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1Abstract—Accurate segmentation of retinal blood vessels 

can help ophthalmologists diagnose eye-related diseases such as 

diabetes and hypertension. The task of segmentation of the 

vessels comes with a number of challenges. Some of the 

challenges are due to haemorrhages and microaneurysms in 

fundus imaging, while others are due to the central vessel 

reflex and low contrast. Encoder-decoder networks have 

recently achieved excellent performance in retinal vascular 

segmentation at the trade-off of increased computational 

complexity. In this work, we use the Anam-Net model to 

accurately segment retinal vessels at a low computational cost. 

The Anam-Net model consists of a lightweight convolutional 

neural network (CNN) along with bottleneck layers in the 

encoder and decoder stages. Compared to the standard U-Net 

model and the R2U-Net model, the Anam-Net model has 6.9 

times and 10.9 times fewer parameters. We evaluated the 

Anam-Net model on three open-access datasets: DRIVE, 

STARE, and CHASE_DB. The results show that the Anam-Net 

model achieves better segmentation accuracy compared to 

several state-of-the-art methods. For the DRIVE, STARE, and 

CHASE DB datasets, the model achieved {sensitivity and 

accuracy} of {0.8601, 0.9660}, {0.8697, 0.9728}, and {0.8553, 

0.9746}, respectively. On the DRIVE, STARE, and 

CHASE_DB datasets, we also conduct cross-training 

experiments. The outcome of this experiment demonstrates the 

generalizability and robustness of the Anam-Net model. 

 

 Index Terms—Anam-Net; Deep learning; Data 

augmentation; Retinal vessel segmentation; Semantic 

segmentation. 

I. INTRODUCTION 

Partial and sometimes complete blindness is caused due 

to the longer duration of chronic eye diseases, including 

Glaucoma, diabetic retinopathy (DR), and cataracts [1]. 

These diseases slowly deteriorate different parts of the eye, 

such as retinal vessels, optic cup (OC), and optic disc (OD). 

Some people experience substantial effects of these chronic 

diseases mainly due to their ocular weakness or the severity 

of the chronic condition. It means that there should be easy 

access to monitor eye health regularly. 
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The easy and inexpensive availability of regular eye 

health monitoring procedures will enable us to make a 

timely diagnosis of the disease, which, in turn, will allow us 

to avoid the disease or at least delay its impact to a later 

stage in life. The manual procedures used by 

physicians/ophthalmologists for the diagnosis of these eye 

diseases are exhaustive and time-consuming, which 

sometimes also have difference due to inter- and intra-

observer variations. The development of automated methods 

for the detection of OC, OD, and retinal vessels is of prime 

importance for the prognosis and diagnosis of Glaucoma 

and DR [2], [3]. 

There are two types of glaucoma: closed-angle and open-

angle. The first type occurs when some parts of the iris of 

the eye block the flow of fluid, resulting in increased 

pressure in the eye. Ocular pain, redness of the eye, 

significant intraocular pressure, and partial vision loss are 

all symptoms of this kind of Glaucoma. On the other hand, 

in its second type, the flow of the fluid is not affected. 

Patients with this type of Glaucoma cannot feel or notice the 

symptoms until the disease has progressed to an advanced 

stage, at which point it is irreversible [4]. 

In manual procedures, the retinal vessels in the retinal 

fundus images are segmented by the optometrist and 

ophthalmologists, which is a tiring task and, at the same 

time, highly susceptible to doctor-to-doctor observation-

variation and may also attribute huge discrepancies due to 

trainer fatigue. As a result, manual segmentation approaches 

have an inherent limitation on the quality of the extracted 

data. On the other hand, diagnostics based on computer 

aided design (CAD) tools is very efficient and can be 

utilized with high accuracy for the automated diagnosis of 

chronic eye diseases in a timely manner. Additionally, these 

automated diagnostics systems based on CAD tools can be 

used for population-scale screening programs [5]. 

In retinal fundus images, semantic segmentation is used 

to detect OC, OD, and retinal vessels. Semantic 

segmentation is useful for recognizing these constituent 

parts of the eye, as well as other abnormalities that are 

needed to characterize chronic eye diseases such as 

Glaucoma [6], DR [1], [7], age-related macular 

degeneration (AMD) [8], vascular occlusions [9], and 
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chronic systemic hypoxemia [10]. 

With recent developments and progress in several fields, 

including high-performance computing (HPC), machine 

learning, deep learning, image processing, and machine 

vision, researchers and academicians have started to devise 

and explore them for problems in different domains of life. 

Specifically, several researchers devised deep learning 

models for pixel-wise semantic segmentation for the 

detection of OC, OD, and retinal vessels. Most of the 

developed methods so far characterize huge computational 

load in addition to attributing lower impact/accuracy 

without pre-processing. Although some of these previous 

explorations have achieved better accuracy, very little 

attention has been paid to the computational complexity of 

the developed model. This necessitates the development of 

lightweight deep learning models that have a suitable 

execution time during both training and testing. 

For the diagnosis of DR, retinal vascular segmentation in 

retinal fundus images must be precise and accurate. 

Maintaining a reasonable computational complexity for a 

deep learning (DL) model while aiming for higher accuracy 

is difficult due to several factors such as tortuosity, higher 

density, vessel shape, diameter, and the formation of various 

types of lesions such as microaneurysms, hard exudates, soft 

exudates, and cotton wool in acquired retinal images [11]. 

