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1Abstract—Three main approaches on how audio signals can 

be used as input to a deep learning model are: extracting hand-

crafted features from audio signals, mapping audio signals into 

appropriate images such as spectrogram-like ones, and using 

directly raw audio signals. Among these approaches, the usage 

of spectrogram-like images represents a compromise regarding 

the bias enforced by the processing (seen in hand-crafted 

features) and computational demands (seen in raw audio 

signals). When any of the spectrogram-like images is used as a 

deep learning model input, then different techniques for image 

processing become available and can be implemented. They 

include techniques for assessing the image similarity, 

implementing image matching, and image recognition. The 

topic of this paper is similarity of spectrogram-like images 

obtained from DC motor sounds. In that respect, relevant 

measures of image similarity are first reviewed, and then one 

of them - the Pearson correlation coefficient - is applied for 

evaluating the similarity within the same class and between 

two classes of different spectrogram-like images. 

 

 Index Terms—DC motor sounds; Spectrogram-like images; 

Image similarity; Pearson correlation coefficient. 

I. INTRODUCTION - ASSESSING SIMILARITY OF IMAGES IN 

AN OBJECTIVE WAY 

Image quality, image comparison, and image matching 

have attracted a huge attention during previous several 

decades, and they have been used in various applications. In 

those related to registration and stereo pair matching, the 

images are aligned to obtain the highest similarity between 

them [1]. Visual tracking and robotic navigation have 

predefined target templates or features searched for in the 

current video frame, associating the best match location 

with the true target location. There are also applications 

where an image is retrieved from a large database by finding 

the best match to a given pencil sketch. In some recognition 

applications, predefined templates are compared with the 

extracted content of images. 

A time-consuming and costly, but reliable way to assess 
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image quality is to perform visual experiments under 

controlled conditions, in which observers grade which 

image provides better quality [2]. An easier solution is to 

use an objective measure (in literature usually denoted as a 

metric) capable of quantifying the image quality or 

similarity between images. For this purpose, hundreds of 

algorithms and measures have been developed [3]. 

Unfortunately, there is no current standard on which 

objective measure(s) to use for such an application. Besides, 

there is no single similarity measure that works well for all 

tasks, but instead the measures to be used depend on the 

application.  

Image similarity measures have played a very important 

role in image quality assessment (IQA). Here, one of the 

aims these measures should accomplish is to have as large a 

correlation as possible with subjective quality evaluations, 

i.e., to quantify the strength of the perceptual similarity (or 

difference) between the test and the reference images. IQA 

measures are divided into three groups: full-reference (FR), 

no-reference (NR), and reduced-reference (RR) measures 

[3], [4]. Among them, the NR measures are the most 

desirable, although their universality and correlation with 

subjective opinions given as mean opinion scores (MOS) or 

differential MOS (DMOS) values are typically significantly 

lower compared to FR measures [4]. 

Image similarity measures could also be divided into 

similarity-based measures (Pearson correlation, Spearman 

correlation, Kendall’s Tau, Cosine similarity, and Jaccard 

similarity) and distance-based measures (Euclidean distance 

(ED) and Manhattan distance) [5]. The basic region-based 

image similarity measures are divided into two groups [1]: 

ED-based and correlation-based measures, where the latter 

ones provide superior performance in many cases, but they 

are more computationally demanding. The correlation 

coefficient and correlation could be used to solve the 

classification problems [6], [7], as well as for the 

recognition of radio transmission systems [8]. Correlation is 

also useful for compression of the speech signal by applying 

the delta modulation technique [9]. In the field of detection 

and classification, different signal processing techniques are 

deployed to obtain the features and other useful information 
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(MFCC, DCT, FFT) [6]. It is worth noting that some of the 

previously mentioned measures (such as zero-mean 

normalized cross-correlation (ZNCC) and median NCC) are 

not suitable for matching the scaled or rotated images. This 

is why rotation- and scaling-invariant correlation measures 

are proposed to deal with this limitation. 

Many of the image similarity measures [10] do not take 

into account the spatial relationship between different pixels 

of an image. This limitation can cause unwanted results of 

image matching, e.g., images that look not similar to a 

human observer may have a measure of high similarity [1]. 

