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1Abstract—This paper proposed four optimization 

algorithms for mobile robot sensor networks that improve the 

kinematics drive motion in a reference map environment. The 

standard procedure followed in mobile robot sensor 

measurements considers a problem statement for relating the 

sensor measurements with a reference map. The initial path 

shows that the existing methods lack consideration of more 

sensor points without considering the boundary constraints 

and obstacles. The probabilistic path map can be rearranged 

according to the current location to improve the better drive 

motion, as well as to obey the fundamental kinematics 

equations. he obstacle crossing led to the development of new 

algorithms. Implementation of schemes is achieved in different 

map environments, and the accuracy of results outperforms 

conventional methods by 84.21 % to 96.94 %. 

 

 Index Terms—Mobile robots; Sensor network; Shortest 

path; Optimization algorithm.  

I. INTRODUCTION 

The estimation of the path of mobile robot sensor 

networks is being analyzed for a wide range of applications, 

considering the wide range of parameters [1]–[3]. These 

parameters are greatly capable with the working 

environment and the boundaries with increasing size of 

obstacles. After the introduction of the autonomous concept 

with technological advancement in learning of new 

algorithms [4], [5], the measurement of the sensor parameter 

becomes simple. Application-based pathfinding and 

localization become complicated after handling a large 

amount of data in real time with variation in other sensor 

networks. The introduction of kinematics drive motion 

improves the evaluation of the path in random situations, 

which a mobile robot has never experienced [6]–[8]. The 

constructional features of the robot should match the 

environment, which reduce the constraint in the system 

capable of improving the sensor data measurements [9], 

[10]. Navigation architecture has gained attention in recent 

development of localization algorithms of existing sensor 

data units; however, path and obstacle clustering must be 

improved. The collection of more sensor measurement units 

reduces the computational error, but takes time to identify 

the localization regardless of the map environment [11]–
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[13]. Periodical matching of different sensor data is required 

to learn and improve the data [14], [15]. These uncertainties 

improved for path planning from existing literatures by the 

introduction of four different reinforcement algorithms are 

discussed in this work.  

 
(a) 

 
(b) 

Fig. 1.  Reference maps of mobile robot sensor measurements: reference 

occupancy maps (a) and (b). 

These algorithms are implemented in recent sensor 

networks, such as multiple energy harvesting sensors [15], 

Delaunay triangulation [16], Diophantine fuzzy graph [17], 

Objects with Complex Geometry [18], Partially Known 

Environments [19], Q-Learning [20], and Recursive fusion 

estimation [21]. As a result, the proposed algorithms adapt 

to these sensor networks with effective improvement. The 

organisation of this work starts with the background study 

and the identification of the research gap. In Section II, the 

Reinforcement Optimization Algorithm for 

Mobile Robot Sensor Networks Drive Motion 

Improvement 

Suryaprakash Shanmugasundaram*, Thirumoorthi Ponnusamy, Tamilarasu Viswanathan 

Department of Electrical and Electronics Engineering, Kumaraguru College of Technology,  

Coimbatore, 641049, India 

suryaprakash.vsm@gmail.com 

http://dx.doi.org/10.5755/j02.eie.30736 

13



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 4, 2022 

problem statement is detailed with a numerical model, 

followed by the algorithms proposed in Section III. The 

results and validation are discussed in Section IV. The 

limitations and future possibilities of this work are 

elaborated in Section V. 

II. PROBLEM STATEMENT OF MOBILE ROBOT SENSOR 

MEASUREMENTS 

The optimization algorithm is developed for a specific 

mobile robot identified from the sensor measurement values 

for the specific operating map environment. As a primary 

progress, the operating map environment should be 

developed for simulating the sensor values from the basic 

kinematics drive motion where the robot is operating with 

the specific velocity. Once the map is developed, the sensor 

reading decides the boundaries and validates for every 

measurement unit. The final path developed for the moving 

the object in the specified map is identified from the binary 

tenancy grid values. Many literatures proposed a new kind 

of map environment to control the mobile robot. The 

objective of this work is to develop an optimization 

algorithm for mobile robot sensor networks developing in a 

simple map without many constraints. Reference occupancy 

maps for performing the initial standardization for the 

mobile robot are developed as shown in Fig. 1. 
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Fig. 2.  Reference maps of the mobile robot with initial path: reference 

occupancy maps (a) and (b). 

