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1Abstract—Radial distribution systems are susceptible to a 

lack of voltage profile and increase system losses, particularly 

at the distant ends of the distribution feeder. This manuscript 

proposes an approach to solve the optimal capacitor placement 

problem in radial distribution networks to minimize system 

losses, improve the voltage profile of all buses, promote total 

voltage stability, and improve net savings. The optimal 

capacitor placement problem is solved in two stages. Firstly, 

normalized loss sensitivity factor and voltage magnitude are 

used as inputs to build fuzzy expert rules to arrange the most 

candidate buses for capacitor placement. Secondly, a 

multiobjective water cycle algorithm is applied to determine 

the optimal sizes and locations of capacitors within the 

predefined search space using fuzzy expert rules. The 

multiobjective function is formulated with operational 

constraints considering fixed and switched capacitors. To 

validate the effectiveness of this methodology, it is 

demonstrated on IEEE 33 and IEEE 94-bus radial distribution 

networks. Clearly, the findings show the improvement in the 

voltage profile and static voltage stability, the significant 

reduction in system losses, as well as the enhancement in 

overall savings. Furthermore, a comprehensive evaluation is 

also carried out by comparing the numerical results with other 

methods such as interior point algorithm, a combination fuzzy 

real coded genetic algorithm method, water cycle algorithm for 

IEEE 33-bus system and artificial bee colony algorithm for 

IEEE 94-bus system which prove the viability and effectiveness 

of the proposed methodology. 

 

 Index Terms—Radial distribution network; Capacitor 

placement; Fuzzy logic; Multiobjective optimization; Water 

cycle algorithm. 

I. INTRODUCTION 

The three main components of the electrical power 

system are production units, transmission system, and 

distribution system. There are several different types of 

loads connected to the power network through the 

distribution system, such as domestic, commercial, and 

industrial. Thus, service quality is related to continuous 

supply of electricity and keeping the supply voltage within 

the desired limits with the identified frequency. Due to the 

continuous increase in loads, long distances, and the high 

R/X ratio of transmission lines [1], it is observed that the 

loss of power in the distribution system is about 13 % of the 
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total power generation [2]. This loss is due to the reactive 

power flow through the feeder, which adversely affects the 

voltage profile and costs the system more [3]. The 

installation of capacitors in the distribution network is 

considered one of the well-recognized solutions which helps 

to keep the voltage at the desired limits, enhance system 

stability, reduce system loss [4], and release the line 

capacity. Taking into account energy loss, capacitors have 

proven their ability to minimize overall current by 

cancelling the reactive component of the current provided 

by the substation [5]. It should be mentioned that the 

incorrect allocation of capacitors leads to bad results in 

terms of voltage profile, power losses, and system costs. 

Thus, the optimal locations and sizes of the shunt capacitors 

should be calculated to achieve maximum results without 

violating the constraints of the system [3]. 

Many methods and optimization algorithms have been 

introduced in the literature to determine the optimal sitting 

and sizing of shunt capacitors. In [2], two stages are applied 

to obtain the optimal allocation of capacitor banks with 

different load factors: first, the optimal locations of the 

capacitors are determined based on the voltage stability 

index (VSI), second, the cuckoo search algorithm (CSA) is 

proposed to find the optimal capacitor sizes. However, the 

optimum solution may not be determined, as the 

optimization method is limited only to the optimal 

calculation of sizes. Two loss sensitivity indices (LSIs) and 

the ant colony optimization algorithm are investigated in [1] 

to solve the optimal capacitor placement problem 

considering fixed, switched capacitors and their 

combination. However, it has more parameters to tune. The 

two bio-inspired methods, the CSA and the bat algorithm 

(BA), are implemented in [4] to find the optimal allocation 

of variable locations fixed capacitors (VLFQ) and variable 

locations variable sizing of capacitors (VLVQ) to reduce 

real power losses and increase network savings. However, it 

requires a large number of iterations. A fuzzy-based 

approach is suggested in [6] for capacitor allocation in the 

distribution circuit with the aim of improving voltage 

sensitivity and minimizing real power loss. However, the 

proposed membership functions are based on weighting 

factors. In [7], a fuzzy-reasoning method is applied to solve 

the same issue. However, the loss membership function 
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used to obtain the optimal locations depends on a parameter, 

which is calculated from experiences, and the optimal sizes 

are calculated using a local variational method, which takes 

a long time, and it may also lead to inefficient solutions. 

Genetic algorithms and optimal power flow are investigated 

in [8] to simultaneously place voltage regulators and shunt 

capacitors in radial distribution networks )RDNs(. However, 

complicated objective functions and more parameters are 

used. In [9], a coordinated optimal location and size of 

distributed generations (DGs), and controllable devices 

including soft open points (SOPs) and capacitors in the 

participation of the active distribution network in annual 

cost reduction using bi-level programming is proposed. 

