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1Abstract—A discrete-time improved input/output 

linearization controller based on a nonlinear disturbance 

observer is considered to secure the stability of a four-rotor 

unmanned aerial vehicle under constant and time-varying 

disturbances, as well as uncertain system parameters for its 

attitude behaviour. Due to the nature of the quadrotor system, 

it contains the most extreme high level of nonlinearities, system 

parameter uncertainties (perturbations), and it has to cope 

with external disturbances that change over time. In this 

context, an offset-less tracking for the quadrotor system is 

provided with the input/output linearization controller 

together with a discrete-time pre-controller. In addition, the 

robustness of the system is increased with a discrete-time 

nonlinear disturbance observer for time-varying disturbances 

affecting the system. The main contribution of this study is to 

provide highly nonlinearities cancellation to guarantee the 

aircraft attitude stability and to propose a robust control 

structure in discrete-time, considering all uncertainties. 

Various simulation studies have been carried out to illustrate 

the robustness and effectiveness of the proposed controller 

structure. 

 

 Index Terms—Discrete-time control; Nonlinear disturbance 

observer; Digital filter; Input-Output linearization. 

I. INTRODUCTION 

Within the last decade, the Unmanned Aerial Vehicles 

(UAV) are deployed for tasks where human interaction is 

dangerous. Today, there are many applications of UAV in 

sectors, such as military, transportation, and entertainment. 

Among the UAVs, the multi-rotors are mostly chosen for 

their agility and ability to hang in the air. Within the 

literature, many control methods are used to deploy to 

characterize the attitude and altitude problem of the 

quadrotors, which is commonly chosen as the multi-rotor-

framework [1], [2].  

When the autonomous flight of the quadrotor is 

considered, the main effort relies on the attitude and 

stabilization of the vehicle. For this purpose, the nonlinear 

control methods applied on the quadrotors are the nonlinear 

back-stepping [3]–[5], which can be taken into account the 

matched and unmatched uncertainties, or sliding mode [6], 

[7], which is robust and able to represent the system with 

lower-order dynamics suffers from chattering problem, their 
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combinations [8], [9], and input-output feedback 

linearization control,  which permits to have linear 

controller via state-feedback [10]–[12]. The input-output 

linearization problem of quadrotors can be found in [13], 

[14]. 

Since the real-life flight of these vehicles deploys mainly 

outdoor, the controllers do not take external disturbances 

into account and become fragile. Thus, the studies dealing 

with the disturbances on quadrotor systems have been 

carried out [15]–[17]. The system control problem is still 

up-to-date in [18]–[23].  

For control of UAV systems, in practice, it requires 

discrete-time signals, and due to the differences between the 

design in continuous-time and control signal implementation 

in discrete-time, the tuning of the design parameters may 

become a hard work. For this reason, several discrete-time 

controllers on the quadrotor are directly performed [24]–

[27]. The input-output linearization controller can here be 

emphasized as a nonlinear controller in discrete-time [28]–

[30].  

To overcome the system perturbations with its undesired 

consequences, time-varying disturbances, and stabilization 

of the attitude quadrotor UAV system, a discrete-time robust 

nonlinear controller with nonlinear disturbance observer is 

proposed in this study. 

Most of the previous works consider all the steps of the 

controller design in the continuous-time domain and then 

the discretization of the controller. However, in the 

particular case, the direct discrete-time controller approach, 

which is the focus of this paper, much effort is still needed 

to be put in for the solution of this up-to-date problem. In 

the light of the previous studies, the differences from the 

existing results and the significant additions of this study 

can be summarized as follows.  

 The constructed controller assures the offset-less high 

precision tracking under the effects of system 

perturbations and subjecting to constant disturbance.  

 In addition, the discrete-time discretization 

approximation error is rejected here with the aid of a 

digital filter compassing the effect of the digital PI. For 

the attenuation of the time-varying disturbance, which 

changes over time and is slower than system dynamics, it 

is considered by the nonlinear disturbance estimation.  
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 The solution of all the mentioned problems is 

implemented in the discrete-time domain. Finally, an 

improved robust control structure is tested via numerical 

simulations containing input saturation difficulties and 

limitations. 

II. SYSTEM DYNAMICS AND MODELING 

The general quadrotor UAV aircraft, which is used in this 

study, is presented in Fig. 1. Here, B is the Body frame and 

E is the Earth frame, and the structure of the system 

dynamics is fixed and uniformly distributed, also the 

propellers are static. The gravity centre of the system 

coincides with the B-frame centre. Moreover, the square of 

the propeller speed is considered proportional to the forces 

of thrust and drag. 

