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1Abstract—In recent years, quantum computing has gained 

immense popularity with the production of real quantum 

computers. Researchers have developed quantum-inspired 

evolutionary algorithms (QIEAs) to solve combinatorial 

optimization problems and have obtained successful results. As 

a special case of QIEAs, real-coded quantum evolutionary 

algorithm (RCQEA) is used in the optimization of high-

dimensional complex problems. In this study, a novel 

mechanism of the quantum rotation gate (QRG) that is used to 

determine the rotation angle of the qubit in the RCQEA is 

introduced and implemented to accelerate the evolutionary 

process and increase the possibility of finding the optimal 

solution. Moreover, the skeleton of RCQEA is modified by 

using a clonal selection mechanism, and the real-coded 

quantum clonal selection algorithm (RCQCSA) is developed. 

Our proposed QRG accelerates the convergence speed of the 

algorithm. The main purpose of this study is to present a more 

effective algorithm that inspires quantum computing principles 

for optimizing the interval type-2 fuzzy logic controller 

(IT2FLC) membership functions (MFs). In this study, four 

different comparisons are made with these two different 

algorithms that have the original version of QRG and our 

proposed QRG. Optimized IT2FLC provides stabilization of 

the inverted pendulum system. The results show that the 

RCQCSA having our proposed QRG outperforms RCQEA in 

stabilizing the inverted pendulum system by optimizing the 

IT2FLC parameters. 

 
 Index Terms—Clonal selection mechanism; Interval type-2 

fuzzy logic; Optimization; Quantum evolutionary algorithms.  

I. INTRODUCTION 

Most traditional decision-making systems are based on 

bivalent logic, which is the basis of the logic concept. In the 

bivalent logic approach, known as classical logic, an entity 

is certainly either a member of the set or not. It means that 

all of the possible denotations of propositions are 

categorized as true or false as mathematically 1 or 0. In 

1965, Professor Lotfi A. Zadeh introduced the concept of 

fuzzy logic [1]. Until 1975, Zadeh broadened this theory by 

establishing fuzzy similarity relations, linguistic hedges, and 

fuzzy decision-making [2]–[4]. Fuzzy logic starts with the 

concept of a fuzzy set (FS) that contains elements with only 

a partial degree of membership. The main difference of the 

fuzzy logic theory from the classical theory is that an entity 
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can partially belong to a fuzzy set and can partially belong 

to another fuzzy set. Therefore, a FS can be interpreted as a 

combination of some distinct elements with a varying 

degree of membership.  

FS introduced by Zadeh is known as type-1 FS. Also, a 

system that has at least one type-1 FS, is called “type-1 

FLC”. Type-1 FLC employs ordinary sets, which represent 

uncertainty with crisp values in the range of [0, 1]. Once 

something is uncertain, the exact value of the entity cannot 

be known and cannot be assessed as a crisp value [3], [4]. 

Therefore, another type of membership function (MF), 

called a “type-2 MF”, and in this case another type of FS, 

called a “type-2 FS” arose from the necessity of dealing 

with these uncertainties as an extension of a type-1 FS [5]. 

A type-2 FS has membership degrees that are themselves 

fuzzy. Namely, the grade of a type-2 MF can be any subset 

of [0, 1]. The system that has at least one type-2 FS is called 

“type-2 FLC”.  

A type-2 FLC is more capable of dealing with linguistic 

uncertainties by modelling vagueness and unreliability of 

information [6], [7]. Thanks to its quite impressive features, 

it has been used in many areas, such as pattern recognition 

[8], control [9], classification [10], edge detection [11], etc. 

A special case of type-2 FLCs, interval type-2 fuzzy logic 

controller (IT2FLC) have attracted much research interest, 

especially in control applications. It has been shown in 

many studies that IT2FLC achieves better control 

performance due to the additional degree of freedom 

provided by its special MFs [12], [13]. It is explained in 

[14], [15] that IT2FLC is generally more robust than its 

type-1 counterparts.  

One of the IT2FLC components that is briefly explained 

in the next section is the knowledge base (KB). KB consists 

of FSs that are input and output MFs and fuzzy rules that 

map input MFs to output MFs. Fuzzy rules and MFs are 

either provided by human experts or learned from sample 

data. The system to be controlled with IT2FLC can be 

highly complex and has non-linear system dynamics. 

Without such an expert KB, the system cannot be controlled 

effectively. In this case, fuzzy rules or MFs need to be 

optimized to control the system as desired. 

Tuning the parameters of IT2FLC and obtaining an expert 

KB for the controlled system is a popular optimization 

problem due to  IT2FLC’s high capability on dealing with 
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non-convex or non-differentiable objective functions.  