The mobile robot kinematic moving model develops for 

specific input and the moving rate by considering the 

expected moving velocity and maximum operating velocity 

in fundamental moving controller. The sensor operating 

ranges for the specified mobile robot decided by the 

controller and the operational boundary decided by the 

unknown map are considered random values as mentioned 

in (1) 
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 (1) 

Path P(xi, yi) opted for the mobile robot within the 

bounded map (xb, yb) values are chosen randomly from the 

initial sensor values. The result of the connecting points 

form a path to decide the preliminary control values to 

operate the sensor redefines (1). The implementation of the 

path inside the map agreed from the state of mobile robot 

with starting and ending values should match with the path. 

The navigation of initial starting values fixing the sensor 

values matches with boundary values consider for the 

unidentified map and forms a path as shown in Fig. 2(a) and 

2(b). These map environments are considered a common 

testing case for any mobile robot. The basic control of 

mobile robot identified for unknown map from the sensor 

values is illustrated in Fig. 3. 
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Fig. 3.  Flowchart of measurement of the mobile robot sensor for a given 

map. 

The input of a mobile robot moving given for the 

specified map for collecting the sensor measurements 

initiates with control period of the specific path decided 

from the moving velocity and maximum operating velocity. 

Considering the initial position to the end position of each 

path, the mobile robot simulated in the specified time 

control the mobile robot wheels for every map feature as 

shown in the flowchart. 

The probabilistic path map should be created to perform 

the free robot moving space with adjustable velocity speed 

among locations decided from (1). Path calculation from 

these spots to avoid the boundaries that are present due to 

the robot’s size is dynamically changing. The robot 

operating circumference from the obstructions is presented 

on the probabilistic path map. Reference from the binary 

tenancy from the random nodes is decided from the 

simulation times from the standard properties path distance 

and update values. The feasible route for probabilistic path 

is updated for every point created for more complicated 

boundaries to ensure the existing flowchart noted the sensor 
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measurement.  

III. PROPOSED REINFORCEMENT LEARNING OPTIMIZATION 

FOR MOBILE ROBOT SENSOR NETWORKS 

Introduction of obstacles in the mobile robot path from 

sensor readings has an impact on linear movement and 

control movement. Selection of reference from the 

literatures [11]–[13] bounded values to create a probabilistic 

path map from the proposed proximal policy optimization, 

trust region policy optimization, policy gradient 

reinforcement learning optimization, and deep “Q” network 

reinforcement learning optimization. 

Algorithm 1 introduces an improved path for the 

identified trajectory from every sampling path to do the 

proper repetition. It identifies the path the overall estimated 

computed from (1) and expressed as  

 ' '( , )
( , ) .

( , )

b b

io io o

o o

x y
P x y P x

x y

 
  

 
 (2) 

The inclusion of obstacles of x’
o within the boundary 

decided from the (xo, yo) of the path changed into a new 

variation in the path P’(xo, yo). Sampling of 

( , ) / ( , )b b o oP x y P x y  in every point to identify the loss 

functions makes impact on square error for the better 

distributions from the proximal policy optimization. 

Algorithm 1. Proposed proximal policy optimization for mobile robot 

sensor networks. 

