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1Abstract—Asynchronous motors are the most commonly 

used types of motor in the industry. They are preferred 

because of their ease of control and reasonable cost. Since it is 

not desirable to suspend production in factories, it is required 

that motor failures used in production lines be detected quickly 

and easily. In this article, sound signals were recorded during 

the operation of the asynchronous motor, which is operational 

and with a rotor bar crack; and filtering, normalization, and 

Fast Fourier Transform were performed. The detection of 

rotor broken bar error was examined using the feed-forward 

backpropagation Artificial Neural Network (ANN) method. 

With intuitive algorithms such as the artificial bee colony and 

artificial ant colony, improvements to the ANN results were 

investigated. The experimental results verified that intuitive 

algorithms can improve the estimation performance of the 

neural network. 

 

 Index Terms—Ant colony algorithm; Artificial neural 

networks; Bee colony algorithm; Induction motor; Rotor bar 

crack. 

I. INTRODUCTION 

Asynchronous motors, which have important features 

such as cost effectiveness, easy speed control, low 

maintenance cost, and low maintenance requirement, are 

used in most production lines. Stator and rotor failures and, 

generally, mechanical failures can be seen in these motors. 

These failures must be detected during operation or in 

advance. In this way, by providing the proper operating 

conditions, the production system is prevented from being 

disrupted. 

An Artificial Neural Network (ANN) is a structure based 

on a human learning mechanism. ANNs have been used in 

the diagnosis of motor failures based on learning ability. In 

many studies, detection methods related to asynchronous 

motor bearing and stator failures were examined [1], [2]. 

Glowacz and Glowacz [3] detected stator failures of a 

single-phase asynchronous motor that employs acoustic 

signals. In the article, the sound signals of the one-phase 

asynchronous motor were examined through ANNs and the 

short circuit fault detection in the stator windings were 

analyzed. The comparison was made by using three 

different ANN methods. Delgado-Arredondo, Morinigo-
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Sotelo, Osornio-Rios, Avina-Cervantes, Rostro-Gonzalez, 

and Romero-Troncoso [4] examined a method known as 

motor current analysis, which identifies errors in 

asynchronous motors through sound and vibration signals. 

In this article, the error detection methodology was 

examined by acoustic signals in squirrel-cage induction 

motors. The study was carried out to detect rotor bar 

fractures, mechanical imbalances, and bearing defects in the 

motors. Khater, El-Sebah, Osama, and Sakkoury [5] created 

a special model for the detection of rotor fractures of the 

asynchronous motor driven by an alternating current (AC) 

driver. They examined the determination of the number of 

broken rotor bars of the asynchronous motor. In a model-

based study [6], alterations in three-phase currents were 

observed to diagnose rotor fractures and bearing failures of 

induction motors. Asad, Vaimann, Belachen, Kallaste, 

Rassölkin, and Iqbal [7] used the applied voltage variations 

on the motor to determine the broken rotor bar of the motor, 

whose torque was controlled by an inverter. The study 

revealed the results that the method was effective. Deus, 

Sobrinho, Belo, Brito, de Souza Ramos, and Lima-Filho [8] 

reported a less costly method than conventional methods by 

analyzing the stator current values of the asynchronous 

motor, detecting broken rotor bar failures at different levels. 

Garcia-Calva, Morinigo-Sotelo, Garcia-Perez, Camarena-

Martinez, and Romero-Troncoso [9] obtained results in the 

detection of broken rotor rod failure of inverter-driven 

motors by analyzing current harmonicity. Dias, da Silva, 

and Alves [10] detected broken rotor bars in AC motors, 

which brought up a new approach depending on current 

analysis. Soleimani, Cruz, and Haghjoo [11] reported a 

method for the detection of broken rotor bars in AC motors 

based on the examination of the air gap magnetic field 

between the stator and the rotor. Elez, Car, Tvoric, and 

Vaseghi [12] added two coils to the motor stator to measure 

the field change in the air gap. Magnetic field changes 

obtained by these coils were shown to detect rotor bar 

fractures in the motor. Gritli, Rossi, Casadei, Filippetti, and 

Capolino [13] examined the active and reactive powers of a 

three-phase winding rotor induction motor, and detected 

electrical faults of the rotor with rotor spectral current and 

voltage values. In the study in [14], before applying the 

monitoring methods based on the current analysis, the 
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presence of various harmonics in healthy machines was 

