

10 0x97 0x0A

11 0xDB 0x0B

12 0x22 0x0C

13 0x6E 0x0D

These results were also validated using a different

environment based on the Vector CANalyzer tool [32]. In

this environment, the computer is the sender (via Vector VN

7610 hardware), while the receiver (and checker) is a real

ECU. Communication is carried out using a real CAN

network. The values provided by the E2E software library

implemented on a computer using the CAPL scripting

language [33] were captured from the real CAN bus. Figure

20 represents the waveforms of the signals captured on the

CAN bus (the values of the signals are displayed in

decimal), while Fig. 21 shows the data values of the signals

(hexadecimal representation).

A comparison of the data shown in Table II and Fig. 21

shows that the values are similar, which validates the

proposed hardware model designed in the Vivado tool.

Furthermore, on the receiver side, the ECU reported no

errors in checking the E2E status of each received message,

which means that the values generated by the E2E module

are correct.

41

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

The utilization rate of the FPGA’s CLBs is presented in

Fig. 22. It is observed that for the E2E hardware module,

there is a need of 46 Look-Up Table (LUT) elements for

logic blocks, 30 Flip-Flop registers, 1 block RAM, and 54

I/O pins.

Considering that one CLB inside Xilinx Spartan 7 FPGA

contains 8 LUTs, 16 Flip-Flop registers and 256 bits of

RAM [31], it results that there is a need of 13 CLBs (Fig.

18) to integrate E2E module in FPGA. To be mentioned that

the implementation of an E2E module able to handle more

than 2 bytes of data will require supplementary hardware

resources.

Fig. 19. Waveforms of output signals CRC, Counter, and Signal A obtained by simulating the E2E hardware model.

Fig. 20. Waveforms of the signals CRC, Counter, and Signal A captured on a real CAN bus.

Fig. 21. Data values generated by the E2E software library on the real

CAN bus.

Fig. 22. Utilization rate of Xilinx Spartan 7 FPGA resources.

The results presented in this paper were obtained using a

Xilinx Spartan 7 FPGA device placed on the Spartan-7

SP701 evaluation board (Fig. 23). The SP701 evaluation

board is based on the XC7S100FGGA676 device, a member

of the Xilinx 7 series FPGA family. It is optimized for low

cost, low power, and high I/O performance. It comes with

advanced high-performance FPGA logic based on real 6-

input LUT, 36 Kb dual-port block RAM, support for

DDR3L interface up to 1866 Mb/s, XADC with 12-bit 1

MSPA ADC with on-chip thermal and supply sensors, and

powerful Clock Management Tiles (CMTs). The board is

designed for high-performance and lower power with a

28 nm, 1 V core voltage process [34].

The standard AUTOSAR E2E library is used in

automotive applications to ensure the safety of the

communication in automotive networks. Right now, this

mechanism is implemented in software on the sender and

receiver sides. This paper presents a hardware model of the

AUTOSAR E2E software library for use it inside of the

basic sensors in automotive. The new hardware module will

allow the sensor to send protected data according to the

42

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

safety requirements in communication with the ECUs via

the automotive network (Fig. 11).

Fig. 23. Spartan-7 SP701 evaluation board [34].

This new approach has the advantage that all the ECUs

will have direct access to the protected data provided by the

sensor. In this case, there is no need for a specific ECU to

compute the values of the protection signals (CRC and

Counter) in software and to forward it towards other ECUs

(nodes) into the network. This mitigates the risk of error

occurrence in software or incorrect message sending on the

bus. Regarding the timing, the output data rate of the model

depends on the data rate on the communication bus (LIN,

CAN, or Flexray) which is few milliseconds or tens of

milliseconds. Either SW or HW implementation must fulfil

these timings; in both cases the internal timing of producing

data is not relevant for the performance itself as long as this

timing is not greater than the data communication rate.

Another advantage is that the new sensors can be placed

anywhere inside the car because they can provide data

directly to the communication bus. In case of acceleration

sensors, e.g., they are placed in some cases directly on the

ECU, and this ECU should be placed in the car on a certain

position to be sure that they make the right measurements.

By using the new sensor, the placement of the ECU is not a

constraint. It is important in this case that only the sensor

(small size) is placed at the right position.

VI. CONCLUSIONS

After all the work, the conclusion is that the AUTOSAR

E2E protection communication mechanism is feasible to

implement in hardware since, in case of a message of 3

bytes length (3 signals) in FPGA, it requires 46 Look-Up

Table (LUT) elements for logic blocks, 30 Flip-Flop

registers, 1 block RAM, and 54 I/O pins. The utilization rate

of the internal modules of FPGA is 0.1 %, while for CRC

LUT is 0.83 %, and for I/O pins is 13.5 %. By increasing

the number of bytes/message, only the utilization rate of

internal modules will be affected (increased number for

Flip-Flop registers) since the CRC LUT and I/O pins will

remain the same. The proposed hardware is capable of

providing data on each millisecond (using a clock of 62.5

microseconds), which is an acceptable data rate for CAN

communication. This data rate can be adjusted (according to

the requirements) by increasing the clock timing inside the

FPGA.