However, the objective functions used in the upper and 

lower levels are complicated. In [10], the Analytical Method 

is applied for the optimal capacitor allocation problem. 

However, it takes a long computational time to find the best 

solution. 

Recently, many researchers have been the most inclined 

to use multiobjective algorithms. This kind of problem has 

many conflicting purposes that need to be solved 

simultaneously. The addition of the weighting factor with 

each objective function is considered the initial approach to 

solving these problems. The main disadvantage of the 

aforementioned method is wasting time in choosing 

appropriate weight factors. In contrast, multiobjective 

optimization techniques use the Pareto front approach as an 

alternative solution. A set of nondominated solutions is kept 

in an archive updated every iteration [11]–[13]. The best 

compromise of these nondominated possible solutions with 

proper decisions is chosen to be an optimal solution [14], 

[15]. 

Many optimization techniques have been applied in 

literature to solve multiobjective problems such as the 

multiobjective stochastic simulation optimization algorithm 

[16], which shows low applicability in settings with a lot of 

noise, the multiobjective whale optimization algorithm 

(MOWOA) [17], which has a long computation time, the 

multiobjective differential evolution [18], which lacks the 

preservation of diversity, the multiobjective dragonfly 

algorithm (MODA) [19], which has a large number of 

iterations, the multiobjective ant lion optimizer (MOALO) 

[20], which uses complicated objective functions, the 

multiobjective particle swarm optimization (MOPSO) [21], 

which does not deal with the constrained objective 

functions, the nondominated sorting of genetic algorithm 

(NSGA-II) [22], which has a range of parameters that can 

lead to slow convergence, the multiobjective binary cat 

swarm optimization (MOBCSO) [23], which has a large 

number of function evaluations, and multiobjective cuckoo 

search algorithm [24], [25], which needs adding Lévy 

flights to improve search capability.  

The multiobjective optimization algorithms are applied as 

a solution to various problems in electric power systems, 

including determining the optimal placement of capacitors 

in RDNs. In [26], a nondominated sorting genetic algorithm 

(NSGA-II) is implemented to solve network 

reconfiguration, optimal placement of the distributed 

generator and capacitor; however, the parameters should be 

adjusted well to not fall into local optima. In [27], NSGA II 

is also proposed to solve the proposed issue taking into 

account the total harmonic distortion constraint; however, 

there are some solutions on the Pareto front, which exceed 

the security boundaries in terms of voltage resonance. In 

[28], a comparison is made between NSGA II and Strength 

Pareto Evolutionary Algorithm (SPEA 2) to solve this issue 

taking into account the limitations of harmonic distortion. 

However, NSGA-II results in lower quality solutions, and 

SPEA 2 yields several solutions that violate voltage 

constraints. In [29], the multiobjective immune algorithm is 

proposed to solve the capacitor allocation problem in a 

distorted electrical distribution network. However, more 

parameters are used. In [30], a multiobjective flower 

pollination algorithm is applied for the optimal placement of 

shunt capacitors and solar distributed generations (DGs) 

along with the optimal network reconductoring. However, 

interest rates impact annual economic savings. In [31], the 

whale optimization algorithm (WOA) and the moth swarm 

algorithm (MSA) are used and compared to solve the 

optimal allocation problem of shunt capacitors and DG 

units; however, WOA results in lower quality solutions and 

MSA has complicated objective functions. In [32], an 

improved multiobjective harmony search algorithm 

(IMOHSA) is used to find the optimal allocation of DG and 

capacitor; however, it has a high number of iterations. In 

[33], a combined approach is proposed to solve the 

proposed issue; however, complicated objective functions 

are used. 

The water cycle algorithm (WCA) is used to solve single-

optimization problems. A new WCA, the so-called 

“multiobjective water cycle algorithm” (MOWCA), has 

recently been proposed to solve multi-optimization 

problems. The WCA was introduced in 2012 by Sadollah, 

Eskandar, and Kim [11]. The WCA simulates the water 

cycle process, including the flowing water from rivers and 

streams to the sea [34]. After the evaporation process 

occurs, the clouds form, which later turn into rain. Then 

again, new streams and rivers are created. Compared to 

other well-known algorithms, this method offered superior 

and effective performance for solving discrete and 

continuous problems. WCA has encouraged researchers to 

apply it due to its accuracy and robustness in addition to its 

exploratory ability to provide the optimal solution [11], 

[13], [35]–[38]. In [34], the WCA is applied to solve the 

capacitor and DG allocation problem for single and 

multiobjective scenarios, and the WCA achieves high-grade 

solutions and offers great performance in addition to good 

convergence characteristics. 