With the progression of chronic eye diseases, there are 

numerous other issues, such as vessel crossing, centreline 

reflex, vessel branching, and small vessel formation. 

Researchers must take equal consideration to each of the 

issues described above when developing machine learning 

and deep learning models for retinal vascular segmentation 

in retinal fundus images. The previously published 

convolutional neural network (CNN)-based models in the 

literature have a higher computational complexity; our goal 

in this paper is to investigate an alternative model for 

semantic segmentation of retinal fundus images that requires 

much less trainable parameters compared to the state-of-the-

art. The authors in [12] developed the Anam-Net model, 

which is based on the encoder-decoder architecture. They 

used Anam-Net for the classification of COVID-19 patients 

in chest computed tomography (CT) images.  

The underlined hypothesis is to investigate and explore a 

deep learning model, which is deep enough to achieve 

competitive evaluation metrics compared to best models 

from the state-of-the-art and at the same time is realizable 

using normal computing/embedded resources available at 

the forefront of any healthcare facility. The realization 

requirement of our hypothesis warrants exploring and 

developing a deep learning model, which attributes 

significantly lower trainable parameters and memory 

overhead.  

Hence, the focus of our work is not only on developing 

deep learning-based automated tool for vessel segmentation, 

but also to make such tool realizable on ordinary computer 

systems, which are usually available at forefront in 

healthcare facility.  

The motivation for this work is taken from Anam-Net, 

which we adapted for vessel detection in retinal fundus 

images. The fact that it has fewer hyperparameters (resulting 

in lower computing cost) while preserving competitive 

evaluation metrics is our primary rationale for adopting it in 

our study. These attributes make a significant difference 

when the overall goal is to use the developed model in real-

life scenarios in mobile healthcare or point of care in 

hospitals, where the heavy computating facility is not 

available. Hence, the attributes of being lightweight and 

having higher accuracy make the Anam-Net a better and 

more reliable option to be employed/used at the point of 

care or mobile health care facility for large-scale screening 

programs of the governments. 

To the best of our knowledge, this is the first attempt to 

apply Anam-Net for vessel segmentation in retinal fundus 

images. The contributions are provided below: 

 We used Anam-Net to segment retinal vessels and were 

able to achieve competitive results in terms of evaluation 

metrics while keeping the computational complexity to a 

minimum. 

 We chose three publicly available retinal image 

databases, STARE, DRIVE, and CHASE_DB, to evaluate 

the performance extensively and to compare the 

segmentation results to rivals from the state-of-the-art. 

 We conducted cross-training experiments on the 

DRIVE, STARE, and CHASE_DB datasets and obtained 

results that demonstrate the generalization ability and 

robustness of Anam-Net. 

The remaining manuscript is organized in the following 

way. The review of the literature for the segmentation of 

retinal vessels using machine learning and deep learning 

models is presented in Section II. The description and 

implementation details of the basic Anam-Net model are 

provided in Section III. The results and a detailed 

comparison of applying the Anam-Net model for retinal 

vessel segmentation are given in Section IV. Finally, 

Section V provides conclusions and suggestions for future 

work. 

II. RELATED WORKS 

Retinal vessel segmentation is an important task for 

diagnosing eye diseases, which could be done using manual 

and automated procedures. Recently, great interest has been 

shown in applying machine learning and deep learning 

models for accurate and precise segmentation of the retinal 

vessels. Accurate segmentation of the retinal vessels helps 

ophthalmologists reliably diagnose different chronic eye 

diseases such as Glaucoma and DR. Automated retinal 

vessel segmentation procedures can be divided into two 

categories, unsupervised and supervised. 

In the literature, different approaches have been adapted 

for retinal vessel segmentation, such as morphological, 

kernel-based, vessel tracking, multiscale, model-based, and 

thresholding [13]. The authors in [14] attempted to apply the 

kernel-based method to the segmentation of the retinal 

vessels, where they assumed that the width of the vessels 

remains constant with distance. This is not a realistic 

assumption, which limits the kernel-based method for real-

life implementation, since both the orientation and width of 

a retinal vessel are continuously changing. The vessel 

tracking procedures select a set of starting points to trace the 

ridges of vessels in images of the retinal fundus [15]. The 

limitation of the vessel tracking procedure is the user’s 
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intervention to follow the ending and starting points. In 

morphological methods, mathematical equations are used 

for segmentation of retinal vessels, where mainly top hat 

operators are applied [16]. The multi-scale detectors were 

adapted by the authors in [17] for the segmentation of 

retinal vessels at different orientations and scales. These 

procedures are efficient, but their performance is degraded 

for the case of thin vessels. The thresholding-based 

procedures were implemented by the authors in [18], 

sometimes leading to an unconnected vascular structure. 

Model-based approaches perform retinal vessel 

segmentation, where the basic assumption is to consider the 

vessels as flexible curves [19]. Model-based approaches are 

highly sensitive to contrast variations. The interested readers 

are referred to the extensive review work on unsupervised 

vessel segmentation performed by the authors in [20]. 

The authors in [21] developed a model based on a lattice 

neural network (LNN) for the segmentation of retinal 

vessels, where the feature extraction was applied as well as 

reduction. The results were compared to multilayer 

perceptron (MLP) and support vector machine (SVM) 

models. They achieved a dice score of 0.66 and 0.69 for the 

STARE and DRIVE databases. 