Since : ,T E B  the system transformation matrix from 

 , , '    for the roll, the pitch, and yaw Euler angles to 

 , , 'p q r  body-frame angular velocities is defined as in the 

equation below: 

 

 

     

     

1 0

0
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 

   

   







   
   
   
        

 (1) 

in which  * ,s   *c  represent  * ,sin   * .cos  Note that 

the Euler angles , ,   and   are defined in the range of 

 / 2, / 2 ,    / 2, / 2 ,   and  , ,   respectively. 

The translational and rotational dynamics using a Lagrange 

approach are expressed as [8], [24]: 

            1 1c sin θ c ψ s s ψ u K x / ,/x mm     (2) 

           1 2(c s θ s ψ s c /ψ u K y / ,my m     (3) 

      1 3c c θ u g z / ,/ Kmz m    (4) 

 
y z x r r x 2 x 4 x 2θψ(I I I J θΩ I) / / / / ,u I K I dl l      (5) 

 
z x y r r y 3y 3 5 yψ(I I ) / I J Ω I u I K θ/ ,I/ /l dl        (6) 

 
x y z z 43 6 zθ(I I ) / I u / I K ψ/I ,d      (7) 

for which , ,x y  and z  denote quadrotor the gravity origin, 

, 2, 3, 4id i   denotes the external constant or time-varying 

disturbances, l  is the distance in-between the rotor center-

gravity, and m is the total mass. Likewise, g represents the 

gravity acceleration. ,,x yI I  and zI  indicate the inertias of 

the system,  , 1, ...,6iK i   denotes the drag constants, 

1 2 3 4 ,r j       represents the  1, ..., 4jth j   

speed of a propeller, r  represents the overall speed of the 

propeller .j  rJ  is the inertia moment. 1 2 3, ,,u u u  and 4u  are 

the thrust applied to the body along z-axis, the roll input, the 

pitch input, and a yawing moment, respectively. Thus, 
2

j jF b   is the thrust force by the rotors. 1 2 3, ,,u u u  and 4u  

can be given as 1 1 2 3 4 ,u F F F F     2 4 3 ,u F F   

3 3 1,u F F   and   4 4 3 2 1/ ,u d b F F F F     in which 

b  is for the lift and d  is for the scaling factor for the force 

moment. Here, 
jF  is for the control signals applied to the 

quadrotor. 

 
Fig. 1.  The quadrotor UAV. 

After the continuous-time overall quadrotor UAV system 

dynamics are presented, the approximated system difference 

equations are needed for the design steps in discrete-time for 

the attitude behaviour. In this paper, the quadrotor UAV 

attitude system difference equations are obtained with the 

linear extrapolation method which is adopted from [23]. 

Defining         1 , , ,x k k k k     

 2 1x k           2 1 1 , 1 , 1 ,x k k k k         and 

        , ,2 , ,3 , ,4 ,i      the transformed continuous-

time attitude system dynamics are given by: 

    1 21 ,x k x k    (8) 

        2 1 ,i ix k f k g u k d k       (9) 

    1 ,y k x k   (10) 

where 0,1, 2, ...k   is the number of the sampling instants. 

For the sake of the readability of the short notations, 

   1 1 ,sx k x kT      2 2 ,sx k x kT       ,sf k f kT   

    ,i i sd k d kT      2 ,i s id k T d k  g  as the constant 

set, and    i i su k u kT  are used in (8), (9) and will be 

used in the sequel. sT  is the sampling period used in the 

discretization. The explicit version of (8) and (9) for each 

Euler angle is given in Appendix A. Here,  y k  

represents the outputs of the attitude system, i.e., Euler 

angles are defined as the system output. Additionally, notice 

that 

  
     

2

2 2 1
| ,t k

s

k k k
t

T


     
   (11) 

and 

  
   1

| ,t k

s

k k
t

T


  
   (12) 
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where    , ,t      denotes the Euler angles. Utilizing 

(11) and (12), the attitude dynamics of the quadrotor ((5)–

(7)) can be written as in (8) and (9). The mathematical 

arrangements are given in Appendix A. 

III. DISTURBANCE OBSERVER DESIGN 

In this section, the time-varying disturbances that affect 

the quadrotor UAV system are estimated by nonlinear 

disturbance observer (NDO) in the discrete-time setting. 

The NDO is designed with the assumption that the time-

varying disturbances are supposed to be unknown constant 

or time-varying disturbances that vary much slower than the 

quadrotor UAV dynamics. The advantage of the considered 

observer design in the discrete-time domain is that the 

measurements of the data of the systems are achieved via 

the digital sensor devices. 