The main contributions of this article are minimization of 

total power loss, enhancement of voltage stability, and 

maximization of net savings with satisfying the voltage 

profile at all buses within the allowable limits through 

solving the optimal capacitor placement problem in radial 

distribution systems. Fixed and switched capacitors are 

considered. At first, the initial potential buses for capacitor 

placement are obtained using fuzzy expert rules. The bus 

voltage magnitude and the loss sensitivity factor are the 

inputs of these rules. For this, two membership functions are 

utilized. Afterwards, MOWCA is proposed to give a set of 

Pareto front solutions, and the decision marker is then used 
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to pick the best compromise among the final stored 

members. It should be mentioned that the proposed method 

of calculating a list of possible solutions for capacitor 

placement takes into account the bus voltages and losses of 

the system, unlike other approaches that only consider the 

voltage or losses. Numerical simulations are performed in 

MATLAB. The proposed method is tested on IEEE 33 and 

IEEE 94-bus RDNs. To validate the capabilities of the 

proposed methodology, the cropped results are compared 

with interior point algorithm (IP), a combination fuzzy real 

coded GA (FRCGA) method, and WCA for the IEEE 33-

bus system and the artificial bee colony (ABC) algorithm 

for the IEEE 94-bus system obtained from the literature with 

comprehensive discussions. 

The rest of this paper is organized as follows. Section II 

introduces the problem formulation. Section III explains the 

proposed techniques, including the normalized loss 

sensitivity factor LSFnorm and fuzzy expert rules. Section IV 

defines the multiobjective optimization problems. Section V 

explains in detail the concept of a multiobjective water cycle 

algorithm. Section VI displays the numerical results and 

discussion. Finally, Section VII presents the conclusions. 

II. PROBLEM FORMULATION 

A constrained optimization problem has been investigated 

to mathematically determine the optimal allocation of fixed 

and switched capacitors, and that problem consists of two 

objectives with operational constraints.  

A. Total Cost 

The formulation of f1 aims to reduce the total energy cost 

and increase the savings and can be determined using (1) 

 1

1

, [$ / ],
c

j

N

p loss c c

j

f K P K Q year


     (1) 

where Kp is the annual cost per kw ($/kW/year), Ploss is the 

total active power loss (kw), Nc is the number of installed 

capacitors, Kc is the sum of purchase and installation costs 

of capacitor per kvar ($/kVAr), 
jcQ  is the reactive power of 

capacitor installed on bus j (kVAr). The total annual cost of 

capacitors (TCC) can be determined by [1] 
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B. Total Voltage Stability Index (TVSI) 

TVSI is determined based on (3), which should be 

increased, whereas the voltage stability is calculated at the 

receiving end bus according to (4) [39]: 
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where NB is a total number of nodes, vi is the voltage value 

of the sending end node i, Pj and Qj represent effective 

active and reactive powers at the receiving end node j, 

respectively, Rij and Xij represent the resistance and 

reactance of the connecting line between nodes i and j, 

respectively.  

Figure 1 presents a simple radial distribution line. The 

voltage stability index (VSI) is used to identify the buses 

that are probably going to collapse. For stable operation, the 

VSI values must be greater than zero. The node, which has 

the smallest value of VSI, is known as the weakest node, and 

the voltage collapse phenomenon will begin at that node. To 

minimize the chance of voltage collapse, VSI values for all 

nodes must be increased [2], [39], [40]. Optimizing this 

indicator means that the security level of the power system 

has become better. 

 
Fig. 1.  A simple radial distribution line. 

The objective function used to enhance TVSI is 

formulated as follows 

 
2 1/ .f TVSI  (5) 

C. Multiobjective Function 

The optimal capacitor placement problem aims to reduce 

power losses, enhance net savings, and total voltage stability 

index while satisfying system constraints. The mathematical 

formulation of the capacitor allocation problem can be 

expressed as multiple objectives using (6) 

 
1 2( ; ).minimize f f  (6) 

D. Operational Constraints 

1. Power balance constraints. 

Power balance constraints for active and reactive powers 

are considered equality constraints. The active power 

supplied from the slack bus should be equal to the total 

active power demand and the total active power losses. The 

reactive power supplied from the slack bus and the total 

reactive compensation should be equal to the total reactive 

power demand and the total reactive power losses. They can 

be expressed as follows:  
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where Pslack and Qslack are active and reactive powers fed 

from the slack bus, respectively, 
iDP  and 

iDQ  are active and 

reactive load demands of bus i, respectively, 
jLP  and 

jLQ  

are active and reactive power losses of line j, respectively, 

nl, n, and NC are total numbers of load buses, lines, and 
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capacitors, respectively [4], [40].  

2. Voltage limits. 

The magnitudes of voltages for all buses must be kept 

within the allowable minimum and maximum limits 

 ,min max

i i iV V V   (9) 

where min

iV  and max

iV  are the upper and lower limits of bus 

i, respectively [41]–[43]. 

3. Reactive compensation limits. 

Reactive power injection at each nominated bus should be 

restricted by lower and upper limits 

 ,min max

cj cj cjQ Q Q   (10) 

where min

cjQ  and max

cjQ  are the minimum and maximum limits 

of the reactive compensation on bus j, respectively. 