thoroughly analyzed, the harmonics of the rotor fractures 

were compared, and the failure was detected. Keskes and 

Braham [15] achieved highly accurate results in the 

detection of broken rotor bar failures, which are very close 

to the main frequency in the spectrum and difficult to 

realize, with both wavelength package conversion and a 

graphic support vector combination. The authors in [16] 

performed the detection of rotor bar semi-fracture by 

applying multiple signal analysis to the stator current signal 

with a Kalman filter. St-Onge, Cameron, Saleh, and Scheme 

[17] detected rotor rod fracture using the attribute extraction 

method with pattern-based diagnostics in three-phase 

asynchronous motors. Trachi, Elbouchikhi, Choqueuse, and 

Benbouzid [18] detected broken bearings and rotor bars 

using a high-resolution spectral analysis technique based on 

stator current measurements. Xu et al. [19] achieved 

positive results using the multi-feature extraction method in 

winding short circuit detection in motors. Ramu, Irudayaraj, 

Subramani, and Subramaniam [20] proposed a new 

approach to detect broken rotor bar failures using Hilbert 

Transform and ANN when the asynchronous three-phase 

motor is controlled by a motor driver. Wang, Liu, Guo, and 

Wang [21] conducted a study of engine error analysis using 

the noise-based incomplete wavelet packet analysis - ANN 

model in gasoline engines. 

When all these studies are examined, it is seen that the 

usage of ANN has increased in recent years in the detection  

of motor failures. And in this study, it is mainly proposed 

how the diagnostic performance of the ANN can be 

improved by employing intuitive algorithms. If the literature 

is examined, it is seen that no optimization process was 

performed during the submission of input data to the neural 

network [3], [20]–[23]. If metaheuristic optimization 

algorithms are viewed, it is seen that Artificial Bee Colony 

(ABC) and Artificial Ant Colony (AAC) algorithms have a 

simple and flexible structure [24]. They also provide ease of 

use for discrete problems. Therefore, in this study, the data 

set to be submitted to ANN was reordered using ABC and 

AAC algorithms, and the estimation performance of ANN 

was improved. 

In this study, audio signs of a three-phase induction 

machine with healthy and broken rotor bars were recorded. 

Noises were minimized by employing the windowing 

method. Fast Fourier Transformation (FFT) was applied to 

the filtered signs. The resulting samples were applied to the 

feed-forward backpropagation ANN, and the rotor crack 

detection performance of the developed ANN was 

examined. After that, the data order was arranged using the 

artificial ant and bee colony algorithms. Data were ordered 

by calculating the shortest distance in artificial ant 

optimization and determining the best source of artificial 

bee colony optimization. New weights were obtained by 

training the ANN with the input data set that had been 

reordered with the ABC algorithm or the AAC algorithm.  

The explanations on experimental results, intuitive-

assisted ANN details, performance, and evaluation, and 

ultimately the results, are presented in the following sections 

of the article, respectively. 

II. ARTIFICIAL NEURAL NETWORKS 

An ANN consists of a series of interconnected processing 

elements called “neurons”. A general view of the 

multilayered ANN structure, which is selected for 

employing in this study, is given in Fig. 1. 

 

Inputs 

Output 

Input layer 

Hidden layer 

Output layer 

 
Fig. 1.  Overview of the ANN. 

The general representation of an artificial neuron is 

presented in Fig. 2. In this topology, the outputs of the 

neurons in the previous layer are taken as input parameters 

to the neurons in the next layer. And in the neuron, the input 

parameter is multiplied by its own weight value and 

incorporated into the operations. The neuron collects these 

weighted signals and its threshold value. In a classical 

neuron structure, the neuron runs its activation function with 

the total result. Finally, it sends the output of the transfer 

function to the neurons of the next layer.  

 
Fig. 2.  The structure of the classical neuron. 