1. Initialize the starting point of unknown map (x1, y1) 

2. Randomize the values of map within boundary 

3. Initialize path P(xi, yi) 

4. Identify the navigation randomize path points from (1) 

5. for every point do 

6. for next point (1, 1) ... (b, b) do 

7. Sample time “t” for particular “i” 

8. if t ∈ b then 

9. for every limits 1, 2, ..., t do 

10. Increment for a particular position 

11. Generate P(xb, yb) 

12. Move limit for next random position for i + 1 

13. end for 

14. else if t ∈ O then 

15. for every limit 1, 2, ..., O do 

16. Increment for a next obstacles position 

17. Identify the limit P(xb/xo) 

18. Compute the P(xb/xo) from new x’o 

19. Varied for x to y position 

20. end for 

21. else if t ∈ b then 

22. for every limit 1, 2, ..., b do 

23. Increment for a next obstacles position 

24. Identify the limit P(yb/yo) 

25. Compute the P(yb/yo) from new y’o 

26. end for 

27. end if 

28. Compute obstacles from new random position 

29. Varied for x to b position 

30. end for 

31. else if t ∈ b then 

32. end for 

33. Optimize P’(xb, yb) 

34. end for 

35. Path 1 to next path 

36. P1
’(xb, yb) 

37. P1
’(xb, yb) to P2

’(xb, yb) 

38. Complete rollout for all the path Pb
’(xo, yo) 

39. Update to next point for entire path from (2) 

40. end for 

Algorithm 2 selects a new optimization for choosing the 

path from the proposed trust region policy optimization for 

mobile robot sensor networks. It is identified from general 

modelling for every obstacle as  

 ' 'min ( , ) ( , ) ( , ) .
y

o o io io io ib ib
b x

t O

P x y x x y f x y


   (3) 

Minimization of the operating mobile robot path is 

determined from the multivariant parameters such as path 

position from the random position from the initiating 

obstacles rand(xo, yo). The new sensor measurement is 

computed for the preliminary values and incorporated into 

the new set of samples presented in the actual path. Trusted 

region is processed inside the boundary in a particular 

function f(xib, yib) to update sensor measurements. 

Algorithm 2. Proposed trust region policy optimization for mobile robot 

sensor networks. 

1. Initialize a boundary randomize position rand(x1,y1) 

2. Initialize the points of obstacles rand(xo, yo) 

3. Repeat for new sensor measurements 

4. Collect samples from the actual map from the path P(xb, yb) 

5. Train the robot for every boundary “b” using f(xib, yib). 

6. Repeat for new sensor measurements 

7. Collect fabricated map samples from boundaries “b” and obstacles 

“O” 

8. Update the minimize path using (3) 

9. Estimate the new path with P’(xo, yo) 

10. until the path reaches its end 

11. until the map difference from x’
io(xo, yo). 

 

The new fabricated map for the boundaries and obstacles 

learned from the data to minimize the path for all distributed 

from the gradient. The new estimation multiplied for the 

other path in (3) finds the map difference x’io(xo, yo). 

The two-dimensional path of a given map is identified 

from the policy gradient reinforcement learning of the 

policy gradient adapted from the obstacles and boundaries 

with a new group of solutions from the proper selection and 

developed as in existing literatures. Algorithm 3 

initialization starts with the mapping of obstacles considered 

at various random points for every fitness value available at 

random points. Compute the group of shortest paths to 

choose the velocity varied dynamically to choose the 

exponential values from the combination (O-b) selecting the 

tournament assortment. Reflect the computation to do the 

crossover for every sample within the random samples for 

the mutate obstacles. Algorithm 3 identifies the new path P’ 

from the computation of the new sample and updates with 

small samples computed with the tested policy gradient. 

Finally, the target sensor groups with the next production 

path and duplicates within the boundary values for all the 

small paths. 

Map environments are considered as variable obstacles 

and paths for every set to minimise the two-dimensional end 

points observed for every specified “Q” value. The initial 

global observation is chosen from the individual points for 

every trained value of learning for each map as specified in 

the Algorithm 4. 

The iteration of each path starts from the obstacles 

present in the map boundary, contemplating all the path 
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possibilities to check the possibilities that occur in the 

tournament for specified “Q” values. Random values ensure 

for the next state i + 1 of the bounded value computed from 

the discontinued from the previous state of (1) to modernize 

the value P’(xi, yi, O, b) to choose the path of computation 

that matches the boundary inside the obstacles. 

Algorithm 3. Proposed policy gradient reinforcement learning for mobile 

robot sensor networks. 