Future work will consist in designing an E2E module

capable of processing many signals of a message to

calculate the CRC that will have impact on the hardware

complexity (e.g., a memory module to store the signals is

needed). Computing the final CRC value will require many

clocks per state in the 4-state machine (1 clock/byte).

Another direction in this research to improve the concept

presented is to migrate all the E2E defined profiles to

hardware at the sending site [9]. Moreover, there is room to

exploit this experience to also integrate the checking part on

the receiver side, e.g., the integration of an E2E checking

module into actuators. The new actuator models can benefit

from such a hardware module to check the safety data

received from the communication bus.

Another direction in future research is to investigate the

possibility of integrating the E2E protection mechanism

together with the communication driver inside of an FPGA

[35] and making qualitative and quantitative evaluations of

the new hardware. If the results meet the expectations, then

the proposed model could be directly used as a baseline for

future sensors/actuators in the automotive industry.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] C. Falconi and S. Mandal, “Interface electronics: State-of-the-art,

opportunities and needs”, Sensors and Actuators A: Physical, vol.

296, pp. 24–30, 2019. DOI: 10.1016/j.sna.2019.07.002.

[2] Road Vehicles - Functional Safety, International Standardization

Organization ISO 26262-1:2018.

[3] AUTOSAR Standards. [Online]. Available:

https://www.autosar.org/standards/

[4] Spartan‐7 FPGAs: Meeting the Cost‐Sensitive Market Requirements,

Xilinx Inc. [Online]. Available:

https://www.xilinx.com/content/dam/xilinx/support/documents/white_

papers/wp483-spartan-7-intro.pdf

[5] F. Luckinger and T. Sauter, “AUTOSAR-compliant clock

synchronization over CAN using software timestamping”, in Proc. of

2021 17th IEEE International Conference on Factory Communication

Systems (WFCS), 2021, pp. 49–52. DOI:

10.1109/WFCS46889.2021.9483588.

[6] W. Ma, G. Xie, R. Li, W. Liu, H. H. Li, and W. Chang, “Efficient

AUTOSAR-compliant CAN-FD frame packing with observed

optimality”, in Proc. of 2021 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2021, pp. 1899–1904. DOI:

10.23919/DATE51398.2021.9473962.

[7] M. Qiu, T. Antesberger, and R. German, “Multi-sensor system

simulation based on RESTART algorithm”, in Proc. of 2021 Annual

Reliability and Maintainability Symposium (RAMS), 2021, pp. 1–6.

DOI: 10.1109/RAMS48097.2021.9605759.

[8] F. Molina, P. Corral, M. Aljaro, G. de Scals, and A. Rodriguez,

“Implementation of an AFDX interface with Zynq SoC board in

FPGA”, Elektronika ir Elektrotechnika, vol. 26, no. 5, pp. 11–15, Oct.

2020. DOI: 10.5755/j01.eie.26.5.26008.

[9] J. Mitra and T. Nayak, “Reconfigurable very high throughput low

latency VLSI (FPGA) design architecture of CRC 32”, Integration,

vol. 56, pp. 1–14, 2017. DOI: 10.1016/j.vlsi.2016.09.005.

[10] Introduction to CAN, Vector GmbH, 2021.

[11] A. Hafeez, H. Malik, O. Avatefipour, P. Rongali, and S. Zehra,

“Comparative study of CAN-Bus and FlexRay protocols for in-

vehicle communication”, SAE Technical Paper 2017-01-0017, 2017.

43

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 5, 2022

DOI: 10.4271/2017-01-0017.

[12] M. Staron, Automotive Software Architectures: An Introduction, 2nd

ed. Springer Cham, 2021. DOI: 10.1007/978-3-030-65939-4.

[13] AUTOSAR Layered Software Architecture, AUTOSAR organization.

[Online]. Available:

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[14] S. Piao, H. Jo, S. Jin, and W. Jung, “Design and implementation of

RTE generator for automotive embedded software”, in Proc. of 2009

Seventh ACIS Int. Conf. on Software Engineering Research,

Management and Applications, 2009, pp. 159–165. DOI:

10.1109/SERA.2009.35.

[15] D. K. Branstad, “Security aspects of computer networks”, in Proc. of

AIAA Computer Network Systems Conference, 1973, AIAA Paper no.

73–427.

