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Abstract—This paper presents a new method for modelling 

dynamic systems based on quasi-orthogonal functions. First, 

we defined a new class of Legendre type quasi-orthogonal 

functions that can be used for signal approximation as well as 

for modelling, analysis, synthesis, and simulation of dynamic 

systems, especially systems that suffer from some 

imperfections. In this paper, functions have been applied in 

modelling of cascade-connected dynamic system, typical for 

tire industry. Considered rubber cooling system is a represent 

of complex, nonlinear, and stochastic systems with 

imperfections. Developed quasi-orthogonal adjustable models 

can be used for modelling of arbitrary dynamic systems. 

Optimal model parameters in the sense of the mean–squared 

error were obtained using genetic algorithm. For experimental 

purposes, simplified cascade-connected system with four 

transporters has been practically realized. The experimental 

results proved the accuracy, simplicity, and quality of realized 

quasi-orthogonal model.  

 
Index Terms—Genetic algorithms, filters, modelling, 

transportation system. 

I. INTRODUCTION 

In every tire factory in the world, there are one or more 

tire thread (rubber) cooling systems. These tire threads are 

used to form external (stripped) part of a tire. It is estimated 

that there are about 12000 systems, like that, all over the 

world, mostly in China, India, USA, and Brazil. They 

consist of a large number (4-24) of cascade-connected 

transporters. Tire thread moves over them, passing from one 

transporter to another. Thereby, the rubber is cooling under 

the influence of the water that flows in opposite direction. It 

is important to notice that cascade-connected systems have 

very complex dynamics. All the noise and imperfections in 

one cascade are being transmitted to the next and thereby 

increased because of the resonance effect. When system has 

a large number of cascades, these disturbances can cause 

system failures [1], [2]. In order to design a proper control 

system, we need to have high quality mathematical model 

with all the system imperfections calculated [2]. 

On the other side, history of orthogonal polynomials is
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very old [3], [4]. There are many papers considering 

orthogonal systems and their applications in electronics, 

circuit theory, signal processing, communications, and 

control system theory [5]–[7]. Concept of quasi-

orthogonality is introduced for the first time in 1923 [8] as a 

tool for solving the problem of moments in mechanics. 

Quasi-orthogonal functions and especially quasi-orthogonal 

polynomials as well as numerous applications have been 

discussed in many papers [9]–[12]. It is important to notice 

that classical orthogonal signal generators have transfer 

functions with the order of numerator polynomial for one 

order lower then denominators polynomial. In practice there 

is often need for transfer functions of general type i.e., with 

difference in orders of polynomials higher than one. This 

can be accomplished by using quasi-orthogonal functions. 

Almost orthogonal functions designed in earlier papers 

[13]–[15] can be successfully used for modelling and 

analysis of the systems with imperfections. Quasi-

orthogonal functions considered in this paper are also 

suitable for modelling and design of imperfect systems, 

especially if used in combination with almost orthogonal 

functions. 

This paper is organized as follows. In section 1 we 

present Legendre type quasi-orthogonal functions and in 

section 2 method for modelling of dynamic systems based 

on these functions. Considered cascade-connected rubber 

cooling systems are described in details in section 3. We 

have designed and developed smaller, laboratory, version of 

this system (with four cascades) and applied our method of 

modelling. Experimental results that verify the given 

method are presented in section 4. 

II. QUASI-ORTHOGONAL FUNCTIONS 

The following definition of k-th order quasi-orthogonality 

for the polynomial set Pn(x) can be found in papers [11], 

[12]: 
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where k represents the order of quasi-orthogonality, a and b 

– quasi-orthogonality interval and w(x) – the weight 

function. A large number of papers consider construction of 
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quasi-orthogonal polynomials [11], [12]. In this paper, we 

propose a new method for generating quasi-orthogonal 

polynomials using inverse Laplace transform of rational 

functions. Here, we consider only generating quasi-

orthogonal Legendre type polynomials, but, in the same 

way, quasi-orthogonal functions of Laguerre, Chebyshev, 

Gegenbauer, Malmquist, and Jacobi type can also be 

obtained. 