Artificial immune systems (AIS) are distributed and 

computational systems inspired by the principles of natural 

systems and also the human immune system [16], [17]. In 

terms of running mechanism, there exist different types of 

metaheuristic algorithms based on AIS. One of them, the 

Clonal Selection Algorithm (CLONALG), is inspired by the 

principle of clonal selection of the immune system [18]–

[20]. Generally, this algorithm models the basic features of 

an adaptive immune response to an antigenic stimulus. It 

explains how an immune response mounts when an 

antigenic pattern is recognized by the B-cells. It consists of 

three main processes: selection, proliferation, and 

differentiation. The proliferation process is succeeded by 

cloning B-cells. The number of clones of B-cells is directly 

proportional to their affinity degree for the antigen. The 

clones are subjected to the hypermutation operator inversely 

proportional to their affinity. A detailed pseudo-code and the 

CLONALG flowchart can be found in [20].  

In the early 2000s, the quantum-inspired evolutionary 

algorithm (QIEA) was presented as an optimization 

algorithm that takes inspiration from quantum computing to 

evolve a probability distribution. The algorithm uses a string 

of quantum bits (qubits) that hold the sampling probability 

of a one or a zero [21], [22]. Therefore, it was applied on 

only binary combinatorial optimization problems, and then 

modified versions of the algorithm were applied on real-

valued problems. To deal with complex functions with high 

dimension, the real-coded quantum evolutionary algorithm 

(RCQEA) was proposed in [23], [24]. RCQEA is based on 

concepts and principles of quantum computing, such as 

qubits and superposition of states by using triploid 

chromosomes whose alleles are composed of a real variable 

and a pair of probability amplitudes of the corresponding 

qubit state. The algorithm uses the complementary double 

mutation operator (CDMO), quantum rotation gate (QRG), 

and discrete crossover (DC) for diversity of solution and the 

Hill-climbing selection (HCS) for accelerating the 

convergence speed. RCQEA has brought a new perspective 

on optimization problems by inspiring quantum computing 

principles. 

This study focuses on the implementation of a more 

effective quantum-inspired algorithm than RCQEA in 

tuning the parameters of IT2FLC. We propose the Real-

Coded Quantum Clonal Selection Algorithm (RCQCSA) for 

the optimization of IT2FLC parameters. We also improved 

the QRG of the RCQEA so that the algorithm finds the 

expected solutions in the solution space more consistently. 

We use an IT2FLC controlled inverted pendulum system 

that is a highly non-linear unstable system to test the 

performance of our proposed algorithm and RCQEA. 

The organization of this paper is given as follows. Section 

II introduces the related works. Section III briefly presents 

the structure of the IT2FLC. In Section IV, the problem 

statement and the mathematical model of the IT2FLC 

controlled inverted pendulum system are presented. Section 

V presents the RCQEA algorithm briefly. The proposed 

RCQCSA algorithm for IT2FLC optimization is explained 

in Section VI. In Section VII, some simulation results are 

demonstrated and discussed comparatively. Conclusions are 

drawn in the final section. 

 

II. RELATED WORKS 

Numerous methods such as the genetic algorithm [25], 

[26], neural networks [27], particle swarm optimization 

(PSO) [28], [29] harmony search algorithm [30], imperialist 

competitive algorithm [31], RCQEA [32]–[36], firefly 

algorithm and galactic swarm optimization [37], bee colony 

algorithm [38], slime mould algorithm [39], and shark smell 

optimization [40] have been used in IT2FLC optimization to 

improve its behaviour on the system. 

As an optimization algorithm, CLONALG has been used 

to solve different types of optimization problems [41]–[43]. 

There are many studies for FLC optimization with 

CLONALG, such as in [44], [45].  

There are many studies on RCQEA to improve it [46]–

[48], or create hybrid evolutionary algorithms [49]–[52]. 

The authors in [41] changed the qubit rotation magnitude of 

the algorithm with a constant magnitude. The authors in [53] 

replaced the quantum rotation gate by a like-approximation 

operator. In [54], a better way to determine rotation angle 

has been proposed, in addition to using real qubits instead of 

binary qubits. The authors in [55] proposed PSO based 

quantum evolutionary algorithm by changing the strategy of 

updating the rotation angle. The authors in [56] used a 

different method for the magnitude of the QRG rotation 

angle. The RCQEA implementation method to optimize the 

FLC in the literature and shortcomings [32]–[36] is 

presented below. 

In [32]–[36], the whole domain of inputs and outputs in 

IT2FLC is divided into equal-sized intervals and MFs are 

generated in these intervals. The rules of IT2FLC should 

also be optimized for the system, which is controlled by 

IT2FLC designed with MFs generated at these intervals, to 

reach equilibrium quickly. Because, if the inputs of the 

system are not in the range, where MFs representing the 

linguistic terms in IT2FLCs rules that bring the system to 

equilibrium the fastest are generated, these rules cannot be 

processed, and the system cannot reach equilibrium quickly. 