[16] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in

system design”, ACM Trans. Comp. Syst., vol. 2, no. 4, pp. 277–288,

1984. DOI: 10.1145/357401.357402.

[17] Specification of SW-C End-to-End Communication Protection

Library, AUTOSAR Standards, Document ID 428:

AUTOSAR_SWS_E2ELibrary. [Online]. Available:

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_SWS_E2ELibrary.pdf

[18] E2E Protocol Specification, AUTOSAR FO R20-11, AUTOSAR

Standards, Document ID 849: AUTOSAR_PRS_E2EProtocol, 2020.

[Online]. Available:

https://www.autosar.org/fileadmin/user_upload/standards/foundation/

20-11/AUTOSAR_PRS_E2EProtocol.pdf

[19] Standard SAE-J1850 8-bit CRC, SAE, 2006.

[20] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code (CRC)

polynomial selection for embedded networks”, in Proc. of Int. Conf.

on Dependable Systems and Networks, 2004, 2004, pp. 145–154.

DOI: 10.1109/DSN.2004.1311885.

[21] T. Forest and M. Jochim, “On the fault detection capabilities of

AUTOSAR’s End-to-End communication protection CRC’s”, SAE

Technical Paper 2011-01-0999, 2011. DOI: 10.4271/2011-01-0999.

[22] T. Arts and S. Tonetta, “Safely using the AUTOSAR End-to-End

protection library”, in Computer Safety, Reliability, and Security.

SAFECOMP 2014. Lecture Notes in Computer Science(), vol. 9337.

Springer, Cham, 2015, pp. 74–89. DOI: 10.1007/978-3-319-24255-

2_7

[23] W. J. Fleming, “Overview of automotive sensors”, IEEE Sensors J.,

vol. 1, no. 4, pp. 296–308, 2001. DOI: 10.1109/7361.983469.

[24] M. A. Pillai, S. Veerasingam, and Y. S. D., “Implementation of sensor

network for indoor air quality monitoring using CAN interface”, in

Proc. of Int. Conf. on Advances in Computer Eng., 2010, pp. 366–

370. DOI: 10.1109/ACE.2010.85.

[25] Y. Xie, Y. Guo, S. Yang, J. Zhou, and X. Chen, “Security-related

hardware cost optimization for CAN FD-based automotive cyber-

physical systems”, Sensors, vol. 21, no. 20, p. 6807, 2021. DOI:

10.3390/s21206807.

[26] X. Dong and Y. He, “CRC algorithm for embedded system based on

table lookup method”, Microprocessors and Microsystems, vol. 74,

art. 103049, 2020. DOI: 10.1016/j.micpro.2020.103049.

[27] S. M. S. Trimberger, “Three ages of FPGAs: A retrospective on the

first thirty years of FPGA technology: This paper reflects on how

Moore’s law has driven the design of FPGAs through three epochs:

the age of invention, the age of expansion, and the age of

accumulation”, IEEE Solid-State Circuits Magazine, vol. 10, no. 2,

pp. 16–29, 2018. DOI: 10.1109/MSSC.2018.2822862.

[28] Vivado Design Suite User Guide, Xilinx Inc. [Online]. Available:

https://www.xilinx.com/content/dam/xilinx/support/documents/sw_m

anuals/xilinx2021_2/ug910-vivado-getting-started.pdf

[29] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA

intrinsic PUFs and their use for IP protection”, in Cryptographic

Hardware and Embedded Systems - CHES 2007. CHES 2007. Lecture

Notes in Computer Science, vol. 4727. Springer, Berlin, Heidelberg,

2007, pp. 63–80. DOI: 10.1007/978-3-540-74735-2_5.

[30] I. Z. Mihu and H. V. Căpriță, “Architectural improvements and FPGA

implementation of a multimodel neuroprocessor”, in Proc. of 9th Int.

Conf. Neural Inform. Proc., 2002, pp. 1749–1753, vol. 4. DOI:

10.1109/ICONIP.2002.1198975.

[31] 7 Series FPGAs Configurable Logic Block, Xilinx Inc. [Online].

Available: https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB

[32] CANalyzer the Tool for Comprehensive ECU and Network Analysis,

Vector GmbH, 2016. [Online]. Available:

https://cdn.vector.com/cms/content/products/canalyzer/canalyzer/Doc

s/Fact%20Sheets/CANalyzer_FactSheet_EN.pdf

[33] CAPL Used with CANoe and CANalyzer, Vector GmbH, 2015.

[Online]. Available: https://www.vector.com/gb/en/know-how/capl/#

[34] SP701 Evaluation Board User Guide, Xilinx Inc. [Online]. Available:

https://docs.xilinx.com/v/u/en-US/ug1319-sp701-eval-bd

[35] Y. Son, J. Park, and T. Kang, “Design and implementation of CAN IP

using FPGA”, Journal of Institute of Control, Robotics and Systems,

vol. 22, no. 8, pp. 671–677, 2016. DOI:

10.5302/J.ICROS.2016.16.0089.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

44