Consider the rational function with the given poles si and 

appropriate zeroes f(si) (all orthogonal rational functions 

have zeroes and poles in strictly defined correlation) [4]–

[6]. In the case of classical orthogonal polynomials, we use 

rational function with order of numerators polynomial for 

one lower than denominators 
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For the given set of poles si, zeroes can be obtained via 

mapping (transformation)  s f s  i.e.,  , 0F s s   from 

one area Dp of the complex plane to another Dz, i.e., from 

one side of the given contour C to another. 

Necessary condition is for the mapping f(si) to be 

symmetrical. Therefore, the function  ,F s s  must be 

symmetrical i.e., relations  s f s  and  s f s  have to 

be valid. Domain Dp includes all the poles and domain Dz all 

the zeroes while these two areas must be disjunctive [5]. 

Contour C can be determined in the case of any concrete 

transformation by using the substitutions s x jy   and 

s x jy  . Therefore, contour equation inside s (xy) plain is 

 , 0F x jy x jy   . 

In order to generate quasi-orthogonal polynomials in the 

sense of definition (1), consider now rational function given 

by 
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Lets note that the order of the polynomial in numerator is 

for k+1 lower than the order of polynomial in denominator. 

This fact has direct consequence in later forming of quasi-

orthogonal, order k, functions. Sequence Wn(s) is quasi-

orthogonal which can be proved by applying Cauchy’s 

theorem 
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i.e.: 
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After applying Heaviside development on (3), we obtain 
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In the case of our transformation  s f s s    

i.e.  ,F s s s s  , transfer function has the following form 
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After applying Heaviside development, we have 

 
,

1

kn

n ik

n

i i

A
W s

s a




 , (9) 

where 

   

   

1
2 2

1

, 1

1 1

1

n k
n k

i j

jk

n i i n

i j i j

j j i

a a

A

a a a a

 
 





  

 



 



 

. (10) 

III. MODELLING BASED ON QUASI-ORTHOGONAL 

FUNCTIONS 

Sequence of quasi-orthogonal functions given with (8) is 

suitable for direct designing of quasi-orthogonal signal 

generator and adjustable model. For example, first order 

(k=1) Legendre type adjustable model is given in Fig. 2. 

Signals labelled as  
1

i
t  (i=1,2,…,n-1) in the Fig. 1 

represent the sequence of exponential quasi-orthogonal 

functions over interval (0, 1) with weight  
t

w t e


 . They 

are inverse Laplace transforms of output signals from 

corresponding sections of the first order quasi-orthogonal 

signal generator 
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represents transfer function of a single section of signal 

generator. 

The following approximation is used in order to obtain 

the model of a given system: 
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The adjustable model shown in Fig. 1 is designed on the 

basis of approximation (12) and signal generator transfer 

function (8). 

 
Fig. 1. Adjustable, Legendre type, first order quasi-orthogonal signal generator. 

Adjustable model can be used for modelling arbitrary 

dynamic system. Specific models are obtained with the help 

of adjustable parameters ci (i=1,2,…,n-1) and section poles 

ai (i=1,2,…,n). During the modelling of concrete unknown 

system, these parameters are being adjusted in such a way 

that model in Fig. 1 corresponds to the unknown system as 

exactly as possible. The process of modelling starts with 

applying the same input signal to both the unknown system 

(which is to be modelled) and the model given in Fig. 1. 

Next, the difference of system and model outputs is formed 

as well as the modified mean-squared error relation 
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2

0

1
T

S M
J t y y d t

T
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where yS(t) and yM(t) are system and model output, 

respectively. 

Parameters ai and ci are being adjusted until the 

minimization of the function (13) is achieved, i.e., as long as 

necessary to obtain the best model of unknown system in 

the sense of mean-squared error. Optimal adjustment of the 

parameters can be accomplished by using genetic 

algorithms. Genetic algorithms [16] are optimization 

technique based on simulation of the phenomena taking 

place in the evolution of species and adapting it to an 

optimization problem. They have demonstrated very good 

performances as global optimizers in many types of 

applications [16]–[18]. 

The complete block diagram, that illustrates the process 

of modelling, is given in Fig. 2. 

 
Fig. 2. .Block diagram of the modelling process. 

IV. CASE STUDY 

Fig. 3 shows a cascade-connected transporters for the 

rubber strip cooling, considered in this paper. This system in 

a real factory is given in Fig. 4. 