In [32]–[36], RCQEA was applied on the genes that are 

formed by using IT2FLC rules. MFs are generated and 

encoded in chromosomes according to the determined 

intervals of MFs mentioned in the antecedents and 

consequents of the rules in IT2FLC. The cost of a 

chromosome is evaluated by designing the MFs of the 

IT2FLC by using the values that stored in the genes of the 

corresponding chromosome and getting the response of 

controlled system. However, this strategy is not effective. 

Because if the MFs, generated according to the linguistic 

terms mentioned in the antecedents and consequents of the 

rules, belong to the same linguistic terms, the MFs generated 

later will overwhelm the first generated MF while 

evaluating the cost of the chromosome. Namely, IT2FLC is 

designed by using the post-generated MFs belonging to the 

same linguistic terms. Therefore, although the algorithm 

generates a more useful MF for IT2FLC with crossover and 

mutation operators than a MF belonging to the same 

linguistic term, this useful MF is ignored during the 

evaluation process of the chromosome if it is not the last 

generated MF belonging to the same linguistic term. 

In [32]–[36], gaussian MFs are used in IT2FLC to be 

optimized. The point of the Gaussian MF having the 
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maximum degree of membership is always the midpoint of 

the MF. Since MFs in the system can be generated between 

the intervals determined for them, Gaussian-type MFs that 

will bring the system to equilibrium in the fastest way, may 

not be generated in all cases. 

In summary, the main contributions of this study are as 

follows: 

1. The QRG of the RCQEA algorithm is improved by 

modifying the rotation angle determination strategy. The 

rotation angle determined in the original version of QRG 

[23], [24] can be aimless by reaching values of large 

magnitudes in some cases of alpha and beta values of the 

allele, while it should be maximum π/2 as detailed in [47], 

[48]. We propose a different rotation angle determination 

strategy to solve this problem and accelerate the 

convergence speed of the algorithm. We also compare the 

effect of our QRG and the QRG proposed in [47] on the 

algorithm. 

2. In this study, one MF is generated for each linguistic 

term in the IT2FLC in the ranges where they could be 

generated and encoded into chromosomes. Therefore, the 

overriding problem is solved. 

3. In this study, we propose the RCQCSA, which we 

created by improving the mutation and quantum rotation 

strategy used in the RCQEA algorithm for the 

optimization of IT2FLC MFs and basing the algorithm on 

the principles of clonal selection, as a contribution to the 

literature. Although the same initial population is used for 

RCQEA and RCQCSA in IT2FLC optimization and there 

is no crossover operation in RCQCSA, RCQCSA 

performs better and converges faster than RCQEA. 

4. In this study, skewed Gaussian MFs are generated in 

their corresponding regions. Due to this type of MFs, 

each input in the range in which it is generated can be 

defined by a skewed Gaussian MF with a maximum 

membership degree. 

5. In this study, the regions where IT2FLC MFs are 

generated are determined by a different strategy. 

Therefore, only the MFs of IT2FLC are optimized 

without the rules of IT2FLC and the system can reach 

equilibrium quickly. 

III. A BRIEF STRUCTURE OF IT2FLC 

IT2FLC contains at least one interval type-2 fuzzy set 

(IT2FS), which is a special case of type-2 FSs. IT2FLC 

reduces the computational complexity of the general type-2 

FLC [3], [57]–[60]. An IT2FS X  is characterized by its MF 

( , )
X

x u  and as expressed in (1), where x is called as the 

“primary variable” and it has domain 
X

D  for IT2FSs 

 
[0, 1]

( , ) / ( , ).
xX

Xx D u J
X x u x u

  
    (1) 

The double integral sign denotes the union over all 

admissible x and u. Jx denotes the primary membership of x. 

An IT2FS is bounded from above and below by two type-1 

FSs, namely, upper MF (UMF) and lower MF (LMF). A 

Gaussian-type-2 MF is shown in Fig. 1. The bounded region 

between UMF and LMF is called “footprint of uncertainty” 

(FOU) [57].  

An IT2FLC consists of five components, called 

“fuzzifier”, “interference engine”, “KB” which contain the 

rule base and database, “type reducer”, and “defuzzifier” as 

shown in Fig. 2 [61]. The rule base consists of N fuzzy rules 

expressed as IF-THEN linguistic statements. Fuzzy rules 

determine the relationships between the inputs and outputs 

of the IT2FLC. For the system having k inputs and l outputs, 

fuzzy rules can be created as in (2) 

 

1 1

1 1

: ... ,

... 1, ..., .

n n n

k k

n n

l l

R IF x is X and x is X then

y is Y and y is Y n N  (2) 

Fuzzifier block computes the membership interval of each 

ix 
 on each 1

nX  as ( ), ( ) ,n n
i i

' '

i iX X
x x  

 
 

1, 2, ..., , 1, 2, ..., .i k n N   Inference block calculates the 

rule firing interval of the nth rule as in (3) by using (4) and 

(5): 

 ( ) , , 1, 2, ..., ,n n nF x' f f n N     (3) 

 
1

1( ) ... ( ) ,n n
k

n ' '

kX X
f x x    

 
 (4) 

 
1

1( ) ... ( ) .n n
k

n ' '

kX X
f x x    

 
 (5) 

 
Fig. 1.  An interval Gaussian-type-2 MF. 