The authors in [22]–[24] used fully convolutional 

network (FCN)-based deep neural network (DNN) models 

for retinal vessel segmentation. However, in the case of 

[22], there were a large number of false-positive for fundus 

images having severe pathologies in the optic disc region. 

On the other hand, the authors in [23] achieved a better 

segmentation accuracy, but their computational complexity 

was higher. The authors in [24] also achieved better 

segmentation accuracy. However, the performance achieved 

for cross-training results was poor. Specifically, the model 

trained on the STARE database and tested on images from 

the DRIVE database produced lower sensitivity, which 

means lower generalization capability of the developed 

model. 

The authors in [25]–[27] developed and evaluated the 

different variations of the CNN-based model. The main 

limitation was the weight gap between the conditional 

random field (CRF) and CNN, which degraded the overall 

performance of the developed model. The authors in [28] 

developed a generative adversarial network (GAN)-based 

model, where they used a generator along with a patch-

based discriminator. The main limitation of the GAN-based 

models is higher sensitivity to tuning the hyperparameter, 

higher degree of overfitting, non-convergence, as well as 

generator gradient vanishing. Due to these different 

disadvantages, GAN-based models are not suitable for 

semantic pixel-wise segmentation of retinal fundus images. 

Recently, many researchers have targeted retinal vessel 

segmentation for eye disease classification by developing a 

different variant of the U-Net model. The authors in [29] 

developed a Recurrent Residual CNN named “R2U-Net 

model” for segmentation of retinal vessels. They obtained 

better dice scores for the images of the CHASE_DB and 

STARE databases. But they did not validate the 

generalization capability of their developed model based on 

the cross-database training and testing strategy. In another 

attempt, the authors in [30] developed a U-Net-based model, 

where they performed cross-database training and testing. 

However, they achieved lower sensitivity for both the case 

of cross-database training/testing and experiments 

performed on images of individual datasets. Furthermore, 

their model attributed a very high computational complexity 

based on the possession of 36M trainable parameters. 

According to [31], a model based on U-Net and 

deformable convolutional units was proposed. Their 

proposed model uses a patch size of 48×48 and replaces the 

original convolutional layer with a deformable 

convolutional block. The results indicate that their model 

achieved low sensitivity compared to several state-of-the-art 

methods. We noticed that other researchers attempted to 

segment retinal vessels using different variants of the U-Net 

model [32]–[39]. In most of these studies, the results 

indicate that breakage of the small retinal vessels occured in 

the binarization stage, which requires heavy post-processing 

operations. The heavy post-processing steps in addition to 

huge computational complexity of these models limits their 

capability from considering them for point of care 

deployment in the front end in hospital, which is the main 

focus of the current exploration. 

Due to the advancements in deep learning, medical image 

analysis is experiencing a paradigm shift [46]. Despite the 

rapid development and exploration of machine learning and 

deep learning models for retinal vessel segmentation, 

numerous problems remained unresolved, which warrant 

significant consideration for researchers working in the field 

of medical image segmentation. Some of the previous 

studies have given some preference to reduce the 

computational complexity of the model, but we think that 

there is still much room for improvement. Specifically, 

earlier explorations did not pay the due attention to handling 

the memory overhead. The larger memory overhead in 

addition to the significantly higher computational 

complexity of the DNN model limits their application from 

their deployment equipment for large-scale screening 

programs, which are possible only monitoring the 

population during their general check-ups at the point of 

care in the hospital. Additionally, most of the previous 

explorations avoided the cross-database training and testing 

experiment, due to which their generalization capability is 

limited. 

We aim to reduce the computational complexity of the 

deep learning model by reducing the number of trainable 

parameters. We attempt to reduce the memory overhead of 

our previously developed model by employing the concept 

of skip connections after completing max-pooling jobs to 

share its indices across the encoder and decoder stages [40]. 

The idea of introducing skip connections and sharing the 

max-pooling indices helped to improve feature map 

resolution, which not only reduced computational 

complexity, but also improved the various evaluation 

metrics. However, the total number of parameters achieved 

was more than 8 million, which could be further reduced by 

looking at current research into deep learning models in 

other areas of medical image segmentation. Table I lists the 

methodologies from the literature that we used to compare 

our segmentation results with. 
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TABLE I. LIST OF METHODS FOR COMPARISON. 

Reference Method 

Orlando, Prokofyeva, and Blaschko 

(2017) [22] 
Joint FCN-CRF 

Mo and Zhang (2017) [23] FCN with Deep Feature Fusion 

Oliveira, Pereira, and Silva (2018) 

[24] 

FCN with Stationary Wavelet 

Transform 

Zhou, Yu, Xu, Gu, and Yang 

(2017) [25] 

Feature Learning with Dense 

CRF 

Feng, Zhuo, Pan, and Tian (2020) 

[27] 
Cross-connected Network 

Abbas, Shakeel, Khurshid, and Taj 

(2019) [28] 
GAN 

Alom, Yakopcic, Hasan, Taha, and 

Asari (2019) [29] 
R2U-Net 

Yan, Yang, and Cheng (2018) [30] 
Joint-loss framework based on 

U-Net 

Jin, Meng, Pham, Chen, Wei, and 

Su (2019) [31] 
Deformable U-Net 

Wang, Zhao, and Yu (2021) [33] Nest U-Net and Patch-Learning 

Zhang, Zhang, and Xu (2021) [34] Pyramid U-Net 

Tang, Rui, Yan, Li, and Hu (2020) 