It is even more important, especially in the case of using 

spectrogram-like images, to emphasize one more limitation 

related to the fact that gradual deformation of the image may 

exhibit abrupt changes in the similarity measure. 

The “classical” IQA measures are pixel-based methods, 

such as mean square error (MSE) or peak signal-to-noise 

ratio (PSNR). The introduction of the universal image 

quality index (UQI) can be considered a start for the 

development of modern visual quality measures [11]. This is 

followed by further improvement seen in measures such as 

the widely known structural similarity index (SSIM) 

implemented also as a multi-scale version (MS-SSIM) [11]. 

The SSIM index (designed as an improvement of traditional 

methods, such as MSE and PSNR) is one of the most 

popular FR measures in the image processing society [12]. 

The SSIM index has been used for various purposes such as 

image quality assessment, image enhancement, and image 

recognition, as well as a basis for some other similarity-

based measures that led to a further increase in the 

correlations between objective quality scores and subjective 

MOS or DMOS values [11]. 

Image similarity measures are used in various data 

science techniques. Thus, classification of new data objects 

can be done by applying the similarity approach to k-nearest 

neighbours. Another example is the use of ED in 

unsupervised learning, more precisely in k-means as a 

clustering method that computes the distance between the 

centroids of the cluster and its assigned data points [7]. 

In addition to IQA, similarity measures have also played 

an important role in image recognition. Here, it is necessary 

to find the similarity between two images, i.e., between a 

test image and its equivalent training database image. 

Several image recognition methods have been reported in 

the literature, including principal component analysis (PCA) 

and subspace linear discriminant analysis (LDA) [13]. In 

general, image recognition methods can be categorized as 

holistic, feature-based, and hybrid methods [13]. Image 

recognition can be applied in controlled (where the imaging 

conditions are fixed for both the trainee and probe images) 

and uncontrolled environments.  

In the rest of this article, two image similarity measures 

are first described, and their main properties are presented. 

One of these measures, the Pearson correlation coefficient 

(PCC), is then applied to analyse the image similarity within 

the same class (intra-class) and image similarity between the 

classes (inter-class) of various spectrogram-like images. 

Based on the results, relevant conclusions on that topic are 

drawn. 

II. IMAGE SIMILARITY MEASURES 

Suppose that two non-negative images (either continuous 

or discrete) X and Y of the same size P  R whose similarity 

should be assessed are represented as X = {xii = 1, 2, , 

N} and Y = {yii = 1, 2, , N}, where i is the sample index 

and N = P  R is the number of image samples (pixels). To 

compare two types of image similarity measures, a distance-

based measure (ED) and a similarity-based measure (PCC) 

are presented below. 

A. Euclidean Distance (ED) 

The ED, which is typically described as the length of the 

straight line between the two given points [14], can be 

applied to quantify the distance between two points in 

Euclidean space and is used mainly when the data to be 

compared are continuous in nature. On the other hand, ED is 

not used very often in the context of natural language 

processing applications compared to some other measures 

such as cosine and Jaccard similarity [7]. 

The ED can get values between 0 and ,N F  where F 

denotes the maximum value of xi, that is, yi (typically the 

maximum gray-level value, e.g., 255 for regular 8-bit 

images). A smaller distance indicates a better match 

between the compared images. The absolute distance 

depends on the size of the image. As in the case with all 

pixel-wise measures, the ED may be large for small 

deformations (e.g., shift of an image by one pixel), since the 

spatial connections between the pixels are not concerned 

[1]. In addition, the ED is sensitive to changes in noise and 

brightness [1]. Since the ED is not scale-invariant, scaling 

the data prior to computing this measure is recommended. 

Another property of ED is that it multiplies the effect of 

redundant information in the dataset [7]. 

A normalized version of the ED measure can also be 

applied and is called the “image Euclidean distance” 

(IMED) [14], [15]. Here, a smaller deformation leads to a 

smaller change in the distance. The IMED takes into 

account the spatial relationships between the pixels and is 

robust to small image deformations and perturbations. It is 

interesting that IMED can easily be embedded into other 

high- and medium-level matching procedures. The 

mentioned properties allow the IMED measure to be 

appropriate for image recognition and visual tracking 

applications [1].  

