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1Abstract—This paper explores new methods to increase the 

level of safety of data transfer between sensors and electronic 

control units (ECUs) in automotive communication. A new 

model of basic sensors to be used in automotive electronics is 

proposed. This model contains hardware modules that 

implement the end-to-end communication protection (E2E) 

mechanism, as defined by the Automotive Open System 

Architecture (AUTOSAR) standard. By adding this feature 

inside the sensors, it is possible that, in addition to increasing 

the safety level, these sensors can be directly connected to the 

network ECUs via standard communication buses (e.g., Local 

Interconnect Network (LIN), Controller Area Network (CAN), 

Flexray, etc.). This paper describes the model, design, and 

mapping (in a Field Programmable Gate Array device 

(FPGA)) of the hardware E2E module capable of generating 

the Cyclic Redundancy Code (CRC) and counter signal for a 

customized message. This message represents the output of the 

new sensor E2E module used in a safety communication as 

requested by the automotive E2E standard. The model is 

validated also by comparing the data output of the E2E 

hardware with the data output of the AUTOSAR software E2E 

library. Finally, future needs and directions are suggested in 

this area. 

 

 Index Terms—Automotive electronics; Vehicle safety; Data 

buses; Cyclic redundancy check codes.  

I. INTRODUCTION 

To control the complex functionality of the nowadays 

cars, there is a need to integrate not only electronic devices 

based on microprocessors or microcontrollers, but also 

peripheral devices such sensors and actuators. Currently, car 

manufacturers design the architecture of the cars by using 

tens or hundreds of Electronic Control Units (ECUs), all of 

them sending or receiving data by using communication 

buses specific to the automotive domain (Local Interconnect 

Network (LIN), Controller Area Network (CAN), or 

Flexray, etc.). These systems have a close interaction with 

basic or smart sensors and actuators, can perform signal 
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processing or run machine learning or other advanced 

control algorithms [1]. Independent of the complexity of the 

software that controls one process or another inside the car, 

there is a great need to ensure the safety of the passengers. 

The functional safety of road vehicles is defined and 

standardized in ISO 26262 which is an international 

standard for the functional safety of electrical and/or 

electronic systems that are installed in road vehicles [2]. 

This paper proposes an improvement of the model for the 

basic sensors that measure temperature, height level, speed, 

vibrations, etc. to be connected directly to the car buses 

while also respecting the safety level of communication.  

The novelty of the proposed approach consists of the 

migration of several software mechanisms in hardware 

modules, with certain advantages related to safety 

communication and optimal use of available resources. To 

our knowledge, this approach has not yet been developed or 

implemented in basic sensors for automotive applications. 

This paper begins with related works on automotive 

sensors and communication. Section III presents a brief 

overview of the car electronics architecture and basic 

notions about the safety levels in road vehicles. The 

following subsections describe the Automotive Open 

System Architecture (AUTOSAR) software architecture and 

the End-to-End (E2E) communication protection library in 

software [3]. Section IV describes the subject of the 

research: a hardware model of the E2E protection 

mechanism (designed for the sender node) proposed by the 

authors to be implemented in basic sensors. The final 

sections highlight the results and the conclusions of 

migrating this software module to hardware using a Xilinx 

Spartan 7 FPGA electronic device [4]. 

II. RELATED WORKS 

Currently, the hardware/software implementations used in 

automotive industry are complex. These implementations 

are constantly evolving due to the need to bring new 

features that will lead to the development of more advanced 

cars in terms of traffic safety. The introduction of the 
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AUTOSAR architecture allowed the standardization of the 

software by describing the operating mechanisms, 

communication, diagnosis, application modules, etc. This 

standardization has also led to the development of 

sensors/actuators that are controlled by Electronic Control 

Units (ECUs). Current scientific work focuses on new 

methods to streamline these hardware/software mechanisms. 