The relationship between the input signals and the output 

signal of a neuron is defined as 

   1
* ,

n

j i ij ji
y f x w 


   (1) 

where yj is the output value of the jth neuron, xi is the ith 

input value, wij is the weight value of the connection 

between the jth neuron and the ith input, θj is the threshold 

value of the jth neuron, n is the number of inputs, and f is 

the activation function used. 

Transfer functions such as the logarithmic sigmoids 

below can be preferred, since solutions to nonlinear 

problems are sought using ANNs. Furthermore, neuron 

function was selected as sigmoid as the output value would 

be in the range of 0 to 1 in this study 
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The input signals are normalized to be compatible with 

the operating range of the selected transfer function. 

Denormalization is performed on the attained output signals; 

however, denormalization is not needed in this study. 

To obtain the estimation ability, the ANN must undergo 

the training phase. In the training phase, the weight and 

threshold values are updated at each iteration, depending on 

the estimation error. In this study, the ANN parameters 

(weights and thresholds) are updated by performing the 

backpropagation algorithm which is given in detail in [25]. 

According to the termination criterion, the optimization 

process is stopped. The iteration number or the estimation 

performance can be chosen as the stopping criterion. Here, 

the iteration number is applied as a stopping criterion for the 

training.  

III. THE ARTIFICIAL BEE COLONY ALGORITHM 

The ABC algorithm was developed by modeling the 

behavior of bees searching for food in the natural world 

[24], [26]. It is accepted that the number of bees involved in 

this algorithm will be equal to the number of food sources 

available. In the algorithm, the bee colony is considered to 

consist of three different classes of bees: worker bees, 

onlooker bees, and scout bees. It is assumed that half of the 

colony are worker bees and the other half are onlooker bees. 

The scout bee, on the other hand, represents status and can 

be described as a temporary phase in which the worker bee, 

which is running out of food supply, randomly searches for 

a source of food. The worker bee, which runs out of nectar, 

turns into a scout bee. The algorithm uses the following 

equation to produce initial food sources 

 
min max min(0,1)( ),ij j j jx x rand x x    (3) 

where i: 1... SN and j: 1... D. Here, SN is the number of food 

sources and D is the number of parameters to optimize. The 

lower limit of the jth parameter is min

jx  and the upper limit of 

the jth parameter is max

jx . 

Each source has a worker bee. Therefore, the number of 

food sources and the number of worker bees are equal. The 

simulation to determine the new resource in the existing 

resource neighborhood is defined by the expression given in 

(4) 

 ( ),ij ij ij ij jkv x x x    (4) 

where j is a randomly selected value in the range of 1... D. k 

is a number selected in the range of 1... SN, and must be a 

number taking a value between 
ij   [-1, 1]. 

If these generated values exceed the previously 

determined parameters, the values will be offset according 

to the following formula 
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The conformity value of the new resource found is 

presented as follows 
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where fi is the cost value of the vi resource that is the 

solution.  

After completing their research in one cycle, all worker 

bees return and transfer the nectar information of the nectar 

sources they find to the onlooker bees in the form of dances. 

This is done using the conformity value. For this, the 

roulette wheel method is used. According to the roulette 

wheel method, the more the same option is in the areas on 

the rotating wheel, the more likely the arrow will point with 

that option.  

All conformity values are collected and formulated with a 

larger place on the wheel for those with good conformity 

values. 

The ratio of a resource’s conformity value to the sum of 

the conformity value of all resources gives that resource’s 

likelihood of being selected relative to other resources 

 

1

,i

i SN

j

j

fitness
p

fitness





 (7) 

where fitnessi is the quality of resource i, SN is the number 

of worker bees. 

After the probability values are calculated in the 

algorithm, a random number is produced in the range of [0, 

1] for each resource in the selection process according to the 

roulette wheel using these values. And if the value of pi is 

greater than the number produced, onlooker bees also 

produce a new solution, such as worker bees, in this 

resource region by using (4). 

The new solution is evaluated and its quality is 

calculated. The new and old solutions are compared and the 

optimal one is selected. This process continues until all 

onlooker bees spread to food areas. 

At the end of a cycle, when all worker and onlooker bees 

complete the search process, the worker bee in the finished 

resource now becomes a scout bee and randomly initiates 

the new resource search process, as given in (3). 