4. Line capacity limits. 

The apparent power flow for each line must be kept 

below or equal to the permitted capacity of each line 

 ,rated

li liS S  (11) 

where rated

liS  is the permitted power flow through line i.  

5. Total reactive power compensation. 

Total reactive power compensation must not exceed total 

reactive load demand 

 ,Total Total

C DQ Q  (12) 

where Total

DQ  donates the total reactive load demand of the 

system [4], [40]. 

III. DETERMINATION OF THE CANDIDATE BUSES FOR 

CAPACITOR PLACEMENT WITH FUZZY EXPERT RULES 

The most potential buses for capacitor placement in radial 

distribution systems are determined to limit the effort of the 

search process for the MOWCA. Therefore, the CPU 

processing time and the probability of the load flow to 

diverge become lower. The normalized loss sensitivity 

factor LSFnorm(j) and iv  are developed herein for this 

target. LSF can identify which bus has the least loss when 

reactive compensation is placed. Buses with lower iv  and 

higher LSF have a higher priority to be candidate buses 

[39]. As shown in Fig. 1, the active power loss in branch ij 

can be determined as [1] 
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LSF is derived from [1] 
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LSF is normalized to be modeled by fuzzy membership 

functions, and it is determined by 
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where LSFmin and LSFmax represent the smallest and largest 

LSF values, respectively, N is a total number of buses. 

LSFnorm values range from 0 to 1 [39]. 

The candidate locations for capacitor placement are 

selected on the basis of a set of fuzzy rules. iv  and LSFnorm 

are inputs for fuzzy expert rules, and suitability is the output 

consequent for these rules. Table I presents a summary of 

fuzzy rules in a decision matrix. These variables are 

expressed in linguistic terms: Small (S), Small-medium 

(SM), Medium (M), Large-medium (LM), Large (L), Small-

Normal (SN), Normal (N), and Large-Normal (LN) [44]. 

The membership functions (MFs) for these variables with 

trapezoidal and triangular shapes are depicted in Figs. 2–4.  

 
Fig. 2.  Membership functions for voltage. 

 
Fig. 3.  Membership functions for LSFnorm. 

 
Fig. 4.  Membership functions for suitability. 

The surface view is shown in Fig. 5. The centroid method 

is used as a defuzzification technique to obtain the 

preliminary list of the most candidate locations for capacitor 

placement. Buses that have the highest suitability values are 

selected as candidate locations for capacitor placement. 
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Fig. 5.  The surface graph of fuzzy expert rules. 

TABLE I. DECISION MATRIX FOR CALCULATING CANDIDATE 

BUSES. 

AND i
v  

 S SN N LN L 

LSFnorm S SM SM S S S 

 SM M SM SM S S 

 M LM M SM S S 

 LM LM LM M SM S 

 L L LM M SM SM 

IV. MULTIOBJECTIVE OPTIMIZATION PROBLEMS (MOPS) 

In MOPs, there are at least two objective functions that 

must be solved concurrently. MOPs can be mathematically 

written as:  

 
1 2: ( ) { ( ), ( ), ..., ( )},mMinimize F x f x f x f x  (16) 

 : ( ) 0, [1, ],iSubject to g x i n    (17) 

 ( ) 0, [1, ],ih x i p    (18) 

 , [1, ],i i iL x U i k     (19) 

where x is a vector of decision variables, n, p, and k are 

numbers of inequality constraints, equality constraints, and 

decision variables, respectively, gi and hi represent the ith 

inequality and equality constraints, respectively, Li and Ui 

are the lower and upper limits for the ith variable, 

respectively [17]. 

The multiobjective optimization aims to obtain as many 

nondominated solutions as possible. They can be defined as:  

 Pareto dominance: 

Consider two vectors U and V in the objective space. A 

solution U is said to dominate solution V (i.e., U ˂ V) if and 

only if solution U is partially less than solution V, which 

means [38]: 
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f U f V i m

f U f V i m

  


  
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where m represents the total number of objective functions. 

 Pareto optimal solution:  

U is considered a Pareto optimal solution if and only if no 

solution has been calculated to dominate U. A set of Pareto-

optimal solutions is known as a Pareto front [13]. 

V. WATER CYCLE ALGORITHM (WCA) 

The WCA [11] is inspired by the influx of water from 

rivers and streams to the sea and participates in the 

monitoring of the water cycle procedure [45].  

Like other heuristic optimization techniques, a random 

population of streams of size Npop × N is initially created 

after the raining process as written in (21) [13], [38] 

 [ ] , , ,
popij NN popPopulatio x i Nn j N      (21) 

where xij is the decision variable, Npop is the population size, 

and N is a number of decision variables. 

 ( ),initailx LB rand UB LB     (22) 

where rand is a random value distributed between 0 and 1, 

LB  and UB  are the lower and upper limits of the design 

variables, respectively [13].  