 
Fig. 2.  Schematic diagram of IT2FLC. 

The type reducer (TR) block is unique for type-2 FLC and 

converts IT2FLC to type-1 FLC. There are various TR 

methods in the literature. The most commonly used TR 

method is center of sets defined as in (6), where yl and yr are 

defined in (7) and (8): 
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
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The defuzzification block computes crisp output values of 

IT2FLC as in (9) 

 .
2

l ry y
y


  (9) 

IV. APPLIED WORK 

The inverted pendulum system has been a popular test 

problem for classical and contemporary control techniques 

because of its being open loop unstable system with high 

non-linear system dynamics. Figure 3 shows the schematic 

diagram of the system which is formed from a cart, a pole, 

and a rail to define the position of the cart. The pole is 

hinged to the centre of the top surface of the cart and can 

rotate around the pivot in the vertical plane. The cart can 

move horizontally to the right or to the left on the rail. The 

system is unstable without control, i.e., the pendulum will 

fall over if the cart is not moved to balance it. Therefore, the 

system provides an opportunity to analyse the performance 

of control techniques for stabilizing the pole vertically. The 

architecture of IT2FLC optimization and IT2FLC controlled 

inverted pendulum system is shown in Fig. 4. Given that no 

friction exists, the dynamics of the inverted pendulum 

system are modelled by the non-linear differential equations 

as in (10) and (11): 

 

2

2

( ) { }
,

{4 / 3( ) ( ) }

c p p

c p p

m m gsin F m lw sin cos

m m m cos l

  




  


 
 (10) 

 

2

2

4 / 3{ }
.

{4 / 3( ) ( ) }

p p

c p p

F m lw sin m gsin cos
x

m m m cos

  



 


 
 (11) 

The variables, which are θ, w, x, v, denote the angle of 

the pendulum, its angular velocity, the position of the cart 

and its velocity, respectively. Parameters of the inverted 

pendulum system are assumed for the simulation as in Table 

I. They are not attached to a real or physical system. 

Basically, there are three types of structure of fuzzy logic 

controllers: fuzzy proportional derivative (PD) controller, 

fuzzy proportional integral (PI) controller, and fuzzy 

proportional integral derivative (PID) controller. The fuzzy 

PD controller generates the control signal from the error and 

changes the error rate. Fuzzy PI controller generates 

incremental control action from error and change rate in 

error. The fuzzy PID controller generates incremental 

control action from error, change in error, and acceleration 

of error. The fuzzy PID controller has three inputs, which 

will greatly expand the rule base and make the design more 

complicated. Although the fuzzy PI controller is more 

practical than the fuzzy PD controller, it has poor 

performance in system transient response. The fuzzy PD 

controller is simple in structure and easy to implement [62]. 

In [63], it is seen that the fuzzy PD controller performs 

better than the other types of controllers for an inverted 

pendulum system. Therefore, we use the fuzzy PD controller 

in this study. 

 
Fig. 3.  Schematic diagram of inverted pendulum system.  

 
Fig. 4.  The architecture of the model. 

TABLE I. PARAMETERS OF THE INVERTED PENDULUM SYSTEM. 

Symbol Value Unit Parameter Name 

mc 1.0 kg Mass of cart 

mp 0.1 kg Mass of pole 

l 0.5 m Length to pendulum center of mass 

F - N Force applied to cart 

θ 0.52 rad Pendulum angle from vertical. 

g 9.8 m/s2 Gravitational acceleration 

V. RCQEA ALGORITHM 

Based on the concepts and principles of quantum 

computing, QIEA has been a very strong competitor to 

classical evolutionary algorithms in optimization problems. 

QIEAs are more suitable for combinatorial optimization 

problems than numerical optimization problems [64], [65].  

RCQEA is proposed to solve global numerical 

optimization problems with continuous variables in [23], 

[24]. The main difference of the RCQEA from the QIEA is 

the construction of the chromosomes. The real-coded 

triploid chromosomes represented in (12) are used to keep 

the diversity of the solution 

 

1 2

1 2

1 2

...

... .

...

n

n

n

xx x

q   

  

 
 

  
  

 (12) 

Alleles of the chromosomes are composed of one 

component xi of variable vector X and probability 

amplitudes ( , )T

i i   of one qubit. The probability 

amplitudes satisfy the normalization condition defined in the 

(13), i = 1, 2, …, n where n is the length of the triploid 

chromosome 

 2 2 1.    (13) 

Here, 
2

ia  and 
2

i  denote the probability that the qubit 
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will be measured in the state 0  and 1 ,  respectively. 

Therefore, the total probability of the system being observed 

in either state 0  or 1  is 1. 