The optimization process continues until the termination 

criterion is reached. In this study, the number of iterations is 

chosen as the termination criterion. 

IV. THE ARTIFICIAL ANT COLONY ALGORITHM 

Animals that live in colonies and solve their problems 

through cooperation are described as social animals. Ants 

are also animals that fall into this group [27]. The AAC 

algorithm is an algorithm based on mathematical models of 

real ant behavior. However, the difference from artificial 

ants is that they have a certain memory, are not completely 

blind, and live in a discrete-time environment. This 

algorithm yields good results in the solution of the traveler 

seller problem, which is widely used in the literature [28]. 
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This problem consists of creating a closed tour with a 

minimum distance, provided that the seller visits each of the 

n number of cities once. Let dij be the distance between 

cities i and j 

 
1 2

2 2( ) ( ) .ij i j i jd x x y y       (8) 

If m indicates the number of ants in the colony, and bi(t) 

gives the number of ants at moment t, then (9) can be 

presented 

 
1

( ).
n

i

i

m b t


  (9) 

If τij(t) indicates the amount of pheromone substance 

stored in the line (i, j) between i and j, the pheromone 

substance at moment t + 1 is given as below 

 ( 1) ( ) ( , 1),ij ij ijt t t t       (10) 

where ρ is the evaporation rate. The amount of pheromone 

delivered in per unit time is calculated as 

 
1

( , 1) ( , 1).
n

k

ij ij

k
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For an ant, the heuristic information controlling the move 

from ith city to jth city is shown as follows 

 
1

.ij

ijd
   (12) 

Finally, the moving probability for the kth ant from ith 

city to jth city is presented in (13) 
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Above 𝛼 and 𝛽 are two positive real parameters that 

specify the relative influence of the pheromone trail and the 

heuristic information. For the kth ant when it is at the ith 

city, k

iN  is the set of cities in the taboo list that has not been 

visited yet. A taboo list is prepared for each ant to visit n 

number of cities. When the tour is completed, this taboo list 

is reset too. 

For this study, in the optimization study with the artificial 

ant colony algorithm, the distances between the spectral 

distribution points of each sign were taken into account and 

the shortest distance was calculated. The feed-forward 

backpropagation algorithm for the shortest distance values 

was reapplied to find the best solutions and new error values 

were given.  

V. EXPERIMENTAL STUDY FOR ROTOR FAILURE DETECTION 

The recorded motor sound signals for the detection of 

rotor bar fractures are processed step by step in accordance 

with the block diagram given in Fig. 3. 

 
Fig. 3.  Block diagram representation for stages of the study. 

Sound measurements made around the motor at various 

speeds and loads are taken in a laboratory environment and 

stored as data. Both for the healthy motor and for the motor 

where the rotor failure is created, these measurements are 

repeated and the audio data are transferred to the Matlab 

software. 

The windowing method was used to filter sound signals. 

After some trials, the number of windows taken as 80. 

Figures 4(a) and 5(a) show raw audio data. A new signal 

was obtained by taking the arithmetic average of the 80 

subparts of recorded audio data. Figures 4(b) and 5(b) show 

sound signals after the windowing process. The FFT 

transform of this resulting signal was performed, and the 

spectrums given in Fig. 4(c) and Fig. 5(c) were obtained.  

 
Fig. 4.  (a) Audio recording for the healthy motor; (b) Audio data obtained 

after windowing; (c) Spectrum change after FFT application.  

Spectral changes are obtained by using the FFT. Here, the 

number of spectral lines is 84, the bandwidth (fmax) is 

200 Hz and the frequency resolution (Δf) is 2.37 Hz. The 

sampling frequency (fs) was taken as 44 kHz and the block 

size (N) was 4096 in the time domain. In this study, to 

detect the faulty motor, the specific spectrum area, which 

includes the signals with an amplitude greater than 0.05, is 

considered. 

Figure 6 shows the spectrums selected for the healthy 

motor and faulty motor. This operation was applied to all 
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signals. 

 
Fig. 5.  (a) The audio recording for the faulty motor; (b) Audio data 

obtained after windowing; (c) Spectrum change after FFT application. 

The harmonics presented in Fig. 6 were normalized with 

regard to main omponent and switched to comparison 

processes. 