Npop is the sum of Nsr (i.e., the number of one sea and a 

total number of rivers Nr) and the remaining number of 

streams Nstream as clarified in (23) and (24): 

 ,sr rN = 1+N  (23) 

 .srpo r ap st e mN N N   (24) 

Each river and sea have assigned a number of streams 

determined by the following formula [35] 
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 (25) 

The distance X between the river and the stream may be 

changed randomly according to (26) 

 (0, ), 1,X C d C    (26) 

where 1 < C < 2 and it is preferably equal to 2, d is the 

existing distance between the river and the stream [11]. 

For the Npop dimensional search space, the new locations 

for streams and rivers can be updated by [13]: 
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i i i i
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1

( ).
i i i i

River River Sea Riverx x rand C x x


      (29) 

The exchange between the locations of both the river and 

the sea will take place if the solution of the sea is worse than 

that of the river. This is also done for the stream and its 

connecting river [35].  

After updating the locations of the streams and rivers, the 

evaporation process will be addressed. The evaporation 

process prevents early convergence. Basically, the 

evaporation process makes seawater evaporate as 

rivers/streams flow to the sea, which in turn has resulted in 

new precipitations. So, we must verify if the distance 

between river/stream and sea is close enough to make the 

evaporation process happen. The following pseudocode is 

used for this purpose 
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( ) ,

,

,

i i

Sea River maxif norm x x

execute raining proces

d

s

end

 

 (30) 

where dmax is a low value near zero.  

After the evaporation process occurs, the raining process 

creates new streams in different positions. The positions of 

the streams that are lately creating are determined by [11], 

[37], [46] 

 ( ).new streamx LB rand UB LB     (31) 

It is worth stating that extra searches are avoided by a 

high value of dmax while the low value of dmax promotes the 

search close to the sea intensively. The value of dmax is 

adaptively reduced by [11] 
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Proposed MOWCA. A crowding distance mechanism is 

applied to pick the most possible solutions in the population 

as a sea and rivers. The crowding distance can express the 

density of nondominant solutions in the archive. To estimate 

crowding distance values, the population in the archive must 

be arranged in ascending order depending on each cost 

function. The periphery solutions for each cost function are 

customized. The set distance value for all other intermediate 

nondominant solutions can be calculated as the absolute 

value of the normalized difference of two adjacent 

solutions. Before determining the crowding distance values, 

each cost function is normalized. The total crowding 

distance value is calculated as the sum of crowding distance 

values for each objective [13]. 

Once we obtain Pareto front archive, which includes 

nondominant solutions, we need to choose one of these 

solutions as the optimal solution by calculating μi as 
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
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
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where 
i  is the ith membership function, Fi is the ith 

objective function, m is a number of solutions, 
i  varies 

between 0 and 1. The normalized membership function is 

determined for each optimal Pareto solution k by 
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where n is the number of objective functions. 

The optimal solution to the capacitor placement problem 

can be determined according to (35) [39] 

 1 2{ , , ..., }.kBest Solution min     (35) 

Figure 6 presents the MOWCA flow chart. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  MOWCA flow chart. 

VI. NUMERICAL RESULTS AND DISCUSSION 

To illustrate the features of the proposed method and 

check its viability, the 33-bus and actual Portuguese 94-bus 

radial test systems are used. Two matrixes are used to solve 

the load flow problem in radial distribution systems: the bus 

injection to branch current (BIBC) matrix and the branch 

Start 

Set parameters for MOWCA 

 

Create the initial population as written in (21) 

 

Cost functions evaluation according to (1), (3)–(6) 

 

Keep the calculated nondominated solutions in the Pareto archive 

 

Choose sea and rivers according to the crowding-distance 

 

Assign number of streams for each river and sea using (23)–(25) 

Update positions of streams and rivers as clarified in (27)–(29) 
 

Is Evaporation 

condition reached 

(30)?  

Yes 

Execute raining process as given by (31) 
 

Reduce dmax adaptively using (32) 
 

Keep the calculated nondominated solutions in the Pareto archive 

 

Remove dominated solutions from the archive 

 

N

o 

Choose new sea and rivers according to the crowding-distance 

 

Is i = Maxiter?  

Yes 

Obtain the Pareto-archive and find the best compromise using (33)–

(35) 

 

N

o 
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current to bus voltage (BCBV) matrix [47]. The 

backward/forward sweep algorithm [48] is suggested to 

iteratively solve the equations and determine the node 

voltages. The proposed MOWCA and load flow method are 

coded and developed in the MATLAB R2017b version. The 

simulations are implemented in a Dell laptop with processor 

Intel(R) Core (TM) i3-3217U CPU @ 1.80 GHz, a 4.0 GB 

of RAM & 64- bit operating system.  

The optimal capacitor placement problem is treated as a 

multiobjective problem that seeks to improve total voltage 

stability and net savings while satisfying all operating 

system constraints. Comparisons are made with other 

published researches on the voltage profile of system buses, 

total power loss, total voltage stability, and net savings.  