RCQEA uses Discrete Crossover (DC) repeatedly after a 

fixed number of generations. All the corresponding alleles 

of the randomly selected two chromosomes, namely parent 

chromosomes, are exchanged with 0.5 probability and two 

new individuals are formed. This operation ensures the 

diversity of the population. RCQEA uses CDMO that affects 

only one gene of the chromosome. The operator updates the 

randomly selected gene using Gaussian mutation as 

expressed in (14) where ,

t

i maxx  and ,

t

i minx  represent upper and 

lower bounds of the corresponding allele, respectively 

  1 2

, ,( ) 0, ( ) .t t t t t

i i i max i min jx x x x N      (14) 

The  20, ( )t

jN x  denotes the Gaussian distribution of 

mean 0 and variance 2( ) .t

j  This value is determined either 

2
t

i  or 
2

/ 5t

i  as stated in (15) 

 

2

2
2

, 0,

( )

, 1.
5

t

i

t
tj
i

r

r






 


 
 


 (15) 

If the new generated value exceeds the limits of the 

corresponding allele, it is limited to the upper and lower 

bounds of the corresponding allele using (16) 

 

1 1

, ,1

1 1

, ,

2 , ,

2 , .

t t

i max i i i maxt

i t t

i min i i i min

x x x x
x

x x x x

 



 

  
 

 

 (16) 

If the new generated solution is better than the old 

solution, the probability amplitudes are fixed; otherwise the 

probability amplitudes are updated by QRG as expressed in 

(17) and the rotation angle of QRG is determined as in (18): 

 
1

1

cos( ) sin( )
,

sin( ) cos( )

t tt t
i ii i

t tt t
i ii i

  

  





      
           

 (17) 

 
0( ) .

t

t t t i

i i i t

i

sgn exp


   
 

 
   

 
 (18) 

VI. METHODOLOGY 

In this section, we introduce the basic principle of 

RCQCSA, which we adapted from RCQEA [23], [24] and 

CLONALG [20], and the IT2FLC design process using 

RCQCSA. RCQCSA is based on the clonal selection 

principles and is inspired by quantum computing techniques. 

Algorithm 1 shows the pseudo-code of the RCQCSA. 
 

Algorithm 1. Real-Coded Quantum Clonal Selection Algorithm.  

 Input: antibodies, nGenerations, nSelection, 

nReplaces, probAmplitudes 

 Output: bestAffinity, antibodies 

1 begin 

2  affinities ← calcAffinities(antibodies); 

3  for iter = 1 to nGenerations do 

4   selectedAntibodies ← select(antibodies, 

affinities, nSelection); 

5   clones ← clone(selectedAntibodies, affinities); 

6   clones ← CDMO(clones, affinities); 

7   probAmplitudes ← QRG(clones, affinities); 

8   cloneAffinities ← calcAffinities(clones); 

9   update(antibodies, affinities, clones, 

cloneAffinities, nReplaces); 

10  end 

11  bestAffinity ← getBestAffinity(antibodies); 

12 end 

 

Since IT2FLC used in this study is type of fuzzy PD 

controller, it has two inputs and one output as Error (E), 

Error-Derivative (DE), and Force (F), respectively. The 

linguistic terms for these inputs and outputs are defined as in 

Table II. Here, LN, MN, Z, MP, and LP denote “Large 

Negative”, “Medium Negative”, “Zero”, “Medium 

Positive”, and “Large Positive”, respectively. The total 

number of MFs to be optimized is 15. The fuzzy rules that 

map inputs and outputs are shown in Table III. 

TABLE II. LINGUISTIC TERMS. 

E DE F 

LN LN LN 

MN MN MN 

Z Z Z 

MP MP MP 

LP LP LP 

TABLE III. FUZZY RULE MATRIX FOR IT2FLC. 

F 
DE 

LN MN Z MP LP 

E 

LN LN LN LN MN Z 

MN LN MN MN Z MP 

Z MN MN Z MP MP 

MP MN Z MP MP LP 

LP Z MP LP LP LP 

 

The first step in designing optimized MFs is to determine 

the input and output ranges of MFs. In [32]–[36], the 

domain of the inputs and the outputs of IT2FLC are divided 

into equal intervals and MFs are generated in these intervals. 

However, this method is not effective. In this way, the 

linguistic terms of IT2FLC can only be defined by MFs 

whose boundaries are formed in their corresponding 

intervals. In this case, MFs for linguistic terms that will 

bring the system to equilibrium faster against the actual 

inputs of the system cannot be generated in the region where 

they should be. For this reason, we create two IT2FSs 

named “MinFSs” and “MaxFSs” to define the ranges of the 

MFs. The MFs are generated between the ranges of the 

corresponding MFs defined in the domains of each input and 

output of these two IT2FSs. Figures 5 and 6 show the MFs 

of input “E” in the “MinFSs” and “MaxFSs” as an example, 

respectively. Similarly, other IT2FSs are created to define 

the MFs boundaries of other inputs and outputs in IT2FLC. 