B. Pearson Correlation Coefficient 

The degree of probability that a linear relationship (both 

strength and direction) exists between two measured 

quantities (images in this case) is obtained by applying a 

relevant correlation method. More than a century ago (in 

1895), Karl Pearson defined the Pearson product-moment 

correlation coefficient - the first formal correlation measure 

that provides the degree of correlation between two 

quantities (e.g., images) [13]. The calculation of this 

coefficient for monochrome digital images ρ, which is also 

often denoted by r, is given by 
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where σXY is the covariance between X and Y given as 

       ,XY E XY E X E Y    (2) 

here E is the expectation, σX and σY are the standard 

deviations of X and Y: 

     
22 ,X E X E X    (3) 

     
22 .Y E Y E Y    (4) 

It should be noted that the covariance σXY is always 

smaller than the product of the standard deviations σX and 

σY. 

The PCC can also be represented as 
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where xi is the intensity of the i-th pixel in image X, yi is the 

intensity of the i-th pixel in image Y, xm is the mean 

intensity of image X, and ym is the mean intensity of image 

Y. In the case where xm = ym = 0, the PCC becomes 

normalized cross correlation (NCC). 

PCC has values in the range from -1 to +1, whereby the 

value r = 1 indicates that two compared images are 

absolutely identical, r = 0 indicates that they are completely 

uncorrelated, and the value r = -1 shows that the images are 

completely anti-correlated. On the one hand, the PCC is 

invariant to constant brightness changes, but, on the other 

hand, it is not defined for constant intensity images (it 

shows close to one correlation between approximately white 

and black images) [1]. In some applications, such as 

tracking, only positive correlation is of interest, and this is 

why max (0, r) is used as the similarity measure [1]. 

Some of the main benefits of the PCC as a dimensionless 

index can be summarized as the following [13]: 

 It condenses the comparison of two 2-D images down 

to a single scalar value r;  

 It is invariant to linear transformations of variables x 

and y, which means that r is insensitive (within limits) to 

uniform variations in brightness or contrast in an image 

[16]. On the other hand, limitations of the PCC are [13], 

[16]: a) computational demands limiting its usefulness for 

image registration; b) extreme sensitivity to the image 

skewing, pincushioning, and vignetting that inevitably 

occur in imaging systems; c) undefined calculation due to 

the division by zero - if one of the test images has 

constant, uniform intensity. 

PCC, also known as coefficient of correlation (CoC) [13], 

has been widely used in statistical analysis, pattern 

recognition, and image processing [6], whereby in image 

processing it is used to compare two images for image 

registration purposes, disparity measurement, etc. 

It is of interest to see the performance of the PCC 

compared to some other image similarity measures. Thus, it 

is stated in [3] that PCC is superior to SSIM index for image 

similarity analysis and is faster to calculate. This means that 

the PCC determines the similarity and dissimilarity of 

images more precisely than the SSIM index. Moreover, 

based on experimental demonstration, PCC is stated to be 

better than the SSIM index regarding coincidence with 

subjective MOS image estimates [3]. Furthermore, the PCC 

is connected to the Euclidean metric, but it is non-linearly 

related to this metric [3]. The better performance of PCC 

compared to SSIM index is also reported in [13] where it is 

stated that PCC has a high overall recognition rate and a low 

rejection rate compared to SSIM. In addition, it is concluded 

that, under normal lightning conditions, the recognition 

accuracy of PCC when used with and without a discrete 

wavelet transform on the rotated test images gives the best 

results compared to SSIM, PCA, and LDA. 

In many image processing applications, images have 

different rotation, orientation, illumination, contrast, etc. As 

a consequence of these differences, the values of PCC, but 

also other image similarity measures, such as SSIM, can be 

changed depending on a particular change in an image. To 

overcome this problem and increase the recognition 

accuracy, the input test image can be pre-processed. 

However, this is not the case in the spectrogram-like images 

obtained from raw audio signals. If the duration and 

sampling frequency of raw audio signals are the same, 

which is typically the case or can easily be fulfilled by pre-

processing, the spectrogram-like images will be perfectly 

aligned with each other - there will be no difference in the 

mentioned parameters (rotation, orientation, illumination, 

contrast, etc.). 