[35] 
ResWNet 

Lv, Ma, Li, and Liu (2020) [38] Attention U-Net 

Zhuang (2018) [39] Ladder-Net 

Khan, Alhussein, Aurangzeb, 

Arsalan, Naqvi, and Nawaz (2020) 

[40] 

RCED-Net 

Li, Feng, Xie, Liang, Zhang, and 

Wang (2016) [41] 
Cross-modality Approach 

Noh, Park, and Lee (2019) [42] SSANet 

Wu et al. (2019) [43] Vessel-Net 

Yang, Li, Guo, and Zhou (2021) 

[44] 
CNN + Cascade Forrest 

Uysal and Güraksin (2021) [45] Patch-based CNN 

III. MATERIALS AND METHODS 

In this section, first, the fundus images dataset will be 

discussed along with some pre-processing steps involved in 

preparing the images for the deep learning model. Next, we 

will present the Anam-Net architecture and, in the last, we 

will discuss the implementation details along with the 

evaluation metrics used to compare the Anam-Net with the 

state-of-the-art methods. 

A. Fundus Image Dataset 

The Anam-Net model was tested on three publicly 

available datasets: DRIVE [47], STARE [14], and 

CHASE_DB [48]. The DRIVE dataset is made up of 40 

fundus images with a resolution of 565×584 pixels that were 

collected as part of a diabetic retinopathy screening 

program. The 40 images were separated into two groups, 

each with 20 images: a training set and a test set. A total of 

20 fundus images with a resolution of 605×700 pixels make 

up the STARE dataset collection. The STARE dataset, 

unlike the DRIVE dataset, does not include separate training 

and test data. In this paper, we use a leave-one-out 

technique for the STARE dataset, in which the model is 

trained on n-1 samples and evaluated on the remaining one 

sample. There are 28 images in the CHASE_DB dataset, 

each with a resolution of 999×960 pixels. A total of 20 

images were used to train the network, and the remaining 8 

images being used for testing. 

The first observer’s manual annotations serve as ground 

truth for our evaluation metrics in all three datasets, which 

contain two manual segmentations of fundus pictures. 

Because the image size differs between fundus images in 

different datasets, we scaled the image to a resolution of 

576×576 pixels. We rescale the output probability map to 

the original size of the test image using bilinear 

interpolation. The segmentation performance of the Anam-

Net is evaluated in the original size of the test image, and 

thus ensures that the results are not skewed by scale 

variations. 

B. Image Pre-Processing 

Pre-processing is essential to suppress noise and improve 

contrast in the acquired retinal fundus images since they 

may have non-uniform brightness and intra- and inter-image 

contrast variations. In this work, we first convert the RGB 

fundus image to the lightness, channel A, channel B, (LAB) 

color scheme and apply contrast-limited adaptive histogram 

equalization (CLAHE) to the lightness channel. The 

improved L-channel is then combined with the original A 

and B channels. After that, the image is converted back to 

the RGB color space, from which the enhanced green 

channel is retrieved. To further enhance the vessel structure, 

gamma transformation is used as last pre-processing step. 

C. Anam-Net Architecture 

The encoder-decoder-based architecture and AD-Block 

have been combined to make a lightweight CNN-based 

model. The block diagram of the Anam-Net architecture is 

shown in Fig. 1. Like the U-Net model, it has a contracting 

path (encoder) and an expanding path (decoder). With a 

kernel size of 3 and a filter size of 64, the input fundus 

image is passed to the convolution layer. A 3×3 convolution 

is followed by batch normalization and a rectified linear unit 

(ReLU) layer in each convolution block. A max-pooling 

layer is incorporated after the convolution block to reduce 

the dimensionality of the feature by a factor of two. After 

that, the AD-block is used to learn robust features. The 

details of the AD-block are shown in Fig. 2. The AD-block 

comprises of 1×1 depth squeezing convolution, 3×3 feature 

extraction convolution, and 1×1 depth stretching 

convolution. 

Each encoder and decoder stage in the Anam-Net model 

has three AD-blocks. In the expansion path, before AD-

block, transpose convolution is applied to upsample the 

feature map to the desired resolution. At the decoder stage, 

the learnt attributes from the encoder are combined with the 

layers from the expansion path, enabling the network to 

learn at multiple levels. For more details on the Anam-Net 

model, please see the following article [12]. The layer-wise 

details of the Anam-Net model are shown in Table II. 

D. Implementation Details 

To train the model, we utilize the Keras deep learning 

package. With a learning rate of 0.001, a well-known Adam 

optimizer is utilized. The learning rate is reduced by a factor 

of 0.1 if the validation loss does not improve after 10 

epochs. With a batch size of 4, the model is trained for 150 

epochs. To avoid overfitting, we use validation loss as an 

early stopping criterion. We employ a log dice loss, which 

focuses on labels that are less accurate [49]. 
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Fig. 1.  Anam-Net architecture for the segmentation of retinal vessels. 

 
Fig. 2.  Architecture of the AD-Block. 

TABLE II. ARCHITECTURE DETAILS OF ANAM-NET MODEL. 