Two scenarios are studied to determine the optimal 

solution: 

 Scenario 1: Optimal allocation of fixed capacitors; 

 Scenario 2: Optimal allocation of switched capacitors. 

The values of Kp, Kc, and life expectancy are supposed to 

be 168 $/(kW/year), 5 $/kVAr, and 10 years, respectively. 

Maintenance and running costs are omitted. Bus number 1 is 

considered a slack bus with voltage 1 p.u for all test 

systems. 

The following list of MOWCA tuned parameters with the 

required inequality constraints is presented in Table II. 

TABLE II. MOWCA PARAMETERS WITH THE SETTINGS OF 

REQUIRED CONSTRAINTS. 

Set parameters 33-bus RDN 94-bus RDN 

Npop 150 

Nsr 25 

dmax 10-16 

Max_iter 300 500 

Limit of voltage 

magnitude 

0.95 iV   

1.05 p.u 

0.9 iV   

1.1 p.u 

Permissible fixed 

capacitor limit 
50 to 1500 kVAr 

Permissible switched 

capacitor limit 
50 to1500 kVAr by step 50 kVAr 

A. IEEE 33-Bus System 

This system consists of 33 buses and 32 lines. Bus and 

load data are obtained from [49]. The single-line diagram of 

this system is portrayed in Fig. 7. The simulation 

calculations adopt the per-unit system. The base values of 

this system are 12.66 kV and 10 MVA. The total load 

demand is 3715 kW and 2300 kVAr. The first top 9 buses, 

depending on the fuzzy rankings, are nominated as potential 

locations for capacitor placement. They are 28, 6, 29, 8, 30, 

9, 13, 10, and 3. 

This system is characterized by heavy inductive loads that 

result in lower voltage values on system buses. The total 

power loss before compensation is 210.998 kW and 

143.033 kVAr. The annual cost of the kW loss in the base 

case is 35447.66 $. Bus voltages and system losses are 

improved by installing capacitor units, which provide 

reactive compensation resulting in a reduction in the current 

flow of the line. 

Table III summarizes the cropped results in the base case 

and after applying the MOWCA against the results of other 

competing algorithms (e.g., the interior point algorithm (IP) 

[50] and a combination fuzzy real coded GA (FRCGA) 

method [51]) in the 33-bus system to reduce power losses, 

improve the voltage profile, total voltage stability, and net 

savings.  

 
Fig. 7.  Single-line diagram of the 33-bus radial test system. 

The proposed MOWCA is superior to other existing 

techniques in that it achieves the least active power loss and 

the highest annual net savings due to allocating capacitors at 

the appropriate sizes and optimal locations. It can also be 

observed that scenario 2 can reduce power losses to 

145.9700 kW and 100.2083 kVAr with net savings of 

9999.7519 $/year corresponding to percentage savings of 

28.2137 % that are slightly better than those obtained by 

scenario 1. It can be noted that TVSI is enhanced after 

MOWCA is implemented. Scenario 1 can improve TVSI to 

28.0289, which is slightly more than 27.9532 of scenario 2. 

Figures 8 and 9 present the graphs of Pareto solutions and 

the best compromise in the 33-bus RDN for scenarios 1 and 

2, respectively. The comparison of voltage profiles before 

and after compensation for both scenarios is shown in Fig. 

10. Figure 10 highlights the improvement in voltage profiles 

in all buses after proposing capacitors and both scenarios 

give almost the same results for most buses. The minimum 

voltage is recorded in the base case of 0.9039 p.u in bus 

number 18. After proposing a MOWCA-based approach, 

the lowest voltage is better improved and meets the voltage 

limits. The lowest voltage at bus number 18 is 0.9500 p.u 

and 0.9502 p.u for scenarios 1 and 2, respectively, which 

are lower than the FRCGA of 0.9665 p.u.  

The total reactive compensation using MOWCA is 

1934 kVAr for scenario 1 and 1850 kVAr for scenario 2, 

which are significantly lower than IP of 2150 kVAr and 

FRCGA of 2250 kVAr. Although the total injected kVAr, 

total active and reactive power losses, and total cost using 

MOWCA are lower than those using IP and FRCGA, the 

minimum voltage using MOWCA is lower than those using 

FRCGA. 

 
Fig. 8.  Best compromise among the Pareto optimal set for scenario 1 in 

IEEE 33-bus. 
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Fig. 9.  Best compromise among the Pareto optimal set for scenario 2 in 

IEEE 33-bus. 

The proposed method outweighs other methods in annual 

cost and net savings, which means better performance of the 

system. It should be highlighted that the total capacitor cost 

(TCC) also decreases consequently as the performance of 

the system has been enhanced. The processing time for the 

proposed MOWCA-based approach is 877 seconds. The 

water cycle algorithm is also proposed in [34] to solve the 

problem of capacitor and DG allocation considering single 

and multiple objectives. Table IV presents the results of the 

proposed MOWCA and WCA [34] when optimizing only 

the power losses using shunt capacitors. 