We encode the MFs generated in their corresponding ranges 

into the triploid chromosomes. Thus, it is aimed at 

generating continued MFs in the whole domain of inputs or 

outputs of the IT2FLC. 

In [32]–[36], MFs are generated in their corresponding 

intervals and encoded in triploid chromosomes for all 
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linguistic terms mentioned in all IT2FLC rules. However, in 

an IT2FLC, a linguistic term defined by MFs can be used in 

more than one rule. In this case, multiple MFs are generated 

for the same linguistic term and encoded in the triploid 

chromosome. This causes the last generated MF for the 

same linguistic term to be taken into account, and the others 

are ignored when evaluating the affinity of this triploid 

chromosome. In later generations of the algorithm, RCQEA 

can generate a more effective MF for the performance of 

IT2FLC by mutation and crossover operations for the same 

linguistic term, but similarly, the last generated MF 

overwhelms all of the other MFs for the same linguistic term 

when evaluating the chromosome. Therefore, in this study, 

instead of encoding all MFs generated by inference from all 

linguistic terms mentioned in all the rules, one MF is 

generated and encoded in the triploid chromosomes for each 

linguistic term of IT2FLC. In this way, the algorithm runs 

more effectively for IT2FLC optimization. 

 
Fig. 5.  The MFs of input “E” in the “MinFSs” IT2FSs. 

 
Fig. 6.  The MFs of input “E” in the “MaxFSs” IT2FSs. 

In [32]–[36], the input and output domains in IT2FLC are 

divided into equal-sized regions and Gaussian-type MFs are 

generated as shown in Fig. 1 for linguistic terms in these 

areas, as explained above. Unfortunately, in a continuous 

IT2FSs created with these Gaussian-type MFs generated in 

their corresponding intervals, the regions of the peak points 

of the MFs that have maximum membership degree can only 

be in limited areas. Since the Gaussian MF is symmetrical, 

when the mean value of the Gaussian-type MF to be created 

is determined at points outside the middle of the region 

reserved for it, the boundaries of the MF may exceed the 

range allocated to it and even the boundaries of other MFs 

around it. In this case, a possible more effective point for 

IT2FLC in the interval may not have a chance to be the 

mean value of Gaussian-type MF. Therefore, in this study, a 

skewed Gaussian function, namely Gauss2mf as in Fig. 7 is 

used for the membership functions. In this way, the most 

effective point for the IT2FLC can be the mean variable of 

the left- or right-skewed Gaussian MF and the MF does not 

exceed the limits allocated to it. 

 
Fig. 7.  An interval left skewed distribution type-2 MF. 

A. Encoding 

To optimize the MFs with RCQCSA, it is necessary to 

encode all the generated MFs into real-coded triploid 

chromosomes. In this study, there are 15 MFs in IT2FLC to 

control the inverted pendulum. To encode each generated 

MF to the triploid chromosome, the center point of the MF 

m, the width of the upper left MF 1 ,U  the width of the 

lower left MF 1 ,L  the width of the upper right MF 2 ,U  

and the width of the lower right MF 2L  are used. Each 

triploid chromosome contains a pair of probability 

amplitudes of one qubit. In this study, 50 real-coded triploid 

chromosomes are generated for both RCQEA and RCQCSA 

to optimize IT2FLC. The coding scheme is shown in Table 

IV. The pole angle of the inverted pendulum system is used 

in the evaluation process of a chromosome. The fitness 

function in (19) is used to evaluate the performance of a 

chromosome by decoding it to the IT2FLC and getting the 

pole angle as the response of the inverted pendulum system 

 
200

1

( ) .
t

F t


  (19) 

Here, the simulation step size is determined as 0.01 and 

the system is simulated in 5 seconds. 

TABLE IV. CHROMOSOME ENCODING SCHEMA. 

1m  11U  11L  12U  12L  MF-1 

2m  21U  21L  22U  22L  MF-2 

      

15m  151U  151L  152U  152L  MF-15 

B. Discrete Crossover 

Since the proposed RCQCSA is based on clonal selection 

9
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principles, this algorithm does not use the discrete crossover 

operator. In the optimization of IT2FLC with RCQEA, 

unlike the studies in [32]–[36], if the continuity of the MFs 

in the domain is not ensured after the crossover process, the 

boundaries of MFs are rearranged using (20) and (21): 

 
1 ( ),U left left leftMin r Max Min      (20) 

 
2 ( ).U right right rightMin r Max Min      (21) 

C. Mutation 

In [32]–[36], mutation operations are performed on 

randomly selected genes that represent all MFs of linguistic 

terms in a rule from a randomly selected chromosome. The 

mean value of a Gaussian-type MF to be mutated is 

determined by using (14) and (15). The MF boundaries in 

the mutated gene are determined using (22) 

 

1 1

1

( ), ( ) / 2,

( ), .

t t

t

t

r Max m if m Max Min
W

r m Min otherwise

 



    
 

 

 (22) 

If the new IT2FLC designed with these mutated MFs is 

more effective than the old IT2FLC, the probability 

amplitudes are fixed; otherwise the probability amplitudes 

are updated by QRG as expressed in (17) and the rotation 

angle is defined in (18). 