Luckinger and Sauter [5] explore a new way of clock 

synchronization over the CAN bus. This fully AUTOSAR-

compliant software method (with a direct impact on the 

CAN hardware) achieves a synchronization accuracy of 

around 400 microseconds, which leads to increased 

communication security between the car’s ECUs. Another 

method to optimize communication on the CAN bus is 

presented in [6]. The authors propose an innovative method 

for packing frames on the Controller Area Network with 

Flexible Data Rate (CAN-FD) bus to optimize message 

traffic in communication networks. The optimization 

consists in packing in a single frame the signals that are 

transmitted cyclically in the same period, which leads to the 

reduction of the number of messages on the CAN-FD bus. 

Another direction of research is to optimize the sensors used 

in automotive. In [7], the authors present a multi-criteria 

optimization method based on Markov chains to obtain an 

efficient multi-sensor system that can be used in Advanced 

Driver Assistant System (ADAS) applications. Another 

approach in the development of electronic modules used in 

communication is to migrate software functionality to 

hardware. The purpose of migration is to increase the 

efficiency of the transmission/reception mechanisms to 

ensure the integrity and security of the data on the 

communication bus. In [8], the authors propose the 

migration to Field Programmable Gate Array (FPGA) of the 

transmission software for the standard AFDX messages 

used in satellite module communication, while in [9], they 

propose the migration to FPGA of the 32-bit Cyclic 

Redundancy Code (CRC-32) calculation algorithm. 

III. ARCHITECTURE OF A CAR: HARDWARE/SOFTWARE 

OVERVIEW 

A. Overview of the Car’s Architecture 

Each functionality of today’s cars is controlled using one 

or several electronic control units based on microcontrollers 

or microprocessors. There are dedicated ECUs inside the car 

for controlling functionalities like engine control, braking 

system control, interior control or driving system 

(autonomous or not), etc. (Fig. 1). All these ECUs are 

interconnected through communication buses directly or via 

gateways. The logical data are transported over these buses 

and organized into messages (each message may contain 

one or more signals). There are several standardized 

communication protocols for automotive (but not limited to 

these): LIN, CAN/CAN-FD, or Flexray.  

The Local Interconnect Network (LIN) protocol specifies 

a master-slave communication in which a master node can 

address one of the up to 16 slaves to ask for data. LIN is 

used in applications that require slow data rates (up to 

20 kb/s). The Controller Area Network (CAN) protocol is a 

serial protocol with a data rate up to 1 Mb/s. CAN uses a 

message-oriented protocol. No addresses are defined for 

node addressing; an ECU can start to transmit if there are no 

messages on the bus. An arbitration policy is applied when 

several ECUs try to emit data simultaneously on the bus.  

 
Fig. 1.  Various automotive functionalities inside cars. 

The ECU, which will try to send the message with the 

lowest identifier, will win the bus. The other ECUs will 

become receivers for providing the acknowledge and 

eventually storing the data [10]. Flexray is a time-driven 

protocol (serial data) used in safety critical systems due to 

the channel redundancy (there are two channels defined). It 

is based on internal timers and synchronization between 

nodes; the access to the bus is periodic, leading to a 

deterministic and predictable behaviour. The 

communication structure is organized into 64 cycles, each 

cycle having 5 milliseconds with a data rate of 10 Mb/s 

[11]. 

B. Safety in Automotive 

Communication within the vehicle is an important part of 

the functional safety; Data transfer between ECUs and 

sensors/actuators must meet the ISO 26262 requirements. 

ISO 26262 specifies several safety levels (Automotive 

Safety Integrity Level (ASIL)) to be covered by the 

hardware/software/system defined for every ECU in the 

vehicle (Table I).  

TABLE I. LEVELS OF SAFETY FACTORS IN AUTOMOTIVE. 