III. METHOD OF ANALYSIS 

The audio signals of DC motors are classified in two 

classes: OK motors (without failure or malfunction) of type 

A and direction of rotation 1 belong to class 1 and NOK 

motors (with certain failures/malfunctions) of type A and 

direction of rotation 1 belong to class 2. Class 1 contains 

281 signals, while the class 2 contains 387 signals. The 

audio signals of DC motors are used for calculating various 

spectrogram-like images: lin-power spectrogram, mel- 

spectrogram, gammatonegram, constant Q transform (CQT) 

power spectrogram, short-term Fourier transform (STFT) 

chromagram, CQT chromagram and tempogram. First, the 

audio signals are pre-processing by extracting 5 s of useful 

signal [17], [18]. Each audio signal is then transformed into 

defined spectrogram-like images applying the mapping 

relevant for every particular image, with the aim of 

exploiting the maturity of the image technology. Thus, the 

STFT yielding complex values as a result are used for some 

of the images. The f-th component of the discrete Fourier 

transform (DFT) of the t-th frame of signal xn is calculated 

as 

      
21
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where wk represents a window function, e.g., Hamming or 

Blackman, which is used to enforce continuity and 

periodicity at the edge of frames. In practice, the shift or hop 

size between consecutive frames is typically smaller than 
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the frame size, allowing smoother STFT and introducing 

statistical dependencies between frames [17]. A spectrogram 

is generated from the STFT results given as a matrix, where 

each column is the DFT result of a particular signal frame. 

More details on the mapping of audio signals to 

spectrogram-like images can be found in [17]. 

Further, the obtained images in the form of matrices are 

converted into arrays by concatenating the columns. These 

arrays representing numerical parameters of the concrete 

audio signal are used for the analysis of similarity among 

the spectrogram-like images within the same class (intra-

class) and between the classes 1 and 2 (inter-class). This is 

done by calculating the PCC for each combination (pair) of 

a particular image (its array) and all other images of the 

same type belonging to the same class (intra-class 

similarity) and all other images belonging to another class 

(inter-class similarity). The numerical results obtained for 

the PCC are processed to extract the statistical quantities - 

mean, minimum, maximum, median, and standard deviation 

(STD) used for the analysis. 

IV. PEARSON CORRELATION COEFFICIENT AS A SIMILARITY 

MEASURE OF DIFFERENT SPECTROGRAM-LIKE IMAGES 

The lin-power spectrogram is considered here as a 

reference since it is a full-resolution representation in the 

time-frequency domain of a raw audio signal. Other 

spectrogram-like images are compared with the reference 

image with respect to the PCC and statistical quantities 

calculated from the obtained PCC. Only the mean value of 

the PCC within the class and between classes does not 

provide enough information to make relevant conclusions, 

instead other statistical quantities should be taken into 

account, too. 

The statistical quantities of the PCC calculated within the 

same class (intra-class) for the mentioned spectrogram-like 

images are given in Table I for OK motors (class 1) and in 

Table II for NOK motors (class 2). The mean values among 

image types range from 0.124 for the STFT chromagram to 

0.999 for the tempogram. The mean value depends on the 

fact that the PCC can have both positive and negative 

values. Thus, for some images, a minimum value of the 

PCC is positive, meaning that in this set of values there is 

not a single negative coefficient. On the other hand, the 

existence of the negative correlation coefficient reduces the 

mean value of this parameter, which can be overcome by 

taking the maximum of (0, PCC). 

Among the statistical quantities of the PCC for the 

spectrogram-like images summarized in Table I, the closest 

results to the reference image are obtained for the mel and 

CQT power spectrogram. The mean and median correlation 

coefficient for the gammatonegram have slightly larger 

values, and the correlation can be negative. The mean and 

median values for two types of chromagrams are smaller, 

and there are negative correlation values, also. The results 

for tempogram are very specific, since the range of values of 

correlation coefficient is very small, from 0.949 to 1. 

A situation similar to the one described above for the OK 

motors (class 1) exists in the NOK motors (class 2), as 

shown in Table II. The main difference in comparison to the 

OK motors is that the mean and median values of the PCC 

are somewhat lower in the NOK motors in all spectrogram-

like images except for the STFT chromagram. Such 

behavior can be expected, since NOK motors are less 

consistent in overall characteristics, as the failure or 

malfunction present in these motors can be of different 

nature. 