Proposition: Consider the discretized attitude dynamics 

(8), (9). The estimation dynamics of the external disturbance 

asymptotically stable under the designed discrete-time NDO 

structure given by: 

     
2 2 2( ) ˆ ,iz k d k x k
     (13) 

 

   

      
2 2 2

2 2

( 1) ˆ
i

i

z k z k L d k

L f k g u k x k

  

   

   

    (14) 

if satisfying the condition     
2 22 2 ,x k L x k
    where 

 
2

,z k


  ˆ ,id k    
2

,x k


 and 
2

L


 stand for an 

augmented state variable, the estimation of the external 

disturbance, an auxiliary nonlinear function depend on the 

state variables and NDO design gain, respectively. 

Proof: Let define      ˆ
d i ie k d k d k   and 

      ˆ ,d i ie k d k d k     (15) 

where      1 .ˆ ˆ ˆ
i i id k d k d k     Utilizing the system 

dynamics (8), (9) and the observer dynamics (13), (14), 
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  (16) 

with 

        2 2 2 2 2 21 ,x k L x k x k           (17) 

 de k  is obtained as follows 

      2 .d i de k d k L e k     (18) 

In this point, regarding the natural motion of the external 

disturbance (   0id k  ), and if observer design gain 2L   

is designed with an appropriate assignment value such that 

remaining within the unit circle, then the observer error 

 de k  asymptomatically fast converges to zero which 

completes the proof.  

IV. PRELIMINARIES 

Before the design procedure of the input-output 

linearization controller is directly given, some pre-

conditions must be emphasized, such as relative degree, 

zero dynamics, and minimum phase [28]. The relative 

degree calculation is summarised as follows mathematical 

formulation 
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 (19) 

where      1 2; ,x k x k x k        

            2, ; .i i ix k u k x k f k g u k d k           

The formulation means that the relative degree is the 

integer r for the quadrotor attitude dynamics given by (8) 

and (9). Thus, 
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 (21) 
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  
 

(22) 

where 1 0H    and 2 0H    with selecting appropriate 

sampling time, e.g.,  1 4 / 1 ,s xH T K l I    

 2 42 / ,s xH T K l I    and 
2 /s xg T l I   in the case of 

   , , 2 .i    
1 1 2 2, , , ,H H H H     and ,g g   

information of the pitch and the yaw Euler angle can easily 

be obtained with the equations given in Appendix A. The 

relative degree of the discretized system (8), (9) for each 

 , i  is 2 since 
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Another critical issue is the zero dynamics so that if the 

zero dynamics of the considered system is local 

asymptotically stable (LAS), then a control law  iu k  exists 

and can be designed. Checking the LAS of the (8), (9), it 

can be easily determined according to whether the Jacobian 

matrix’s eigenvalues remain within the interior of the unit 

circle 
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(23) 

where       , .iy x k u k y k r  
      Hence, the 

Jacobian matrix eigenvalues locally remain within the unit 

circle considering .sT  As a result, an input-output linearized 

control law  iu k  that has to stabilize local asymptotically 

of the system (8), (9) exists. 

V. CONTROLLER STRUCTURE 

In this section, a discrete-time nonlinear input-output 

linearization controller is presented for stabilization of the 

attitude quadrotor. After controller design, the quadrotor 

attitude subsystem transformed into a linearized system with 

cancellation of highly nonlinearity effects.  

However, the linearized attitude system is still affected by 

the parametric uncertainties, external disturbances, and 

discretization errors. To attenuate the mentioned errors, the 

digital PI-like filter is used. Thus, in Fig. 2, the closed loop 

attitude control structure can be seen. 

As previous section taking into account discretized 

quadrotor dynamics, the input-output linearization controller 

is 

 

        
     

1

2 2 3 1 1

( ˆ

) / ,

i i iu k v k f k d k

x k x k g



  



  

   

   (24) 

and herewith the linear closed-loop input-output dynamics 

with relative degree 2 can be given as follows 

        1 2 32 ,1iv k y k y k y k          (25) 

where 1 2, ,   and 3  are the constant integers and iv  

denotes the new control input signal. The system attitude 

dynamics (8), (9) under the proposed controller (25) can be 

presented as      iy z G z v z   in the z-domain, namely 

  
1

3

1

2

1

1

2
G z

z z




 

 
 

 (26) 

with 1 0.   Hereby, the transfer function characteristic 

equation by shaping 1 2, ,   and 3  can be remodeled as 

locally asymptotically stable. Note that stability, 

performance, and robustness depend on the roots of the 

characteristic equations for each  , i . However, it is 

unlikely to directly design the location of the roots in the 

proposed input-output controller structure for a nonlinear 

system subject to unmodeled dynamics, uncertainties, 

external disturbances, and discretization errors. To obtain 

offset-less output trajectory tracking, another controller, 

which is called “pre-controller”, in this paper is needed. 