Severity Exposure Controllability 

S0 No injuries E0 
Incredibly 

unlikely 
C0 

Controllable in 

general 

S1 

Light to 

moderate 

injuries 

E1 
Very low 

probability 
C1 

Simply 

controllable 

S2 

Severe to 

life-

threatening 

injuries 

E2 
Low 

probability 
C2 

Normally 

controllable 

S3 

Life-

threatening 

to fatal 

injuries 

E3 
Medium 

probability 
C3 

Difficult to 

control or 

uncontrollable 

- - E4 
High 

probability 
- - 

 

Each ECU is ranked according to the determined ASIL 

level. This level is strictly related to the following factors 

(Table I): severity (damages in case of system failure), 

exposure (probability of failure occurrence), and 

controllability (the degree of control of the system made by 

the driver or external actions). 

ISO 26262 defines four levels of ASIL, denoted from A 

to D. ASIL A is the minimum level of risk, and ASIL D is 
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the maximum. The standard also defines an additional level 

for not safety relevant applications - Quality Management 

(QM). The ASIL level of an automotive application (ECU) 

is determined by correlating all factors defined in Table I 

and using the matrix depicted in Fig. 2 [2]. 

 
Fig. 2.  Determining the ASIL level based on severity, exposure, and 

controllability [2]. 

C. Automotive Open System Architecture (AUTOSAR) 

The complexity of automotive software requires hardware 

resources able to perform many tasks in parallel having 

limited computing power and memory resources. The 

current ECUs are based on multi-core processors integrated 

within microcontrollers. The management of an ECU is 

performed by a multi-core Real-Time Operating System 

(RTOS). The software that controls an ECU must be robust 

enough to meet the ASIL level required by its functionality. 

Robustness can be achieved if the software is standardized, 

which, in turn, will improve the performance and assure the 

required level of safety. This is the reason why automotive 

manufacturers defined a standardized software architecture 

to be used in automotive applications: AUTOSAR [12]. 

AUTOSAR is a layered software architecture with 

benefits in decreasing the dependence between hardware 

and software, decoupled software development, and 

software reusability. Currently, two platforms of 

AUTOSAR are defined: classic platform and adaptive 

platform. The classic platform is used for embedded systems 

with hard real-time and safety constraints, while the 

adaptive platform is used for high-performance computing 

ECUs to build fail-operational systems (e.g., autonomous 

driving) [13]. 

The layered software architecture defined in the classic 

platform is depicted in Fig. 3. There are three main software 

layers: Basic Software layer (BSW), Runtime Environment 

layer (RTE), and Application Software layer (ASW). 

The basic software layer is used to control the hardware 

of the ECU and to provide services for communication, 

diagnostics, safety assurance, or access to different types of 

memories (Fig. 4). 

The microcontroller abstraction layer contains software 

drivers with direct access to the microcontroller (MCU) and 

its peripherals. By using this layer, the higher software 

layers will be independent of the MCU. The ECU 

abstraction layer provides a set of Application Programming 

Interfaces (APIs) for accessing the peripherals/devices 

regardless of their location (MCU internal/external) and 

may contain drivers for external devices. Services layer 

provides basic services for BSW and ASW like OS 

functionality, network management and communication, 

memory management, diagnostics, state management, etc. 

AUTOSAR RTE is a “glue” layer that allows 

communication between BSW modules and ASW modules 

called “Software Components” (SWCs), states transitions, 

tasks mapping, and more. Using this layer creates 

independence between basic and application software 

development. The AUTOSAR metamodel is a necessary 

input for both parties involved in the development of the 

mentioned software layers (BSW and ASW). This 

metamodel contains the interfaces, ports, runnable, and 

other structures used in BSW/ASW communication and is 

also used as input for the RTE software generation process. 

For this generation, there are several applications on the 

market [14] developed by automotive stakeholders such as 

Vector, Elektrobit, Continental, etc. 

 
Fig. 3.  AUTOSAR layered software architecture [13]. 

 
Fig. 4.  A view inside the BSW layer in AUTOSAR [13]. 