 Layer Label Size Feature Map Size Parameter Info 

Encoder 

1st Convolution Block EConv1 3×3×64 576×576×64 640 

1st Pooling Layer Pool-1 2×2 288×288×64  

1st AD-Block 

EAD1Conv1 1×1×16 288×288×16 1040 

EAD1Conv2 3×3×16 288×288×16 2320 

EAD1Conv3 1×1×64 288×288×64 1088 

2nd Convolution Block EConv2 3×3×128 288×288×128 73856 

2nd Pooling Layer Pool-2 2×2 144×144×128  

2nd AD-Block 

EAD2Conv1 1×1×32 144×144×32 4128 

EAD2Conv2 3×3×32 144×144×32 9248 

EAD2Conv3 1×1×128 144×144×128 4224 

3rd Convolution Block EConv3 3×3×256 144×144×256 295168 

3rd Pooling Layer Pool-3 2×2 72×72×256  

3rd AD-Block 

EAD3Conv1 1×1×64 72×72×64 16448 

EAD3Conv2 3×3×64 72×72×64 36928 

EAD3Conv3 1×1×256 72×72×256 16640 

4th Convolution Block Econv4 3×3×256 72×72×256 590080 

4th Pooling Layer Pool-4 2×2 36×36×256  

Decoder 

1st Transpose Convolution DTConv1 3×3×256 72×72×256 262400 

1st AD-Block 

DAD1Conv1 1×1×64 72×72×64 16448 

DAD1Conv2 3×3×64 72×72×64 36928 

DAD1Conv3 1×1×256 72×72×256 16640 

1st Concatenate Layer DConc1  72×72×512  

1st Conv. Block DConv1 3×3×256 72×72×256 1179904 

2nd Transpose Convolution DTConv2 3×3×256 144×144×256 262400 

2nd AD-Block 

DAD2Conv1 1×1×64 144×144×64 16448 

DAD2Conv2 3×3×64 144×144×64 36928 

DAD2Conv3 1×1×256 144×144×256 16640 

2nd Concatenate Layer DConc2  144×144×512  

2nd Conv. Block DConv2 3×3×256 144×144×256 1179904 

3rd Transpose Convolution DTConv3 3×3×128 288×288×128 131200 

3rd AD-Block 

DAD3Conv1 1×1×32 288×288×32 4128 

DAD3Conv2 3×3×32 288×288×32 9248 

DAD3Conv3 1×1×128 288×288×128 4224 

3rd Concatenate Layer DConc3  288×288×256  

3rd Conv. Block DConv3 3×3×128 288×288×128 295040 

4th Transpose Convolution DTConv4 3×3×64 576×576×64 32832 

4th Concatenate Layer DConc4  576×576×128  

4th Conv. Block DConv4 3×3×64 576×576×64 72792 

Final Conv. with Sigmoid Conv 1×1×1 576×576×1 65 
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There are only a few training images in each of the three 

datasets: 20 for DRIVE, 19 for STARE (leave-one-out 

technique), and 20 for the CHASE_DB. It is very difficult to 

train a deep learning model with such a short dataset and 

achieve acceptable segmentation accuracy. We use a variety 

of data augmentation techniques to improve the robustness 

and generalization capabilities of the network. Horizontal 

and vertical flips, random rotations in the range of [0, 360] 

degrees, random width and height shifts in the range of [0, 

0.15], and random magnification in the range of [0.3, 0.12] 

were among the data augmentation strategies used. 

All calculations were performed on IBEX at the King 

Abdullah University of Sciences and Technology (KAUST) 

High-Performance Computing (HPC) facility, where we 

employed a single RTX 2080 Ti GPU for all experiments. 

E. Evaluation Metrics 

Our proposed model generates a probability prediction 

map that depicts the likelihood that a pixel belongs to or not 

to a vessel. For all three datasets, we threshold a probability 

map with a value of 0.4 to obtain binary segmentation of 

retinal vessels. 

We used standard evaluation metrics that are commonly 

used in medical image segmentation to evaluate deep 

learning models. TP, FP, TN, and FN are the abbreviations 

for true positive, false positive, true negative, and false 

negative, respectively. Sensitivity (1), specificity (2), 

accuracy (3), f1-score (5), and Mathew correlation 

coefficient (MCC) (6) are the evaluation measures used. 

Below are the formulae for these evaluation metrics: 

 ( ) ,
TP

Sensitivity SN
TP FN




 (1) 

 ( ) ,
TN

Specificity SP
TN FP




 (2) 

 
( )

( ) ,
( )

TP TN
Accuracy ACC

TP FP TN FN




  
 (3) 

 ,
( )

TP
Precision

TP FP



 (4) 

 1 2 ,
Precision Sensitivity

F score
Precision Sensitivity


  


 (5) 

 
 

( ) ( )
.

( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


      

 (6) 

The area under the receiver operating characteristic 

(ROC) curve (AUC), which ranges from 0 to 1, was used to 

evaluate image segmentation in addition to the metrics listed 

above. 

IV. RESULTS 

In this section, we evaluate the Anam-Net model on the 

same dataset, i.e., training and test images are both part of 

the same dataset. Tables III, IV, and V show the results 

obtained for this experiment. The results highlighted in 

green, blue, and red indicate the best, second-best, and 

worst scores of the evaluation metric. As shown in Tables 

III–V, very few methods have evaluated their proposed 

model on all evaluation metrics. For this reason, we leave 

the evaluation metrics empty if it is not evaluated by the 

respective state-of-the-art method. For comparison, the 

evaluation metric scores mentioned in Tables III–V of 

various methods have been taken from their respective 

work. 