1. Initialize the mapping position and boundaries 

2. Initialize the position (x0,y0) 

3. Initialize obstacles inside the mapping for the possible paths 

4. Define number of obstacles in each path and random number points r 

∈ (O, b) 

5. for x = i, b do 

6. for obstacles P ∈ (O, b) do 

7. fitness, P = Evaluate(xi, yi, O, b) 

8. end for 

9. Rank the path based on fitness velocity 

10. Select the first grade path P ∈ (O, b) as chosen where exponential 

growth 

11. Select (O-b) combination from P’ to form Set “t” using tournament 

assortment with another path 

12. while |t| < (O-b) do 

13. Use crossover between a randomly sampled t ∈ P and O ∈ P’ and 

attach to P 

14. end while 

15. for every sample O ∈ P’ Set b do 

16. if random points < (b, O) then 

17. Mutate O 

18. end if 

19. end for 

20. P’ = Evaluate(xio, yio, b = O, t = i) 

21. Sample a random group of paths of “t” sample 

22. Compute P’(xoi, yoi) = f(xi + yi) + P(xob, yob) 

23. Update P’ by lessening the loss 

24. Inform (xoi, yoi) utilizing the tested policy gradient 

25. Soft fill in target sensor groups 

26. if production mod i + 1 = 0 then 

27. Duplicate the P’(xoi, yoi) value into the boundary value 

28. end if 

29. end for 

Algorithm 4. Proposed deep “Q” network reinforcement learning 

optimization for mobile robot sensor networks. 

1. initialize map with boundary values  

2. initialize random position inside the map limits 

3. initialize obstacles from the possible paths 

4. for i = 1 to starting points do 

5. sample actions P ∈ (O, b) with closed path 

6. accumulate possibilities P(xi, yi, O, b) in bounded values 

7. gather tournament assortment in “t” from “Q” values 

8. store “I” in (b, O) 

9. implement (x0b, y0b) and change to next state i + 1 

10. roll up recompense random values from bounded limit 

11. if part is finished then 

12. compute discounted rewards (x0t, y0t) from b 

13. estimate gradients from previous state of (1) 

14. modernize P’(xi, yi, O, b) with the projected gradient 

15. empty (O, b) 

16. end if 

17. if existing path ends then 

18. reset path 

19. end if 

20. place O = b 

21. end for 

IV. RESULTS AND DISCUSSION 

The implementation of the proposed optimization for 

mobile robot sensor networks completed in 

MATLAB/Simulink environment for two different maps is 

discussed in Section II. The complex map and ternary map 

environment is considered as the fundamental environment 

to achieve optimal operation.  

Figure 4 shows the optimized path identified by mobile 

robot sensor networks under 10 obstacles on a complex map 

using proposed methods.  

Tables I and II show the comparison of the improvement 

of accuracy in mobile robot sensor networks for different 

obstacles applying the proposed algorithm with the 

conventional method [2]–[5]. As the level increases, both 

complex map environments exhibit higher accuracy of 

96.94 % and 86.75 % for deep “Q” network and trust region 

policy method. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 4.  Optimized path identified by mobile robot sensor networks under 10 

obstacles in complex map using (a) proposed proximal policy optimization, 

(b) proposed trust region policy optimization, (c) proposed policy gradient 

reinforcement learning optimization, and (d) proposed deep “Q” network 

reinforcement learning optimization. 

TABLE I. COMPARISON OF ACCURACY IMPROVEMENT IN 

MOBILE ROBOT SENSOR NETWORKS FOR DIFFERENT 

OBSTACLES APPLYING PROPOSED ALGORITHM WITH 

CONVENTIONAL METHOD [2]–[5] UNDER COMPLEX MAP 

ENVIRONMENT. 