 
Fig. 3. Cascade system for the rubber strip transportation (1-extruder 2-

rubber strip 3-balance 4-transporters 5-transitions). 

The rubber strip comes from extruder (point 1 in Fig. 3.), 

pass through the balance (point 3 in Fig. 3.) and goes to the 

cooling system. It is necessary to cool down the rubber strip 

to the room temperature. When rubber runs through the 

cooling system, it is being cooled and contracts with 

contraction coefficient μ<1. During that contraction, rubber 

strip velocities at transporters ends are not equal to the 

transporters velocities, producing the effect of rubber 

slipping relatively to the transporter. The velocities of 

individual transporters are adjusted using local controllers 

that determine the velocity of the next transporter according 

to the length of the rubber between two consecutive 

transporters. 

 
Fig. 4. Rubber cooling system installed in tire industry “Tigar-Michelline”, 

Serbia. 

The length change of the rubber strip between two 

transporters can be described with the following equations: 

( 2 ) (1)
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where li is the length of rubber strip between i-th and (i+1)-

th transporter, 
( 2 )

, 1g i
V


 - rubber velocity at the end of the (i-1)-

th transporter, 
(1 )

,g i
V  - rubber velocity at the beginning of the 

i-th transporter, n - the number of transporters, 
i

l  - length 

change of rubber strip between two consecutive 

transporters, 
i

V  - the velocity of the i-th transporter, 
i

  - 

the rubber contraction coefficient for the i-th transporter. 

Fig. 5 shows a transition between two transporters. To 

regulate transporters velocities, it is necessary to measure 

the lengths of the rubber between transporters (
i

l ). These 

measurements are performed by special sensors 

(potentiometers P in Fig. 5). Potentiometer angle 
i

  

satisfies the following relation 

 i i
l    , (18) 

where   represents nonlinear function. The value of 
i

  is 

between 0 and 90 degrees. Potentiometer voltage is given by 

i p i i
u K  , (19) 

where Kpi represents potentiometer coefficient [V/rad]. 

Potentiometer voltage is being amplified and finally the 

velocities of drive motors are being controlled using 

thyristor regulators. 

 
Fig. 5.  Rubber transition between transporters. 

Dynamics of i-th transporter with controller and drive 

motor can be described with the following well-known 

equation [2] 
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where T1 and T2 are mechanical and electrical time constants 

of electromechanical drive. According to (20), the transfer 

function for i-th transporter has the following form 
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Using stated equations (14) to (21), the block diagram of 

the single transporter, given in Fig. 6, is obtained. 

 
Fig. 6. Block diagram of the single transporter in cascade-connected 

system. 

Integration of velocities between transporters can cause 

static error when parameter   changes (change of used 

rubber quality or change of ambience temperature). In Fig. 5 

middle position of the sensor (position (2)) corresponds to 

normal operating. If   increases, sensor moves to position 

(1) and static error 
i

l   occurs (the rubber stretches). If   

decreases, sensor moves to position (3) and static error 
i

l   

occurs (the rubber accumulates). Compensational 

potentiometers (
r i

K  in Fig. 6) are introduced in order to 

compensate static errors, so their adjustment brings system 

back to normal operating (position (2) in Fig. 5). Following 

properties of these systems affect dynamics, stability, and 

system quality: 

1) Tire thread accumulates at transition places (points 

5 in Fig. 3), because of integration of velocities 

difference.  

2) Nonlinear dependencies are formed at the cascade 

transitions, between transporters.  

3) During the tire thread movement along a 

transporter, rubber runs cold and contracts. Because 

of that, velocity at transporter end is smaller than 

velocity at transporter beginning, with contraction 

coefficient μ. Coefficient μ is stochastic because it 

depends on rubber quality and environment 

temperature, which are stochastic parameters. 

Influence of stochastic parameters μi on cascade 

systems stability is analysed in [1], [2]. 

 
Fig. 7. Laboratory setup – cascade-connected system with four transporters. 