For the DRIVE dataset, the results in Table III show that 

the Anam-Net model outperforms several methods in terms 

of sensitivity, accuracy, AUC, and MCC. Our method 

achieved an f1-score of 0.8152, which is the second-best 

among all methods listed in Table III. Alom, Yakopcic, 

Hasan, Taha, and Asari [29] and Wang, Zhao, and Yu [33] 

achieved the best f1-score and specificity, respectively. 

However, none of the other evaluation metrics is among the 

top two, which limits their generalizability. The worst 

accuracy and sensitivity among all methods is obtained by 

the models proposed by Zhou, Yu, Xu, Gu, and Yang [25] 

and Feng, Zhuo, Pan, and Tian [27], respectively. 

In the STARE dataset, the Anam-Net model ranked first 

in terms of sensitivity, f1-score, accuracy, AUC, and MCC, 

whereas it obtained a competitive score for specificity. 

Wang, Zhao, and Yu [33] achieved the best specificity and 

the worst AUC among other methods. Tang, Rui, Yan, Li, 

and Hu [35] had the second-best specificity and accuracy, 

whereas the worst sensitivity among the methods listed in 

Table IV. 

TABLE III. COMPARISON WITH METHODS ON DRIVE DATASET. 

REF SN F1 SP ACC AUC MCC 

[22] 0.7897 0.7857 0.9684 - - 0.7556 

[25] 0.8078 0.7942 0.9674 0.9469 - 0.7656 

[27] 0.7625 - 0.9809 0.9528 0.9678 - 

[29] 0.7792 0.8171 0.9813 0.9556 0.9784 - 

[30] 0.7653 - 0.9818 0.9542 0.9752 - 

[33] 0.8060 0.7863 0.9869 0.9512 0.9748 - 

[34] 0.8213 - 0.9807 0.9615 0.9815 - 

[38] 0.7941 - 0.9798 0.9558 0.9847 - 

[40] 0.8252 - 0.9787 0.9649 0.9780 - 

[42] 0.8354  0.9746 0.9569 0.9820  

[44] 0.8206  0.9728 0.9531 0.9770  

[45] 0.7778 - 0.9784 0.9527 - - 

Proposed 0.8601 0.8152 0.9764 0.9660 0.9863 0.7988 

TABLE IV. COMPARISON WITH METHODS ON STARE DATASET. 

REF SN F1 SP ACC AUC MCC 

[22] 0.7680 0.7644 0.9738 - - 0.7417 

[23] 0.8147 - 0.9844 0.9674 0.9885 - 

[25] 0.8065 0.8017 0.9761 0.9585 - 0.7830 

[27] 0.7709 - 0.9848 0.9633 0.9700 - 

[28] 0.7940 - 0.9869 0.9647 0.9885 - 

[30] 0.7581 - 0.9846 0.9612 0.9801 - 

[31] 0.7595 0.8143 0.9878 0.9641 0.9832 - 

[33] 0.8230 0.7947 0.9945 0.9641 0.9620 - 

[35] 0.7551 - 0.9903 0.9723 0.9863 - 

[38] 0.7598 - 0.9878 0.9640 0.9824 - 

[40] 0.8397  0.9792 0.9659 0.9810 - 

[45] 0.7558 - 0.9811 0.9589 - - 

Proposed 0.8697 0.8266 0.9813 0.9728 0.9906 0.8145 

 

Regarding the CHASE_DB dataset, the Anam-Net model 

was ranked first in five out of six evaluation metrics, 

whereas it ranked second in terms of specificity. In the three 

datasets, Orlando, Prokofyeva, and Blaschko [22] had the 

worst f1-score and MCC, while Zhou, Yu, Xu, Gu, and 

Yang [25] had the worst accuracy. 
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Tables III–V show the performance of the model in an 

ideal situation when the model is trained and tested on the 

same dataset. However, in real world scenario and to test the 

generalizability of the deep learning model, the model must 

show robustness for fundus images with high variability, 

i.e., the acquisition device may belong to different 

manufacturer or the acquired image came from wide variety 

of individuals. For this purpose, we conduct cross-training 

experiments on DRIVE, STARE, and CHASE_DB datasets. 

The manual annotations by the first human observer were 

used as ground truth. Tables VI and VII show the best case 

and worst case segmentation results of the Anam-Net model 

on the DRIVE, STARE, and CHASE_DB datasets, 

respectively. 

TABLE V. COMPARISON WITH METHODS ON CHASE DATASET. 

REF SN F1 SP ACC AUC MCC 

[22] 0.7277 0.7332 0.9712 - - 0.7046 

[23] 0.7661 - 0.9816 0.9599 0.9812 - 

[24] 0.7779 - 0.9864 0.9653 0.9855 - 

[25] 0.7553 0.7644 0.9751 0.9520 - 0.7398 

[29] 0.7756 0.7928 0.9820 0.9634 0.9815 - 

[30] 0.7633 - 0.9809 0.9610 0.9781 - 

[31] 0.8155 0.7883 0.9752 0.9610 0.9804 - 

[33] 0.8035 - 0.9787 0.9639 0.9832 - 

[34] 0.8235 - 0.9711 0.9559 0.9767 - 

[38] 0.8176 0.7892 0.9704 0.9608 0.9865 - 

[39] 0.7978 0.8031 0.9818 0.9656 0.9818 - 

[40] 0.8440 - 0.9810 0.9722 0.9830 - 

[43] 0.8132 - 0.9814 0.9661 0.9860 - 

Proposed 0.8553 0.8090 0.9826 0.9746 0.9899 0.7968 

 
TABLE VI. VISUAL REPRESENTATION OF BEST CASE PERFORMANCE OF THE ANAM-NET MODEL. 