D. Communication Stack in AUTOSAR 

The communication (COM) stack is used to implement 

the logical communication between ECUs in a car. It 

consists of three different modules placed in BSW layers: 

communication drivers, communication hardware 

abstraction (interfaces), and communication services (Fig. 

5). 

Communication drivers represent software modules that 

have protocol-specific implementations and that control the 
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protocol-specific hardware (e.g., LIN, CAN, Flexray). 

Communication hardware abstraction is a group of 

modules (protocol-specific) that provide an equal 

mechanism to access a bus channel regardless of its location 

(on-chip/on-board) [13]. Communication services consist of 

a set of software functions used to send/receive data, 

pack/unpack signals in/from a message, etc. These services 

are independent of the bus channel or the protocol used in 

communication. 

 
Fig. 5.  BSW COM stack in AUTOSAR [8]. 

From a safety point of view, communication between 

ECUs must be protected at the two levels: hardware and 

software. Communication is protected on the hardware level 

by using a specific bus driver (ASIC). As an example, in 

case of a transmission ordered by the communication layer, 

this integrated circuit will pack the message (Data Field) 

into a frame to be sent on the bus as defined by the standard 

protocol. On the receiving side, error detection is performed 

in hardware based on the Cyclic Redundancy Code (CRC) 

sequence field. 

The hardware verification mechanism is not enough from 

a safety perspective. As an example, a received message 

(Data field in frame) can be validated at the destination. As 

a result, it will be provided to the software modules in the 

communication stack, which, in turn, will provide the 

received data to ASW. In such a case, the data received and 

validated by the hardware can be altered along the transfer 

between software modules due to several factors: wrong 

configured identifiers, wrong configuration of the message 

inside AUTOSAR modules, wrong configured data paths, 

etc. To prevent such faults and to ensure the required safety 

level, AUTOSAR introduced a mechanism responsible for 

communication protection on the software level: end-to-end 

communication protection (E2E). 

E. End-to-End (E2E) Communication Protection in 

AUTOSAR 

The concept of end-to-end communication was first 

presented in 1973 by Branstadt [15]. The concept has been 

implemented on a large scale in banking application systems 

for high-level auditing procedures as a matter of policy and 

legal requirement [16]. The concept of E2E evolved over 

the years and the number of areas of applications has been 

increased. Therefore, E2E has been adopted by the industry 

as a standardized functions library. This library contains 

algorithms for data protection; the responsibility for the 

correct use of the library lies with the calling software 

module.  

Using the AUTOSAR E2E library in software 

development guarantees a higher level of safety 

communication and allows for the runtime detection of 

hardware- or software-related errors (Fig. 6). 

 
Fig. 6.  Examples of faults mitigated by E2E protection in AUTOSAR applications [18]. 

The protection achieved by the E2E library consists in 

computing the CRC over the data to be sent/received in 

BSW [17], [18]. E2E data protection is based on the CRC 

calculation method defined in the CRC-8-SAE J1850 

standard [19], [20] which specifies the computation 

procedures for different lengths of the CRC (8-bit, 16-bits, 

24-bits, etc.). According to the E2E standard, the data must 

contain a counter which is incremented on each 

transmission. This counter will be used at the destination for 

timeout detection (incomplete received sequence of data) 

[21], [22]. Moreover, to calculate the CRC, a data identifier 

is needed (a fixed value defined for the application). This 
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Data ID can be implicit or explicit transmitted on the bus. 

E2E defines several profiles to be used in AUTOSAR 

applications, such as: 

 E2E Profile 1 (1A, 1B, and 1C variants) with 8 bits 

CRC, 16 bits of Data ID used for CRC computation 

(implicit or explicit transmitted on the bus), a 4 bits 

Counter (for timeout detection) and using the polynomial 

value 0x1D (Fig. 7 and Fig. 8); 

 E2E Profile 2 - 8 bits CRC, a list of 8 bits Data ID 

addressed by the Counter, 4 bits Counter, polynomial 

value 0x2F; 

 E2E Profile 4 - 32 bits CRC, 32 bits Data ID explicit 

transmitted on the bus, 16 bits Counter, polynomial value 

0x1F4ACFB13; 

 E2E Profile 5 - 16 bits CRC, 16 bits Data ID implicit 

transmitted on the bus, 8 bits Counter, polynomial value 

0x1021; 

 E2E Profile 6 - 16 bits CRC, 16 bits Data ID implicit 

transmitted on the bus, 8 bits Counter, polynomial value 

0x1021, 16 bits Length field for variable length data. 