Table III summarizes the statistical quantities of the PCC 

between OK and NOK motors (inter-class comparison) 

obtained for the observed spectrogram-like images. Here, 

the mean and median values of the PCC are between the 

values for OK motors (class 1) and NOK motors (class 2) 

for the lin-power spectrogram. The mean and median values 

of the PCC between OK and NOK motors obtained from the 

mel-spectrogram and CQT power spectrogram are smaller 

than the corresponding ones between the OK motors, and 

similar to those between the NOK motors. The distance 

between the intra-class and inter-class similarity in regard to 

mean and median values is the greatest in the lin-power 

spectrogram and mel-spectrogram; then the results for CQT 

power spectrogram follow.  

TABLE I. PCCS BETWEEN OK MOTORS - CLASS 1 (INTRA-CLASS 

COMPARISON). 

Spectrogram 
Statistical quantity 

Mean Min. Max. Median STD 

Lin-power 0.620 0.170 1.0 0.622 0.136 

Mel 0.697 0.046 1.0 0.705 0.071 

Gammatonegram 0.881 -0.395 1.0 0.898 0.105 

CQT power 0.658 0.314 1.0 0.660 0.063 

STFT 

chromagram 
0.124 -0.510 1.0 0.117 0.177 

CQT 

chromagram 
0.382 -0.328 1.0 0.401 0.279 

Tempogram 0.999 0.949 1.0 0.999 0.004 

TABLE II. PCCS BETWEEN NOK MOTORS - CLASS 2 (INTRA-

CLASS COMPARISON). 

Spectrogram 
Statistical quantity 

Mean Min. Max. Median STD 

Lin-power 0.549 0.142 1.0 0.534 0.125 

Mel 0.656 -0.187 1.0 0.674 0.098 

Gammatonegram 0.857 -0.368 1.0 0.890 0.141 

CQT power 0.639 0.347 1.0 0.633 0.071 

STFT 

chromagram 
0.165 -0.630 1.0 0.165 0.191 

CQT 

chromagram 
0.213 -0.454 1.0 0.178 0.301 

Tempogram 0.998 0.850 1.0 0.999 0.009 

TABLE III. PCCS BETWEEN OK AND NOK MOTORS (INTER-CLASS 

COMPARISON). 

Spectrogram 
Statistical quantity 

Mean Min. Max. Median STD 

Lin-power 0.574 0.114 0.950 0.563 0.132 

Mel 0.659 -0.221 0.894 0.671 0.082 

Gammatonegram 0.861 -0.402 0.965 0.885 0.121 

CQT power 0.639 0.318 0.892 0.639 0.064 

STFT 

chromagram 
0.122 -0.679 0.836 0.119 0.175 

CQT 

chromagram 
0.259 -0.434 0.946 0.238 0.296 

Tempogram 0.998 0.854 1.000 0.999 0.007 
 

The PCCs for all analyzed spectrograms are presented as 

heat maps in Table IV.  
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TABLE IV. HEAT MAPS ILLUSTRATING THE PCCS FOR ALL ANALYZED SPECTROGRAMS. 
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First, we should note that all maps illustrating image 

similarity within the same class (intra-class) are symmetric 

in relation to the main diagonal, whereby the main diagonal 

represents the self-correlation, i.e., PCC equal to 1, and is 

therefore the brightest line in the heat map. 

The presented PCC values for the lin-power spectrogram 

show a higher correlation within class 1 (OK motors) than 

between classes (1 and 2). It can also be concluded that the 

correlation between the classes is slightly higher than the 

correlation within class 2 (NOK motors), as explained 

above. 

In spite of the smaller size of the mel-spectrogram images 

(it has 96 mel bands, i.e., 96 points on the y axis in 

comparison to about 40000 points in the lin-power 

spectrogram), all their heat maps are similar to the ones of 

the lin-power spectrogram. The correlation values are here 

slightly higher, and therefore the color in the heat maps is a 

bit brighter. Apart from a similar trend in these two types of 

images, each of them shows some unique correlations for 

some particular sound samples (audio signals from 

particular DC motors). In particular, some sound samples 

have darker horizontal and vertical lines in the heat maps for 

the mel-spectrogram. This is an indication that these 

samples (motors) should be analyzed in more detail. 