Best Case DRIVE STARE CHASE_DB 

Original 

   

Ground Truth 

   

Segmented 

   

TABLE VII. VISUAL REPRESENTATION OF WORST CASE PERFORMANCE OF THE ANAM-NET MODEL. 

Worst Case DRIVE STARE CHASE_DB 

Original 

   

Ground Truth 

   

Segmented 
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V. DISCUSSION 

In this section, we first perform a cross-database training 

experiment in which a model trained on one dataset is tested 

on test images from a second previously unseen dataset. 

Next, we explore the performance of the Anam-Net model 

in challenging scenarios such as central vessel reflex and 

low contrast of fundus images. Finally, we compare the 

computational complexity of the Anam-Net model with the 

state-of-the-art methods in terms of the number of trainable 

parameters.  

Table VIII is divided into four sections, where the first 

section shows the segmentation result on the test images of 

the STARE dataset when a pre-trained model on the DRIVE 

dataset is used. The Anam-Net model achieved the best 

sensitivity, specificity, and accuracy. The method proposed 

by Mo and Zhang [23] obtained the best f1-score, however, 

obtained the worst sensitivity among other methods. 

Oliveira, Pereira, and Silva [24] ranked second in terms of 

sensitivity, specificity, and accuracy when tested on the 

STARE dataset. The second section of Table VII shows the 

segmentation results on the test images of the DRIVE 

dataset when a pre-trained model on the STARE dataset is 

used. The Anam-Net ranked first among other methods in 

three of four evaluation metrics, while ranked second in 

terms of f1-score. Oliveira, Pereira, and Silva [24] were first 

in terms of f1-score; however, their method obtained the 

lowest sensitivity among other methods. When the model is 

trained on STARE and then tested on DRIVE, we found that 

it detects fewer thin vessels, resulting in lower sensitivity. 

On the other hand, the DRIVE database includes 

substantially more thin vessels annotated than STARE; 

therefore, sensitivity increased significantly. 

To further extend the cross-training experiment, we 

include the CHASE_DB dataset, which has been reported 

by very few studies. When the pre-trained model on the 

DRIVE and STARE datasets is employed, the segmentation 

results on the test images of the CHASE_DB dataset are 

shown in sections three and four of Table VIII, respectively. 

Several methods have been proposed over the past few 

years to improve the segmentation accuracy of retinal 

vessels in retinal fundus images. However, very few studies 

discuss the performance of their deep learning model on 

challenging scenarios such as central vessel reflex and low 

contrast. Table IX shows the exemplar results of the Anam-

Net in such challenging scenarios. The first column shows 

the original fundus image with a yellow bounding box, 

which represents the region of interest for a specific 

scenario. The second column shows the cropped image of 

the original fundus image where the image in the top 

represents central vessel reflex problem, and the image in 

the bottom represents low contrast. The third and fourth 

columns show the manual annotations by the first expert and 

the predicted probability map by the Anam-Net model, 

respectively. As shown, Anam-Net predicts the retinal 

vessels with high probability in the central vessel reflex 

region. For images with low contrast, the Anam-Net model 

not only predicts the tiny vessels accurately but also 

segments additional small vessels that were not annotated by 

the first expert. This experiment validates the robustness of 

the Anam-Net model for such challenging scenarios. 

The Anam-Net model is lightweight with only 4.47M 

trainable parameters. Only two methods have lower 

computational complexity compared to Anam-Net, as 

shown in Table X. Zhuang et al. [39] proposed the Ladder-

Net model with only 1.38M parameters. On the 

CHASE_DB dataset, their model achieved a sensitivity of 

0.7978 compared to the Anam-Net with a sensitivity of 

0.8553. Moreover, the generalizability of their model is not 

verified by conducting a cross-training experiment. The 

results show that the Anam-Net model outperforms state-of-

the-art methods for segmenting the retinal vasculature. 

We thoroughly assessed the performance of our 

developed deep learning model using healthy and 

pathological images, where we achieved highly compelling 

results based on several well-known evaluation metrics, 

including accuracy, specificity, sensitivity AUC, F1-score, 

and MCC. We have extensively performed comparison with 

previous best deep learning models from the state-of-the-art, 

where our achieved results are not only competitive in terms 

of evaluation metrics, but also its computation complexity is 

significantly lower. In our previous work in [40], we 

achieved better performance with almost 8 million trainable 

parameters. Compared to our previous work and also other 

best models from the state-of-the-art, our current model 

achieved improved segmentation performance with almost 

4.5 million trainable parameters. Most importantly, our 

developed deep learning model attributes significantly lower 

computational complexity and memory overhead based on 

fewer trainable parameters. These encouraging attributes of 

the Anam-Net model advocate for its deployment in normal 

computing resources available at forefront of hospital, to be 

used for population-scale eye disease screening programs. 