The principle of using the E2E mechanism in AUTOSAR 

is depicted in Fig. 9. 

 
Fig. 7.  Message content according to E2E Profile 1A (implicit transmission 

of Data ID) [17]. 

 
Fig. 8.  Content of the message according to the E2E Profile 1C (explicit 

transmission of Data ID) [17]. 

 
Fig. 9.  E2E communication protection principle in AUTOSAR [17]. 

On the sender side, the data to be transmitted are 

protected by calling the E2E_Protect function that will 

increment the Counter and will calculate the CRC over the 

entire data, including Counter. 

The message that will be sent on the bus will contain 

along the data produced by the application (BSW or ASW) 

also the calculated CRC and Counter. On the receiver side, a 

similar E2E mechanism is applied. The consumer will call 

the E2E_Check function, which will check the Counter to 

be in the right sequence (for timeout detection) and will 

calculate the CRC over the received data (excluding 

received CRC).  

Finally, it compares the calculated CRC with the received 

CRC. If these values are equal, the data are safe to be used. 

Otherwise, they are not. The result is communicated to the 

consumer application that will use the data or not, according 

to the safety requirements. 

IV. MIGRATION OF E2E COMMUNICATION PROTECTION 

LIBRARY TO HARDWARE 

A. Hardware E2E Module for Basic Sensors 

At this time, the basic sensors in automotive are 

connected directly on an ECU through a standard interface 

like SPI, I2C, PSI5, ADC, etc. (Fig. 10) [23]. In this case, 

the physical data are read by the ECU1 which transforms 

and protects the data (using the E2E mechanism) to use it 

and to be sent on the configured bus channel. The other 

ECUs will read the data from the bus, will check the E2E 

status, and if it is valid, will use it inside the BSW or ASW 

according to the specification. 

 
Fig. 10.  Connection of a basic sensor inside the car. 

The aim of this paper is to design and evaluate an E2E 

hardware module for basic sensors [24], [25] capable of 

sending protected E2E data on an automotive 

communication bus. Figure 11 depicts the integration of the 

proposed sensor into an automotive communication 

network. 

 
Fig. 11.  Basic sensor with E2E protection communicating in an automotive 

network. 

A customized message provided by the sensor has been 

defined. It includes CRC, Counter fields (according to the 

E2E Profile 1A), and Signal A, which represents the raw 

value of the physical value measured by the sensor. The 

format of the message on the bus is depicted in Fig. 12. 

To realize the integration of the new sensor into an 
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automotive network, several changes are required: 

 The sensor must have a converter able to transform the 

physical value into the raw value (logic value) for 

generating Signal A; 

 Add logic able to handle the Counter value (rolling 

value); 

 Add logic able to provide the Data ID (fixed value); 

 To implement a fast CRC calculation algorithm, the 

sensor must have an internal ROM memory to store a 

Look-Up Table (LUT) with 256 elements [26]. LUT 

values will be used in XOR operations for generating the 

CRC; 

 Adding a hardware bus driver/transceiver (LIN, CAN 

or Flexray) used in communication on the bus (this is not 

in the scope of this paper). 

 
Fig. 12.  Sensor message format according to E2E Profile 1A. 

The CRC computing algorithm is performed by the 

sensor according to the E2E Profile 1A specifications. The 

logic diagram of the algorithm is presented in Fig. 13. 

 
Fig. 13.  Logic diagram of the CRC computing algorithm (E2E Profile 1A). 