Gammatonegrams provide even brighter heat maps than 

the mel-spectrogram, indicating higher values of correlation. 

The relative difference between the intra-class and inter-

class correlation is slightly smaller than in the previous two 

spectrograms. Darker horizontal and vertical lines or strips 

in the heat maps exist here as well, and they are even more 

obvious than in the mel-spectrogram. 

The pattern of the heat maps for the CQT power 

spectrogram is similar to the one for the mel-spectrogram. It 

is interesting to note that the correlation for samples of OK 

motors with numbers above 100 (lower right quadrant of the 

heat map image) is slightly higher, which is visible by 

brighter colors in the heat map. The pattern (distributions of 

correlation values among the sound samples located along 

both x and y axis) for the inter-class difference generated 

from the CQT spectrograms and mel-spectrograms is quite 

similar. 

The heat maps obtained from both chromagrams (STFT 

and CQT) have a PCC smaller than in the previous 

spectrogram-like images, as a darker color covers the 

majority of the heat maps. In addition, the distinction 

between intra-class and inter-class similarity can hardly be 

noticed. It is interesting to mention that only in the STFT 

chromagrams the correlation is higher between NOK motors 

than between OK motors, while the correlation between OK 

and NOK motors is similar to the correlation between OK 

motors. These results show that the resolution and 

processing applied for obtaining the chromagrams are not 

adequate in this particular use-case to keep a significant 

difference between the classes while keeping a significant 

similarity within the same class. 

The heat maps for the tempogram are opposite to those 

for the chromagrams, since the correlation has significantly 

higher values in tempograms, as denoted by bright colors in 

the heat maps. Unfortunately, the range of correlation 

coefficient values is too small and there is not a clear 

distinction between intra-class and inter-class similarity.  

V. ORDERING OF SAMPLES BASED ON IMAGE SIMILARITY 

The previously presented results show that the difference 

of the PCC values among the sound samples (images) 

within the same class (even within the class 1 - OK motors) 

is rather large in most of the applied spectrogram-like 

images. Thus the PCC values for the lin-power spectrogram 

within the class 1 ranges from 0.170 to 1, see Table I and 

heat map given in the first row and column of Table IV. 

This situation is analyzed here in more detail using only the 

class 1 (OK motors) and lin-power spectrograms. 

First, the average PCC for each DC motor (lin-power 

spectrogram image) of class 1 is calculated across all motors 

of that class. The motors are then rearranged according to 

the average PCC value in a decreasing order (see Fig. 1). 

The largest average PCC is about 0.73, while the smallest 

average PCC is about 0.36. Although the PCC value 

decreases rather continuously, the PCC curve can be split in 

two parts, up to the 202nd motor (denoted by the vertical line 

in Fig. 1) and above that motor number. These two parts 

have different slopes, where the slope of the first part is 

smaller than that of the second part. 

 
Fig. 1.  Average (within the class) PCCs for DC motors of class 1 (OK 

motors), i.e., its lin-power spectrograms rearranged in decreasing order of 

PCC values. 

The PCC values of two particular DC motors, having the 

largest (denoted as motor L) and smallest (denoted as motor 

S) average PCC within class 1, are presented in Fig. 2(a) 

before rearranging and in Fig. 2(b) after rearranging in a 

decreasing order of the average PCC. There are certain 

fluctuations in both PCC curves in Fig. 2(a), but there is 

also a prominent trend that the PCCs are considerably 

greater for the motor L than for the motor S. The PCC curve 

for motor L can also be split in two parts as in Fig. 1. As 

described above, the first part has a smaller slope than the 

second part. On the other hand, the PCC curve for motor S 

does not show this behavior. Instead, the PCC values along 

this curve become slightly larger, and also fluctuations of 

the PCC curve become somewhat larger from a certain point 

until the last motor. This point coincides with the limit 

between two parts of the PCC curve for motor L, also 

denoted by the vertical line in Fig. 2(b). The positions of the 

vertical lines in Fig. 1 and Fig. 2(b) representing a limit 

between two parts of the PCC curves are either exactly the 
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same or very close to each other. At the same time, this limit 

divides class 1 into two sub-classes (1.1 and 1.2), where the 

first one contains the motors with larger correlation 

coefficients. 