In this study, mutation operations are performed on 

randomly selected genes that represent a generated MF from 

a randomly selected chromosome. The right and left 

boundaries of the upper and lower MFs to be mutated are 

determined using (20) and (21). 

The mean value of a skewed Gaussian-type MF to be 

mutated is determined by using (14) and (15) between this 

left and right boundaries. There may be other MFs to the 

right or left of the mutated MF in the domain to which the 

mutated MF belongs. In this case, the right and left upper 

MF boundaries of the mutated MF are revised again using 

(20) and (21) according to the boundaries of other MFs and 

the continuity of the MFs is ensured unlike previous studies. 

If the continuity of the MFs is not ensured, the fuzzification 

block cannot produce crisp output values for each input 

value in the domain to which the MFs belong. 

D. Qrg 

As briefly explained in Section IV, in case of generating a 

worse solution after the mutation operation of the RCQEA 

algorithm, quantum rotation is performed on the qubit with 

the QRG specified in (17). The rotation angle of QRG is 

determined as in (18). Figure 8 shows how this rotation 

should be for a state of a qubit. The purpose of the state of a 

qubit rotation operation, as explained in [23], [24], is to 

decrease t

i  gradually and to increase t

i  gradually, and 

accordingly, to realize “Fine Search” in the neighborhood of 

the current solution and to realize “Coarse Search” in the 

whole solution space as the generation number of the 

algorithm increases. 

Unfortunately, in some cases of probability amplitudes 

the rotation angle used to rotate the state of a qubit, 

determined by (18), reaches high magnitudes. As stated in 

[47], as an example, if the probability amplitudes are 

0.01   and 0.99995   (satisfying (13)), (18) produces 

a value of high magnitude for a rotation angle in excess of 

2.0e7, while it can be / 2  at maximum. This causes the 

qubit to be rotated meaninglessly and makes it difficult for 

RCQEA to find better solutions. As the main contribution of 

this study, we propose a different rotation angle 

determination strategy as in (23)–(26) to solve this problem: 

 
( ( ) 1

( ),
2 2 2

t t

t t ti i

i i i

sgn
A mod sgn

   
  

    
     

   
(23) 

 
2( ( ) 1) 2( ( ) 1)

,
2 2 2

t t t t

i i i isgn sgn
B

       
   

  
 (24) 

 
( ( ) 1)

( ),
2 2

t t

t t ti i

i i i

sgn
C mod sgn

  
  

    
   

  
 (25) 

  ( )
( )

( ) .
4 /( )

t t
i isgnt t t

i i i

A B C min
sgn

max min

 
  

    
   

 
 (26) 

Here, it is taken into account that the sign of the product 

of the probability amplitudes of the qubit state can be equal 

to either (-1), 0 or 1. A, B, and C specified in (23)–(25) 

produce a non-zero value when the sign of the product of the 

probability amplitudes is equal to (-1), 0, and 1, 

respectively. 

 
Fig. 8.  Expended rotation of a qubits state. 

The rotation angle is normalized between the max and 

min values specified in radians. Therefore, the state of qubits 

rotates with a larger angle if it is closer to the vertical axis 

than others. By using this proposed rotation angle 

determination technique, the state of the qubit rotates as 

desired in all cases, and RCQEA and the RCQCSA 

proposed in this study to optimize IT2FLC run more 

effectively. 

VII. EXPERIMENTAL RESULTS 

In this study, simulations are performed in 

MATLAB/SIMULINK environment. The performance 

analysis of the two algorithms is carried out in our study, 

where we propose the RCQCSA algorithm based on the 

clonal selection principles, together with the changes we 

made in the mutation, crossover operators, and QRG of the 

RCQEA algorithm existing in the literature for the IT2FLC 

optimization. To observe the effect of our modifications on 
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the IT2FLC optimization, 4 different analyses are obtained 

as before and after the modifications in both algorithms. To 

clear the confusion, the algorithms are named “RCQEA”, 

“RCQCSA”, “RCQEA” (Modified Crossover, Mutation and 

QRG) and “RCQCSA” (Modified Mutation and QRG).  

In the inverted pendulum stabilization problem, the task 

of the controller is to vertically stabilize the inverted 

pendulum that is standing with a random pole angle at 

initial. Figures 9 and 10 show, respectively, the angle 

change of the pole and the position change of the cart to 

which the pole is hinged in the inverted pendulum system 

which is controlled by the IT2FLC that formed from the best 

solutions of the RCQEA, RCQCSA, RCQEA (Modified 

Crossover, Mutation and QRG), and RCQCSA (Modified 

Mutation and QRG) algorithms. According to these results, 

RCQEA (Modified Crossover, Mutation and QRG) and 

RCQCSA ((Modified Mutation and QRG) algorithms for 

IT2FLC optimization find the same final solution that brings 

the pendulum to the vertical position earlier and keeps it 

fixed on the vertical axis, and changes the position of the 

cart less. The angular velocity values of the pole may be 

large because the angle of the inverted pendulum changes 

rapidly, but the optimized IT2FLC can compensate for it. 