Due to cascade structure and nonlinearities, the system is 

prone to oscillations [1] and under certain conditions, 
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deterministic chaos may appear [2]. Because of the stated 

properties, the referred system is very complex and difficult 

to model [2]. For experimental purposes, cascade-connected 

system with four transporters (Fig. 7) has been practically 

realized in our Laboratory for modelling, simulation and 

systems control. Our system is capable for imitating real 

factory systems in all above-mentioned aspects 

V. EXPERIMENTAL RESULTS 

The goal of performed experiment was to obtain the 

model and transfer function of our laboratory system given 

in Fig. 5 with developed quasi-orthogonal functions, as 

described in section 2. Thereby, we assumed that the system 

itself represents a black box and we neglected everything 

that we know about it, previously described in section 3. 

The only known data about the system were measured 

outputs (single transporters velocities) for a given step input 

(see Fig. 8). 

We have chosen adjustable model with four (one for each 

transporter) first order (k=1) quasi-orthogonal signal 

generators with two sections (n=3) given in Fig. 9. Every 

generator has five adjustable parameters (a1, a2, a3, c1, and 

c2 in Fig. 1). Then, the same step input signal is applied to 

both the unknown system and adjustable model as presented 

in Fig. 2. The next step was to form a difference between 

measured system output and model output as well as to 

calculate mean-squared error given with (13). Optimal 

values of adjustable parameters, needed for the best model 

of unknown system, were determined using genetic 

algorithm. 

 
Fig. 8. Step response of laboratory cascade-connected system. 

 
Fig. 9. Quasi-orthogonal model of the laboratory cascade-connected system. 

The goal of the experiment was to make a mean-squared 

error as small as possible for a chosen step input i.e. to 

obtain the best model of the unknown system in the sense of 

mean-squared error. So, relation (13) was used as the fitness 

function for the genetic algorithm. 

By using the method described in section 4, data set of 

measured velocities and genetic algorithm, optimal model 

parameters given in Table I were obtained. 

TABLE I. OBTAINED PARAMETERS OF THE QUASI-ORTHOGONAL MODEL FOR 

ALL FOUR TRANSPORTERS. 

 Tr. 1 Tr. 2 Tr. 3 Tr. 4 

a1 1.5687 1.5889 1.5845 1.6226 

a2 0.4371 0.4143 0.4209 0.3767 

a3 0.0531 0.0543 0.0534 0.0579 

c1 0.2121 0.1924 0.1733 0.1533 

c2 -0.0156 -0.0154 -0.0161 -0.0158 

 

With these parameters, corresponding transfer functions 

for quasi-orthogonal generators that are models of single 

transporters are given by the following relations: 
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  (22) 

Overall transfer function of entire cascade-connected 

system can be obtained as a serial connection of the single 

transporters    
4

1

i

i

T F s T F s



  . Step response of our model 

is almost identical to the real system (Fig. 8) with standard 

deviation lower than 1.5%. The results prove the accuracy, 

simplicity, and quality of realized quasi-orthogonal model. 

VI. CONCLUSIONS 

This paper considers the possibility of modelling dynamic 

systems using quasi-orthogonal functions. Theory of 

Legendre type quasi-orthogonal functions is described as 

well as a new method for designing generators of these 

functions. Functions are based on elemental transformation 

s s   in a complex plane, and they can be used for signal 

approximation as well as for modelling, analysis, synthesis, 

and simulation of dynamic systems. A new method for 

obtaining a general (adjustable) model of dynamic systems, 

based on our quasi-orthogonal functions is proposed and 

described in details. Specific models are obtained with the 

help of adjustable parameters and with respect to the mean-

squared error of the difference between real system and 

model output signals. Optimal model parameters can be 

calculated using genetic algorithm. 

In this paper, adjustable model has been applied in 

modelling of cascade-connected dynamic system, typical for 

tire industry. Considered rubber cooling system is a 

represent of complex, nonlinear, and stochastic systems with 

imperfections. Properties and equations of these systems 

with regard to existing nonlinearities, possibilities of 
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oscillations and chaos have been analysed in details. For 

experimental purposes, cascade-connected system with four 

transporters has been designed and practically realized in 

our Laboratory for modelling, simulation and systems 

control. Experiments were performed to validate theoretical 

results and to demonstrate that the method described in the 

paper is suitable for modelling of dynamic systems. It 

achieves excellent results in the sense of modelling 

algorithm simplicity and speed as well as model accuracy.  
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