B. Detailed Design of Hardware E2E Module 

Field Programmable Gate Array (FPGA) is an integrated 

circuit that can be programmed using a Hardware 

Description Language (HDL) to be used for specific custom 

applications. An FPGA contains an array of hierarchical 

Configurable Logic Blocks (CLBs) and reconfigurable 

interconnects that can be configured according to the 

desired application [27].  

The Xilinx Vivado 2021.2 tool [28] has been used to 

design, synthesize, validate, and integrate the E2E module 

in an FPGA device. Vivado allows the user to design the 

hardware using basic block elements like basic registers, 

logic gates, ALU units, etc. Moreover, Vivado allows user 

to develop new logical blocks (user customized) by 

supporting VHDL and Verilog hardware description 

languages. After the design phase, the user has the 

possibility to simulate the design, analyse the results, 

synthesize it into FPGA, and finally run it directly on an 

FPGA device [29], [30]. The results presented in this paper 

were obtained using a Xilinx Spartan 7 FPGA device which 

is the highest density device in the Spartan-7 family [31]. 

The block diagram of the E2E module for basic sensors is 

presented in Fig. 14 and consists of input buffers (Data ID 

and Signal A), clock generator, a 4-state state machine, a 

CRC computing logic (including LUT), and output buffers 

for generated signals (CRC, Counter, and Signal A). 

 
Fig. 14.  Block diagram of the E2E module for basic sensors (Profile 1A). 

The 4-state state machine controls the CRC computing 

logic. The meanings of the states mentioned in Fig. 13 are as 

follows: 

 State 0: The initialization value is read from the LUT 

based on the Data ID and the start value 0xFF; 

 State 1: The first intermediary CRC is calculated; 

 State 2: The second intermediary CRC is calculated 

using Counter value; 

 State 3: The final CRC value is calculated using Signal 

A and stored onto the output buffer. 

Each state contains four-clock cycles along the value of 

the CRC is calculated (Fig. 15): 

 Clock 0: The address of a location in the LUT is 

calculated (XOR operation); 

 Clock 2: The data addressed in the LUT is read and 

provided in an internal buffer for the next step (state); 

 Clock 3 on state 3: The final values of the CRC, 

Counter, and Signal A, are stored into output buffers. In 

this step, the values of the signals are ready to be 

processed by the bus driver to be sent on the 

communication bus. 

Five steps that are necessary to be performed in the 

Vivado tool to implement the E2E hardware module in 

FPGA (Figs. 16–18): 

1. Create a block design based on the block diagram (Fig. 

14). The design contains predefined or customized logical 

blocks. Verilog hardware description language has been 

used in designing the E2E module to describe the run-

time libraries (RTL) of customized inner blocks. The 

detailed design of the CRC 8 computing logic block (Fig. 

14) is shown in Fig. 16. 

2. Create a detailed design. In this phase, the block design 

is mapped on standard basic logical blocks (Fig. 17). 
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3. Synthesize the design. The next step consists of 

mapping the synthesized design onto the FPGA structure. 

Logical basic blocks are mapped onto the CLBs inside 

the FPGA configured in the project. The schematic is 

complex and hard to depict in one figure. 

4. Implement the design. The synthesized design is placed 

into FPGA onto specific CLBs. In this phase, it is 

possible to make changes related to the placement of the 

modules inside the FPGA area. Figure 18 shows the 

design implemented inside the Xilinx Spartan 7 FPGA, 

where the CLBs are marked with black rectangles. 

5. Generate the bitstream and program the FPGA. It is 

necessary to have the development kit connected to the 

computer and to “write” the generated bitstream inside 

the FPGA device. 

The E2E block design is based on Profile 1A, in which 

the CRC contains Data ID. Other E2E profiles require Data 

ID to be explicitly sent to the bus, which leads to a design 

change (due to a change in the sensor message). 

 
Fig. 15.  Waveforms of the state cycles and CRC values (E2E Profile 1A). 