 

 
Fig. 2.  PCCs for OK motor L (with the largest average PCC) and S (with 

the smallest average PCC) within class 1 (a) before rearranging and (b) 

after rearranging. 

The previously described behavior can be seen in the heat 

map of the PCC values for the rearranged motors, too, see 

Fig. 3. The motor with the largest average correlation is 

located in the upper left corner, and correlation decreases 

going further away from this corner, which is denoted by a 

darker color. The introduced limit between two sub-classes 

is denoted here by both horizontal and vertical lines. The 

first sub-class (1.1) containing the motors up to the one with 

number 202 has larger PCC values. 

 
Fig. 3.  PCCs within class 1 (OK motors) rearranged in decreasing order of 

average PCC values. 

To show the difference between OK motor L (with the 

largest average PCC) and S (with the smallest average PCC) 

within class 1, their lin-power spectrograms are shown in 

Fig. 4. 

 
(a) 

 
(b) 

Fig. 4.  Lin-power spectrograms for (a) OK motor L (with the largest 

average PCC) and (b) S (with the smallest average PCC) within class 1. 

Statistical quantities of the PCCs calculated within the 

newly created sub-classes and between the sub-classes are 

given in Table V. Comparing these results with those 

summarized in Table I, it can be seen that the mean, 

minimal, and median PCCs within sub-class 1.1 are 

considerably greater than the corresponding ones within 

class 1. On the other hand, quite the opposite can be said for 

these values within the sub-class 1.2, where they are 

significantly smaller. 

TABLE V. PCCs BETWEEN OK MOTORS IN SUB-CLASSES 1.1 AND 

1.2, AS WELL AS BETWEEN THESE SUB-CLASSES FOR LIN-

POWER SPECTROGRAM. 

Sub-class 
Statistical quantity 

Mean Min. Max. Median STD 

Sub-class 1 0.721 0.459 1.0 0.715 0.085 

Sub-class 2 0.474 0.170 1.0 0.462 0.108 

Between sub-

classes 1 and 2 
0.516 0.269 0.857 0.516 0.078 

VI. CONCLUSIONS 

Based on the results obtained related to the evaluation of 

the image similarity, the applied spectrogram-like images 

can be divided into two groups, where the first includes the 

lin-power spectrogram, mel-spectrogram, gammatonegram, 

and CQT power spectrogram, while the second group 

includes STFT and CQT chromagrams and tempogram. The 

images from the first group give larger PCC values between 

the OK motors (intra-class similarity for class 1) and smaller 

PCC between the NOK motors (intra-class similarity for 

class 2) as well as between OK and NOK motors (inter-class 

similarity). This is not the case for the images from the 

second group, where it is hard to see a significant distance 

between the intra-class and inter-class similarity. This is 

why the images from the first group are considered here as a 

better option for using them as input to a deep learning 

model. 

Among the images from the first group, the lin-power 
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spectrogram represents an image with full resolution on the 

y axis, meaning that the size of an image is significantly 

larger than in the other three images from this group. 

Consequently, the preference for usage as a deep learning 

model input is given to the other three images of the first 

group. When they are compared, the greatest relative 

distance between the intra-class and inter-class similarity is 

obtained for the mel-spectrogram. This image is used in a 

number of other studies, including the IEEE AASP 

challenge on the detection and classification of acoustic 

scenes and events - DCASE 2021 [19]. 

One more important conclusion is that the distance 

between the intra-class and inter-class similarity is rather 

small, showing that the sound samples and images obtained 

from them are rather similar even when they belong to 

different classes. In addition, in each particular class used in 

this article (class of OK motors or class of NOK motors), 

there are sound samples having a stronger correlation (larger 

correlation coefficient) and those having a lower correlation 

coefficient within the same class. This property is further 

explored here by using the PCCs of the lin-power 

spectrogram to rearrange (order) the motors belonging to the 

class 1 - OK motors. Thus, the image having the largest 

similarity with other images within the same class (the 

largest average PCC) is placed at the topmost position, the 

next image according to the similarity at one position below, 

and so on. Apart from ordering the motors according to 

decreasing image similarity (correlation coefficient), it 

becomes possible to form a sub-class of class 1 containing 

motors with more similar lin-power spectrograms than it is 

the case within the whole class 1. 
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