 
Fig. 10.  Voltage profile for the 33-bus system with and without 

compensation. 

Although the minimum voltage and total injected reactive 

power using scenario 2 and WCA are almost equal, the 

reduction in power loss (%) using WCA is more than that 

obtained using the proposed approach. 

TABLE III. RESULTS AT BASE CASE AND AFTER APPLYING MOWCA IN 33-BUS RDN. 

Item Base Case IP [50] FRCGA [51] 
Proposed MOWCA 

Scenario 1 Scenario 2 

CQ  (kVAr) - 2150 2250 1934 1850 

Vmin (p.u) 0.9039 (18) - 0.9665 0.9500 0.9502 

Vmax (p.u) 0.9970 (2) - - 0.9976 0.9976 

LossP  (kW) 210.998 171.78 148.6951 147.7899 145.9700 

LossQ  (kVAr) 143.033 - - 101.5347 100.2083 

VSImin 0.6672 (18) - 0.8652 0.8146 0.8151 

VSImax 0.9881 (2) - - 0.9906 0.9905 

TVSI 25.5401 - - 28.0289 27.9532 

Optimal size in kVAr 

(location) 
- 

450 (9) 

800 (29) 

900 (30) 

100 (28) 

325 (6) 

425 (29) 

350 (8) 

675 (30) 

375 (9) 

50 (28) 

1004 (30) 

187 (9) 

203 (10) 

223 (14) 

267 (16) 

650 (30) 

350 (9) 

50 (13) 

350 (31) 

200 (14) 

250 (17) 

Annual cost of kW loss 

($/year) 
35447.66 28859.04 24980.78 24828.71 24522.97 

Total capacitors cost 

(TCC) ($/year) 
- 1075 1125 967 925 

Total cost (C) ($/year) - 29934.04 26105.777 25795.71 25447.968 

Net savings ($/year) - 5513.7 9341.9 9652.0094 9999.7519 

% Savings - 15.55% 26.35 % 27.2325% 28.2137 % 

TABLE IV. COMPARISON BETWEEN MOWCA AND WCA. 

Item WCA [34] 
Proposed method 

Scenario 1 Scenario 2 

CQ  (kVAr) 1848.4 1934 1850 

Vmin (p.u) 0.951 0.9500 0.9502 

Reductions in PLoss 

(%) 
35.4063 29.9568 30.8194 

Optimal size in 

kVAr (location) 

397.3 (14) 

451.1 (24) 

1000 (30) 

50 (28) 

1004 (30) 

187 (9) 

203 (10) 

223 (14) 

267 (16) 

650 (30) 

350 (9) 

50 (13) 

350 (31) 

200 (14) 

250 (17) 

B. IEEE 94-Bus System 

This system has 94 buses and 93 lines. The total load 

demand is 4797 kW and 2323.9 kVAr with a voltage level 

of 15 kV. The bus and load data for this system are found in 

[52]. Figure 11 shows the single-line diagram of this system. 

According to fuzzy rankings, the first 25 top locations are 

designated as candidate buses for capacitor placement. They 

are 11, 90, 10, 18, 21, 54, 52, 15, 83, ... 

The total power losses and the annual cost of the kW loss 

in the base case are 362.86 kW, 504.04 kVAr, and 

60960.48 $, respectively. The minimum voltage in the base 

case is 0.8485 at bus number 92. The minimum voltage is 
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not maintained within the allowable bounds because this 

system has demanding characteristics (i.e., high length of 

line and heavy load).  

 
Fig. 11.  Single-line diagram of the 94-bus radial test system. 

The results collected in the base case and after proposing 

MOWCA in addition to comparing it with the artificial bee 

colony (ABC) algorithm [40] are listed in Table V.  

TABLE V. OPTIMAL RESULTS AFTER APPLYING MOWCA IN 94-

BUS RDN. 

Item 
Base 

case 

ABC 

algorithm 

[40] 

Proposed method 

Scenario 1 Scenario 2 

CQ  

(kVAr) 
- 2100 2323 2300 

Vmin (p.u) 
0.8485 

(92) 
0.90721 0. 9174 0.9168 

Vmax (p.u) 
0.9951 

(2) 
0.99699 0.9972 0.9972 

LossP  (kW) 362.86 271.3590 270.4281 269.5503 

LossQ  

(kVAr) 
504.04 374.5060 373.7962 373.1232 

VSImin 0.5183 0.6774 0.7082 0.7065 

VSImax 0.9804 0.9879 0.9887 0.9886 

TVSI 62.2650 75.0565 75.9089 75.7675 

Optimal size 

in kVAr 

(location) 

- 

600 (18) 

450 (21) 

1050 (54) 

50 (10) 

521 (15) 

610 (20) 