 
(a) 

 
(b) 

Fig. 6.  (a) Spectrum selection of the healthy motor and (b) faulty motor. 

The amplitude value of 0.05 is the choice criterion. 

A brief info about the experimental setup can be helpful 

to talk the laboratory studies. A 3-phase 0.25 kW 1390 rpm, 

380 V AC, 0.8 A squirrel cage asynchronous motor was 

used. An image of the motor examined is given in Fig. 7. 

 
Fig. 7.  The motor used in the test. 

AC Driver: An ABB brand ACS150 model driver of 

0.37 kW power was used as an AC driver to perform 

acoustic measurement at various speeds of the motor in the 

test circuit. A K&H brand, EM3320-1. A model magnetic 

braking unit was used to get acoustic measurements of the 

motor under load.  

Microphone: A condenser-type microphone was used for 

acoustic measurements. The sensitivity range of the 

microphone is between 100 Hz and 10 kHz.  

To create the bar fracture, a 2 mm-diameter hole was 

drilled from the point where the aluminum short circuit bars 

of the rotor were located after the rotor was removed from 

the motor. The resulting space was closed with silicone to 

prevent it from creating undesirable sounds. Figure 8 shows 

the hole that was drilled into the rotor.  

 
Fig. 8.  Single bar broken in the rotor. 

The motor was controlled by employing the AC driver. 

The motor was connected to the braking unit with the 

appropriate coupling. The microphone, located close to the 

body of the motor, was connected to the computer and audio 

files were recorded in *.m4a format. 

While the speed of the motor was controlled by the 

driver, the change of load was adjusted in Nm via the 

braking controller. The motor was loaded at 0 % (no load), 
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25 %, 50 %, 75 %, 100 %, and 125 % of the nominal torque 

value. In the trials, it was observed that when the torque 

values increased in low-speed revolutions, the motor did not 

revolve and was locked. Therefore, a total of 54 data were 

recorded. In Table I, the data that cannot be recorded are 

shown with x. rses-i, i: 1, 2, ..., 30 are audio files recorded . 

TABLE I. AUDIO FILES OBTAINED FOR DİFFERENT SPEEDS AND LOADS. 

Torque 

Speed 

0 % 

(0 Nm) 

25 % 

(0,42 Nm) 

50 % 

(0,85 Nm) 

75 % 

(1,28 Nm) 

100 % 

(1,71 Nm) 

125 % 

(2,14 Nm) 

25 % 

347 rpm/ 
rses1 rses6 rses11 x x x 

50 % 

696 rpm 
rses2 rses7 rses12 rses17 rses22 rses27 

75 % 

1042 rpm 
rses3 rses8 rses13 rses18 rses23 rses28 

90 % 

1251 rpm 
rses4 rses9 rses14 rses19 rses24 rses29 

100 % 

1390 rpm 
rses5 rses10 rses15 rses20 rses25 rses30 

The windowing method was applied in the Matlab 

software to filter the sound signal. FFT was performed for 

filtered audio data. For example, the spectrums obtained 

after the evaluation of the audio file of the motor with a 

solid rotor and the one with a single broken rotor bar with 

the Matlab are given in Figs. 9 and 10. 

 
Fig. 9.  The spectrums of the motor audio file of with a solid and broken 

rotor bar at 0 % torque (unloaded 0 Nm) and 100 % nominal speed 

(1390 rpm). 

 
Fig. 10.  The spectrums of the motor audio file with a solid and broken rotor 

bar at 125 % torque (2.146 Nm) and 100 % nominal speed (1390 rpm). 