 
Fig. 16.  Block design of the E2E module for the basic sensor. A view inside the CRC8 computing logic block. 
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Fig. 17.  Detailed design of the E2E module for the basic sensor. A view inside the Data_selector_1 block. 

 
Fig. 18.  Implemented design of the E2E module in the Xilinx Spartan 7 

FPGA. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The simulation of the E2E module (Vivado tool) is based 

on a clock signal with a period of 62.5 microseconds. Using 

this timing, the sensor will send a message on the bus on 

every millisecond, which is a reasonable data rate for a 

CAN bus, for example. The results reflect the functionality 

of the E2E module. The generation of the Signal A and the 

implementation of the bus driver are not within the scope of 

this paper. The range of the Counter signal is 0x00…0x0E 

(0x0F value represents an invalid value). Signal A had a 

constant value (0xA5) during the experiments and is 

represented on 8 bits (see Fig. 12), while Data ID was set to 

the value 1. The output values of the hardware module E2E 

are presented in Table II and Fig. 19. 

TABLE II. OUTPUT VALUES OF CRC, COUNTER, AND SIGNAL A. 

Cycle CRC Counter Signal A 

0 0x55 0x00 

0xA5 

1 0x19 0x01 

2 0xCD 0x02 

3 0x81 0x03 

4 0x78 0x04 

5 0x34 0x05 

6 0xE0 0x06 

7 0xAC 0x07 

8 0x0F 0x08 

9 0x43 0x09 

10 0x97 0x0A 

11 0xDB 0x0B 

12 0x22 0x0C 

13 0x6E 0x0D 

 

These results were also validated using a different 

environment based on the Vector CANalyzer tool [32]. In 

this environment, the computer is the sender (via Vector VN 

7610 hardware), while the receiver (and checker) is a real 

ECU. Communication is carried out using a real CAN 

network. The values provided by the E2E software library 

implemented on a computer using the CAPL scripting 

language [33] were captured from the real CAN bus. Figure 

20 represents the waveforms of the signals captured on the 

CAN bus (the values of the signals are displayed in 

decimal), while Fig. 21 shows the data values of the signals 

(hexadecimal representation). 

A comparison of the data shown in Table II and Fig. 21 

shows that the values are similar, which validates the 

proposed hardware model designed in the Vivado tool. 

Furthermore, on the receiver side, the ECU reported no 

errors in checking the E2E status of each received message, 

which means that the values generated by the E2E module 

are correct. 
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The utilization rate of the FPGA’s CLBs is presented in 

Fig. 22. It is observed that for the E2E hardware module, 

there is a need of 46 Look-Up Table (LUT) elements for 

logic blocks, 30 Flip-Flop registers, 1 block RAM, and 54 

I/O pins. 

Considering that one CLB inside Xilinx Spartan 7 FPGA 

contains 8 LUTs, 16 Flip-Flop registers and 256 bits of 

RAM [31], it results that there is a need of 13 CLBs (Fig. 

18) to integrate E2E module in FPGA. To be mentioned that 

the implementation of an E2E module able to handle more 

than 2 bytes of data will require supplementary hardware 

resources. 

 
Fig. 19.  Waveforms of output signals CRC, Counter, and Signal A obtained by simulating the E2E hardware model. 

 
Fig. 20.  Waveforms of the signals CRC, Counter, and Signal A captured on a real CAN bus. 

 
Fig. 21.  Data values generated by the E2E software library on the real 

CAN bus. 
 

Fig. 22.  Utilization rate of Xilinx Spartan 7 FPGA resources. 