318 (23) 

642 (57) 

50 (22) 

132 (56) 

300 (11) 

450 (18) 

100 (21) 

350 (83) 

300 (24) 

750 (57) 

50 (53) 

Annual cost 

of kW loss 

($/year) 

60960.48 45588.31 45431.92 45284.45 

Total 

capacitors 

cost (TCC) 

($/year) 

- 1050 1161.5 1150 

Total cost (C) 

($/year) 
- 46638.31 46593.42 46434.45 

Net savings 

($/year) 
- 14322.17 14367.06 14526.03 

% Savings - 23.4942 % 23.5678 % 23.8286 % 

 

The proposed method yields better results than the ABC 

algorithm in terms of reducing total active power losses 

from 362.86 kW to 270.4281 kW and 269.5503 kW for 

scenarios 1 and 2, respectively, and enhancing the net 

savings to 14367.06 $/year in the case of scenario 1 and 

14526.03 $/year in the case of scenario 2, corresponding to 

% savings 23.5678 % in the case of scenario 1 and 

23.8286 % in the case of scenario 2. In addition, there is a 

marked improvement in TVSI of 75.9089 with scenario 1 

and 75.7675 with scenario 2, which are better than 75.0565 

with the ABC algorithm. Moreover, it is manifested that the 

minimum and maximum voltages and VSI after 

implementing MOWCA are enhanced compared to those 

obtained by the ABC algorithm. This is due to the total 

reactive compensation using MOWCA being higher than 

that of using the ABC algorithm. It should be highlighted 

that scenario 2 achieves slightly better results than scenario 

1 for total power losses and net savings, but for TVSI, 

scenario 1 is slightly better. Figures 12 and 13 show the 

Pareto optimal set and the best compromise solution when 

scenarios 1 and 2 are used, respectively. The voltage 

profiles in the base case and after compensation for both 

scenarios using MOWCA are depicted in Fig. 14. It is 

noticeable that all bus voltages of this system are improved 

and both scenarios give almost the same results. The time it 

takes to implement the MOWCA-based method is about 

4971 seconds. 

 
Fig. 12.  Best compromise among Pareto optimal set for scenario 1 in IEEE 

94-bus. 

 
Fig. 13.  Best compromise among the Pareto optimal set for scenario 2 in 

IEEE 94-bus. 

The total injected power using MOWCA is 2323 kVAr 

and 2300 kVAr for scenarios 1 and 2, respectively, which is 

more than the ABC algorithm of 2100 kVAr. Although the 

power losses, minimum voltage, TVSI, annual cost of kW 

loss, and net savings are better using MOWCA than those 

using ABC algorithm, yet total capacitors cost (TCC) using 

MOWCA is more than that of using ABC algorithm due to 

more injected VArs using MOWCA. The proposed method 

gives better results than the ABC algorithm in terms of 

voltage profile, power losses, voltage stability, annual cost, 
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and net savings, which means better performance of the 

system. 

 
Fig. 14.  Voltage profile for the 94-bus system with and without 

compensation. 

VII. CONCLUSIONS 

In this article, a two-stage procedure is addressed to solve 

the optimal allocation problem of capacitors considering 

fixed and switched capacitors in IEEE 33 and IEEE 94-bus 

RDNs to increase the net savings and boost the static 

voltage stability index. A multiobjective scenario is 

considered. At first, bus voltages and loss sensitivity factor 

are employed as inputs for the fuzzy expert rules to find the 

most candidate buses for capacitor allocation. The 

MOWCA-based approach is then implemented to determine 

the optimal size and location of capacitors.  

The proposed MOWCA is compared with IP, FRCGA, 

WCA for the 33-bus system, and the ABC algorithm for the 

94-bus system reported from the literature. For the IEEE 33-

bus system, MOWCA results in active and reactive power 

losses of 147.7899 kW, 101.5347 kVAr, 145.9700 kW, 

100.2083 kVAr, total voltage stability index of 28.0289, 

27.9532 and net savings of 27.2325 %, 28.2137 % for 

scenarios 1 and 2, respectively. For the IEEE 94-bus system, 

MOWCA achieves active and reactive power losses of 

270.4281 kW, 373.7962 kVAr, 269.5503 kW, 

373.1232 kVAr, total voltage stability index of 75.9089, 

75.7675 and net savings of 23.5678 %, 23.8286 % for 

scenarios 1 and 2, respectively. A considerable 

improvement in net savings and total voltage stability index 

raises the security level and system performance. 

Comparisons with other methods considered in this paper 

have illustrated that MOWCA is robust and has excellent 

features in providing high-quality solutions.  

The future work will propose an approach to 

simultaneously solve the optimal allocation problem of 

multi-type DG units and shunt capacitors in the radial 

distribution systems based on MOWCA-based approach. 

The purpose of this work is to achieve better results in terms 

of voltage profile, voltage stability, losses, and net savings.  
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