 
Fig. 9.  Performance comparison on change of pole angles in inverted 

pendulum system controlled with IT2FLC that is optimized separately by 

RCQEA, RCQCSA, RCQEA (Modified Crossover and Mutation Gates) 

and RCQCSA (Modified Mutation Gate). 

  
Fig. 10.  Performance comparison on change of position in inverted 

pendulum system controlled with IT2FLC that is optimized separately by 

RCQEA, RCQCSA, RCQEA (Modified Crossover and Mutation Gates) 

and RCQCSA (Modified Mutation Gate). 

Figure 11 shows the cost versus generation of IT2FLC 

which is designed by using the best solutions of the 

algorithms in the inverted pendulum system. According to 

Fig. 11, the proposed RCQCSA (Modified Mutation and 

QRG) for IT2FLC optimization finds the optimal solution in 

fewer generations, thus the convergence speed of the 

RCQEA algorithm in the literature is accelerated. It is also 

seen in Figs. 9–11 that the best solutions found by RCQEA 

(Modified Crossover, Mutation and QRG) and RCQCSA 

(Modified Mutation and QRG) in the latest generation are 

the same.  

 
Fig. 11.  Cost comparison of IT2FLCs optimized by RCQEA, RCQCSA, 

RCQEA (Modified Crossover and Mutation Gates) and RCQCSA 

(Modified Mutation Gate) algorithms on stabilizing the inverted pendulum 

system. 

Figures 12–14 show the optimized continued MFs for 

“E”, “DE”, and “F”, respectively. As can be seen in Fig. 12, 

MF for the linguistic term “LP” has a mean value of 0.52, 

which is the initial pole angle of the inverted pendulum 

system. Thus, the stability of the inverted pendulum system 

is ensured by optimizing the MFs without optimizing the 

rules of IT2FLC. 

 
Fig. 12.  Optimized MFs for the input “E”. 

 
Fig. 13.  Optimized MFs for the input “DE”. 
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Fig. 14.  Optimized MFs for the output “F”. 

Table V shows the integral absolute error (IAE) and 

settling time of the angle response of the system controlled 

by IT2FLC that is optimized with algorithms with different 

rotation angle determination strategies in QRG. The qubit is 

rotated /100,  / 250,  / 20 / 20pi rand pi   step size in 

[21], [47], and [56], respectively. According to the table, our 

proposed rotation angle update strategy in QRG of the 

algorithm allows the algorithm to find the appropriate 

solutions in the solution space. The minimum IAE and the 

settling time of the system’s angle response show that the 

optimization algorithms using proposed QRG and modified 

mutation and crossover converge faster than others. 

TABLE V. SYSTEM RESPONSE WITH DIFFERENT OPTIMIZATION 

ALGORITHMS USING DIFFERENT QUANTUM ROTATION GATES. 

QRG Algorithm IAE (rad) 
Settling 

Time (s) 

Rotation angle 

determined in [21] 

RCQEA 1.368E + 3 1.10 

RCQCSA 1.29E + 3 1.04 

Rotation angle 

determined in [47] 

RCQEA 1.258E + 3 0.854 

RCQCSA 1.23E + 3 0.82 

Rotation angle 

determined in [56] 

RCQEA 1.178E + 3 0.70 

RCQCSA 1.162E + 3 0.682 

Our proposed rotation 

angle update strategy 

RCQEA 1.136E + 3 0.64 

RCQCSA 1.136E + 3 0.64 

VIII. CONCLUSIONS 

In this study, improvements are realized in the RCQEA 

algorithm existing in the literature. A different strategy is 

proposed to determine the rotation angle of the qubit by 

modifying the QRG of the algorithm. The RCQEA 

algorithm is tested on IT2FLC optimization by modifying its 

QRG, mutation and crossover gates. Additionally, in this 

study, the RCQCSA algorithm based on clonal selection 

principles using modified mutation and QRG operations is 

proposed for IT2FLC optimization. To observe the 

performance of IT2FLCs response, the inverted pendulum 

stabilization problem, which is quite popular in the 

literature, is chosen. In addition, the mistakes and 

deficiencies in the studies existing in the literature on 

IT2FLC optimization with the RCQEA algorithm are 

explained and solutions are produced. The results show that 

the RCQCSA algorithm using the modified and improved 

mutation gate and QRG has a faster convergence speed in 

IT2FLC optimization. In future studies, it is aimed to apply 

the proposed method to different optimization problems, 

such as function optimization or optimization of controller 

of a real inverted pendulum system. 
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