The results presented in this paper were obtained using a 

Xilinx Spartan 7 FPGA device placed on the Spartan-7 

SP701 evaluation board (Fig. 23). The SP701 evaluation 

board is based on the XC7S100FGGA676 device, a member 

of the Xilinx 7 series FPGA family. It is optimized for low 

cost, low power, and high I/O performance. It comes with 

advanced high-performance FPGA logic based on real 6-

input LUT, 36 Kb dual-port block RAM, support for 

DDR3L interface up to 1866 Mb/s, XADC with 12-bit 1 

MSPA ADC with on-chip thermal and supply sensors, and 

powerful Clock Management Tiles (CMTs). The board is 

designed for high-performance and lower power with a 

28 nm, 1 V core voltage process [34]. 

 

The standard AUTOSAR E2E library is used in 

automotive applications to ensure the safety of the 

communication in automotive networks. Right now, this 

mechanism is implemented in software on the sender and 

receiver sides. This paper presents a hardware model of the 

AUTOSAR E2E software library for use it inside of the 

basic sensors in automotive. The new hardware module will 

allow the sensor to send protected data according to the 
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safety requirements in communication with the ECUs via 

the automotive network (Fig. 11).  

 
Fig. 23.  Spartan-7 SP701 evaluation board [34]. 

This new approach has the advantage that all the ECUs 

will have direct access to the protected data provided by the 

sensor. In this case, there is no need for a specific ECU to 

compute the values of the protection signals (CRC and 

Counter) in software and to forward it towards other ECUs 

(nodes) into the network. This mitigates the risk of error 

occurrence in software or incorrect message sending on the 

bus. Regarding the timing, the output data rate of the model 

depends on the data rate on the communication bus (LIN, 

CAN, or Flexray) which is few milliseconds or tens of 

milliseconds. Either SW or HW implementation must fulfil 

these timings; in both cases the internal timing of producing 

data is not relevant for the performance itself as long as this 

timing is not greater than the data communication rate. 

Another advantage is that the new sensors can be placed 

anywhere inside the car because they can provide data 

directly to the communication bus. In case of acceleration 

sensors, e.g., they are placed in some cases directly on the 

ECU, and this ECU should be placed in the car on a certain 

position to be sure that they make the right measurements. 

By using the new sensor, the placement of the ECU is not a 

constraint. It is important in this case that only the sensor 

(small size) is placed at the right position. 

VI. CONCLUSIONS 

After all the work, the conclusion is that the AUTOSAR 

E2E protection communication mechanism is feasible to 

implement in hardware since, in case of a message of 3 

bytes length (3 signals) in FPGA, it requires 46 Look-Up 

Table (LUT) elements for logic blocks, 30 Flip-Flop 

registers, 1 block RAM, and 54 I/O pins. The utilization rate 

of the internal modules of FPGA is 0.1 %, while for CRC 

LUT is 0.83 %, and for I/O pins is 13.5 %. By increasing 

the number of bytes/message, only the utilization rate of 

internal modules will be affected (increased number for 

Flip-Flop registers) since the CRC LUT and I/O pins will 

remain the same. The proposed hardware is capable of 

providing data on each millisecond (using a clock of 62.5 

microseconds), which is an acceptable data rate for CAN 

communication. This data rate can be adjusted (according to 

the requirements) by increasing the clock timing inside the 

FPGA. 

Future work will consist in designing an E2E module 

capable of processing many signals of a message to 

calculate the CRC that will have impact on the hardware 

complexity (e.g., a memory module to store the signals is 

needed). Computing the final CRC value will require many 

clocks per state in the 4-state machine (1 clock/byte). 

Another direction in this research to improve the concept 

presented is to migrate all the E2E defined profiles to 

hardware at the sending site [9]. Moreover, there is room to 

exploit this experience to also integrate the checking part on 

the receiver side, e.g., the integration of an E2E checking 

module into actuators. The new actuator models can benefit 

from such a hardware module to check the safety data 

received from the communication bus. 

Another direction in future research is to investigate the 

possibility of integrating the E2E protection mechanism 

together with the communication driver inside of an FPGA 

[35] and making qualitative and quantitative evaluations of 

the new hardware. If the results meet the expectations, then 

the proposed model could be directly used as a baseline for 

future sensors/actuators in the automotive industry. 
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