Map 

Level 
Proximal policy Trust region policy 

 
5 10 15 5 10 15 

1 84.97 92.02 94.77 83.19 86.62 88.2 

2 85.12 88.37 87.29 96.21 91.49 87.43 

3 88.47 83.58 88.89 86.98 96.3 86.5 

4 86.09 85.48 84.5 92.55 87.55 91.28 

5 92.82 92.59 86.75 89.06 86.76 95.36 

Map 

Level 
Policy gradient Deep “Q” network 

 5 10 15 5 10 15 

1 86.2 87.67 96.53 90.16 96.34 83.64 

2 94.81 90.95 92.34 86.84 93.63 90.94 

3 93.69 91.12 89.4 93.05 89.14 88.84 

4 89.86 87.02 95.99 94.52 83.4 86.5 

5 93.31 87.41 89.84 93.35 96.94 94.55 

TABLE II. COMPARISON OF ACCURACY IMPROVEMENT IN 

MOBILE ROBOT SENSOR NETWORKS FOR DIFFERENT 

OBSTACLES APPLYING PROPOSED ALGORITHM WITH 

CONVENTIONAL METHOD [2]–[5] UNDER TERNARY MAP 

ENVIRONMENT. 

Map 

Level 
Proximal policy Trust region policy 

 
5 10 15 5 10 15 

1 83.07 91.04 92.38 89.36 85.89 85.28 

2 90.7 93.54 89.1 95.92 91.8 93.63 

3 87.6 85.86 94.66 95.24 83.95 83.95 

4 91.85 83.07 90.9 92.77 88.28 85.15 

5 87.99 94.42 94.91 84.89 85.52 91.81 

Map 

Level 
Policy gradient Deep “Q” network 

 5 10 15 5 10 15 

1 85.61 86.58 86.78 93.76 89.78 90.98 

2 91.11 90.86 85.34 84.21 86.94 95.31 

3 83.6 90.61 95.19 93 87.9 91.49 

4 94.51 89.36 93.61 89.67 83.8 88.04 

5 84.08 84.25 93.96 91.22 92.27 84.41 

Similarly, the ternary map environment was implemented 

with 95.92 % of accuracy for trust region policy and 

84.21 % for policy gradient optimization. In [21], [22], the 

adaptability of sensor algorithms to any type of network is 

idealized to be 0 %. Table III presents the algorithm 

proposed implemented with various network types [16]–

[22] regardless of the map environment. The adaptability of 

the proposed algorithms varies from -10 % to 10 %, which 

shows their practical feasibility. 

TABLE III. IMPLEMENTING THE PROPOSED ALGORITHM WITH 

VARIOUS NETWORK TYPES [16]–[22] REGARDLESS OF THE 

MAP’S. 

Network 

Type 

Proxim

al 

policy 

Trust 

region 

policy 

Policy 

gradien

t 

Deep 

“Q” 

networ

k 

Adapt 

Method 

Multiple 

sensors [15] 
-8.77 -10.63 3.15 -3.29 

Policy 

gradient 

Delaunay 

triangulatio

n 

[16] 

9.68 4.94 -4.9 -4.06 
Policy 

gradient 

Diophantine 

fuzzy graph 

[17] 

8.06 4.08 9.07 7.17 
Proximal 

policy 

Objects with 

Complex 

Geometry 

[18] 

9.4 7.72 -1.26 -5.71 

Trust 

region 

policy 

Partially 

Known 

Environmen

ts 

[19] 

8.46 6.33 6.23 2.36 
Proximal 

policy 

Q-Learning 

[20] 
1.55 -4.81 10.76 6.89 

Deep 

“Q” 

network 

Recursive 

fusion 

estimation 

[21] 

-10.12 -10.52 9.88 -6.8 
Proximal 

policy 

V. CONCLUSIONS 

The four-reinforcement learning method is proposed for 

the mobile robot kinematic moving model from the moving 

velocity rate inside the sensor operating regions from the 

boundary limit. The standardized path planning method 

considers as a reference from literatures [11]–[13], which 

are clearly considered to be connecting points from sensor 

values. Probabilistic path map is created for the random 

nodes from the starting and end path of the boundary 

considering the obstacles. Randomization path for each 

obstacle identified from the proximal policy optimization, 

sample of minimize path among the small nodes computed 

from trust region policy optimization, policy gradient 

method improved the cross over chances of small paths 

from the chosen velocity, and the recompensing of random 

values of deep “Q” method shows individual uniqueness for 

learning. The accuracy improved from 96.94 % to 84.21 % 

than the conventional method proposed in the literature. In 

the future, the advantages of proposed optimization schemes 

can be implemented for other different environment maps 

considering a greater number of sensor data. 
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