VI. DEVELOPMENT OF INTUITIVELY SUPPORTED ANN 

Here, 44 data sets were used for training and 10 for 

testing. 22 of the 44 available data sets belong to the healthy 

motor, and the other 22 belong to the faulty motor.The first 

optimization study was performed using randomly ordered 

data sets. The second and third were made with data sets, 

which were ordered by ant colony and bee colony 

algorithms. The shortest distance value for the ant colony 

and the best source data for the bee colony algorithm were 

employed. The ABC algorithm usesm(3) to produce initial 

food sources [24]. The Mean Squared Error (MSE) is used 

as the performance index. Parameters for the ABC 

optimization algorithm: the number of food sources SN = 44 

(number of data sets used for training steps), the number of 

parameters to optimize D = 45 (number of inputs from 

ANN), iteration number = 10, lower limit min

jx  = 1, upper 

limit max

jx  = 44. It is reminded that after a great number of 

trials, the values with the best results were taken as 

parameter values in the optimization work 

 
21
,

2
m

m

MSE E   (14) 

where m is the number of data sets, Em is the estimation 

error 

 ,m m mE B Q   (15) 

where Bm is the expected output (healthy motor: 1, faulty 

motor: 0), Qm is the ANN output. 

In the AAC algorithm, this problem consists of creating a 

closed tour with a minimum distance, provided that the 

seller visits each of the n numbers of cities once [27], [28]. 

Distance dij is calculated by employing (8). The distances 

between the spectral distribution points of each sign were 

taken into account and the shortest distance was calculated. 

The feedforward backpropagation algorithm for the shortest 

distance values was reapplied to find the best solutions, and 

new error values were given. The MSE is used as an error 

function. Parameters for the AAC optimization algorithm: 

ant number = 50, iteration number = 10, pheromone 

parameter α = 1, parameter for the heuristic information β = 

1, evaporation rate δ = 0,5. These are the optimization 
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parameters determined with trial-error, which provide the 

best estimation results. The MSE changes through the 

optimization process for those two cases are presented in 

Figs. 11 and 12.  

 
Fig. 11.  The performance indices of ANN training for the case of ABC 

assistance. 

 
Fig. 12.  The performance indices of ANN training for the case of AAC 

assistance. 

In the figures, “backpropagation” shows the MSE of 

ANN with randomly ordered input data sets. “ABC” is the 

MSE variation of ABC-assisted ANN according to the 

iteration number, and “AAC” is the MSE variation of AAC-

assisted ANN according to the iteration number. 

VII. PERFORMANCE EVALUATION 

In the feed forward back propagation algorithm model, in 

which 54 data points are used, 44 data points are used for 

training and 10 data points for testing. There are 45 inputs 

for ANN. The inputs have been selected by taking 

amplitudes greater than 0.05 as seen in Fig. 6. In the feed-

forward backpropagation application with a single hidden 

layer with 10 neurons improved by an individual Matlab 

code, the test error rate was obtained as MSE of 0.0117872. 

At this step, a randomly ordered data set was used.  

ANN training was done with input data set sorted by 

ABC algorithm. The same operations were performed for 

the data set sorted with the AAC algorithm. Then, test data 

were applied to both ANNs, and MSE values were 

calculated for each one. Now we have the MSE values of 

three different ANNs. These values are presented in Table 

II. In the table, ANN-E is the MSE of ANN obtained using 

the randomly sorted data set, ABC-E is the MSE of ANN 

obtained using the data set sorted using the ABC algorithm, 

and AAC-E is the MSE of ANN obtained using the data set 

sorted using the AAC algorithm. 

It is shown  that ABC-supported ANN presents the best 

failure diagnosis performance with a MSE of 0.0107476.  

TABLE II. TRAINING AND TEST ERROR AND SUCCESS VALUES 

FOR ANN, ABC, AND AAC. 

 ANN-E ABC-E AAC-E 

MSE training 0.00975503 0.00888278 0.015111 

MSE2 test 0.0117872 0.0107476 0.0118269 

VIII. CONCLUSIONS 

As in rotor fractures, rotor cracks cause an imbalance in 

bar currents and ultimately vibrations due to the moment 

induced in the rotor. This difference can be evaluated by 

various comparison methods, and it is possible to detect 

fractures in the rotor bars of the motor by acoustic 

measurements.  

With this study, it was experimentally demonstrated that 

an ABC-assisted ANN can successfully diagnose rotor 

fractures. The test results indicate that ABC can improve the 

performance of the neural network faulty motor detection. If 

Table II is examined, it is seen that ABC-assisted ANN 

presents a 9 % improvement in rotor crack detection 

compared to ANN. 

Finally, future work will consider phase current signals 

and different metaheuristic optimization algorithms in the 

detection of motor failure. 
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