Training the Anam-Net takes approximately 1 hour and 

20 minutes on a single NVIDIA RTX2080Ti GPU, while it 

takes about 0.2 seconds to segment a test image of size 

576×576 pixels using the trained model. The authors in 

[23], [29], and [41] reported an average inference time of 

0.5 s, 6 s, and 8.4 s, respectively, for a single test image. 

TABLE VIII. CROSS-TRAINING COMPARISON WITH METHODS. 

Dataset REF SN F1 SP ACC 

STARE 

(Train on DRIVE) 

[23] 0.7009 0.9843 0.9570 0.9751 

[24] 0.8453 0.9726 0.9597 0.9846 

[25] 0.7525 0.9721 0.9494 - 

[50] 0.7499 0.9798 0.9563 0.9621 

[30] 0.7211 0.9840 0.9569 0.9708 

Proposed 0.8575 0.9727 0.9644 0.9863 

DRIVE 

(Train on 

STARE) 

[23] 0.7412 0.9799 0.9492 0.9653 

[24] 0.6706 0.9916 0.9505 0.9748 

[25] 0.7673 0.9703 0.9443 - 

[50] 0.7217 0.9820 0.9486 0.9327 

[30] 0.7292 0.9815 0.9494 0.9599 

Proposed 0.7864 0.9832 0.9657 0.9767 

CHASE 

(Train on DRIVE) 

[23] 0.7003 0.9750 0.9478 0.9671 

[41] 0.7118 0.9791 0.9429 0.9628 

Proposed 0.8652 0.9661 0.9592 0.9797 

CHASE 

(Train on 

STARE) 

[23] 0.7032 0.9794 0.9515 0.9690 

[41] 0.7240 0.9768 0.9417 0.9553 

Proposed 0.7295 0.9776 0.9594 0.9601 
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TABLE IX. EXEMPLAR RESULTS OF THE ANAM-NET MODEL ON CHALLENGING SCENARIOS. 

Original Image Challenging Scenario Ground Truth Probability Map 

 

Central Vessel Reflex   

 
 

Low Contrast   

TABLE X. TRAINABLE PARAMETER COMPARISON. 

Reference Method Parameters 

Mo and Zhang [23] 
FCN with Deep Feature 

Fusion 
8.40M 

Alom, Yakopcic, Hasan, 

Taha, and Asari [29] 
R2U-Net 48.90M 

Yan, Yang, and Cheng 

[30] 
U-Net with Joint Losses 36.40M 

Jin, Meng, Pham, Chen, 

Wei, and Su [31] 
DUNet 0.88M 

Wang, Zhao, Ren, Xu, and 

Yu [32] 
Basic U-Net 31.05M 

Lv, Ma, Li, and Liu [38] Attention Guided U-Net 28.25M 

Zhuang [39] Ladder-Net 1.38M 

Khan, Alhussein, 

Aurangzeb, Arsalan, 

Naqvi, and Nawaz [40] 

Basic SegNet 29.50M 

Khan, Alhussein, 

Aurangzeb, Arsalan, 

Naqvi, and Nawaz [40] 

RCED-Net 9.37M 

Noh, Park, and Lee [42] SSANet 25.00M 

Anam-Net 4.47M 

VI. CONCLUSIONS 

We have developed Anam-Net, which is a lightweight 

CNN-based encoder-decoder architecture with AD-block as 

bottleneck layers for semantic segmentation of retinal 

vessels in fundus images. The performance of our 

developed model has been thoroughly tested using retinal 

images from the DRIVE, STARE, and CHASE_DB 

datasets, where we achieved {sensitivity and accuracy} of 

{0.8601, 0.9660}, {0.8697, 0.9728}, and {0.8553, 0.9746}, 

respectively. In all three datasets, the results reveal that the 

Anam-Net model outperforms the state-of-the-art 

approaches for segmenting the retinal vessels. 

Generally, deep learning models achieve improved 

performance, but at the expense of high-performance 

computing (GPUs), which are rarely available at the 

forefront desk of the healthcare facility. This limits the deep 

learning-based computer aided tools to be applied in 

facilities having GPU-based computing resources. The basic 

hypothesis of this study is to explore and develop a deep 

learning model which not only achieves competitive 

semantic segmentation performance in terms of evaluation 

metrics, but is realizable at the mobile/embedded platforms 

at the point of care, where the computing resources are not 

supposed to be GPU-based. Such deep learning models 

should attribute significantly lower trainable parameters, 

which will lead to reduced computation complexity and will 

be realizable at ordinary computing/embedded platforms 

that are readily available at almost every healthcare facility. 

In this way, the population-scale screening programs for 

early diagnosis of vision-threatening eye diseases could be 

effectively managed.  

The developed Anam-Net model has better segmentation 

accuracy and less trainable parameters compared to several 

other methods, which make it suitable for easy deployment 

in mobile platforms at the point of care. On the basis of the 

achieved results for the cross-database training and testing 

strategy, we may generalize that the Anam-Net model has 

significantly higher generalization ability in addition to 

being lightweight (having significantly lower parameters). 

Due to attributing significantly lower trainable parameters, 

the Anam-Net model may be used in a variety of medical 

imaging applications. Hopefully, in the near future, we will 

be able to achieve competitive classification performance 

for the diagnosis of COVID-19 disease using the modified 

Anam-Net model. 
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