 
Fig. 2.  Block diagram of the discrete-time nonlinear attitude control structure. 

Let define the pre-controller transfer function  PG z  

and the closed-loop transfer function in the z-domain 

     / .C C CG z N z D z    The offset-less output response 

is guaranteed via     1| .C C zN z D z    Using the equality 

          / 1 ,C P PG z G z G z G z G z       plugging (16) 

into, 

  
   

    
1

32

1

1

2

1

C

P

C C

N z z z
G z

D z N z


 







 

 



 (27) 

is obtained. The minimal order pre-controller structure is 

possible via its degree being 2, so the proposed pre-

controller is casual. The denominator of the  CG z  can be 

selected as follows 

7
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   2

1 2 .CD z z z      (28) 

The pre-controller with   1 21CN z       is finalized 

as 

  
  

 

2

1

3

1

1

1

2

1 2

2

1 1

,
1

1
P

z z
G z

z z


 



 

 


   


  
 (29) 

where      / ,P i iG z V z E z     ,iV z  and  iE z  are the 

new control input and the control error in the z-domain, 

respectively. 

As a result of this section, the offset-less trajectory 

tracking for the discretized attitude quadrotor dynamics is 

provided with selecting the straightforward and suitable 

design parameters 1 2 3, ,,    and 1 2, .   Note that, 

although the proposed controller rejects many 

aforementioned undesired effects, the dynamics are still 

detorted by the time-varying disturbances. In this paper, an 

NDO designed in Section II for this problem solution is 

proposed. Clearly, considering   0de k   given by (18) 

under the assumption of changing much slower than the 

quadrotor UAV dynamics of the time-varying disturbances, 

the application of the controller (24) to the dynamics of (8), 

(9) using  ˆ
id k  instead of  id k  would result in the 

performance as though absent external disturbances. In this 

way, approximately eliminating the effect of the time-

varying disturbances, thus robustifying the input-output 

linearization controller, and this will be analysed in the 

numerical simulation results. 

VI. SIMULATION RESULTS 

To examine the effectiveness and robustness of the 

designed controller structure for the stabilization problem on 

the nonlinear uncertain quadrotor UAV, several numerical 

simulation results are presented. The results are carried out 

in MATLAB with a fixed sampling time 1 ms [24]. The step 

size of the solver of the quadrotor UAV dynamics is set as 

1 .s  The maximum input signal to each Euler angle of the 

system dynamics is saturated with 24 .N  The values of the 

parameters utilized in the simulation are given in Table I. 

All parameters of the quadrotor are considered as uncertain 

and the simulation results are obtained assuming that the 

controller is known 80 %  of the actual values of all the 

parameters. The initial states of the quadrotor UAV are set  

 1 3 5(0) (0) (0) 6, , / 6, / 6, /x x x          and 

 2 4 6(0) (0) (, , 0,0,00) .x x x    The time-varying arbitrary 

disturbance signal    0 ,id t Nm     10id t Nm , and 

 

   

   

   

   

10 5 0.5 3 7.5 7

5 0.2 10 0.4 9

2.5 0.08 1 5 0.07 1.5

2.5 0.05 2 ,

( )i sin t sin t

sin t sin t

sin t sin t

sin t

d t

Nm

 

 

 



    

   

 

 



  

 (30) 

are set to   0 5 ,s    5 8 ,s  and   8 20 ,s  

respectively. 

TABLE I. THE QUADROTOR UAV PARAMETERS.  

Variables Value Units 

m  2.0  kg  

x yI I  1.25  2 /Ns rad  

zI  2.2  2 /Ns rad  

1 2 3K K K   0.01  /Ns m  

4 5 6K K K   0.012  /Ns m  

l  0.2  m  

rJ  0.2  2 /Ns rad  

b  5  2 /Ns rad  

d  2  2Ns  

g  9.8  2Nms  

 

The discrete nonlinear proposed controller matches the 

discretized quadrotor dynamics UAV to a second order 

linear system. In this paper, the linear model is designed as 
2 0.99 0.0098,z z   and 0 0.0198   is selected, which 

means that unity static gain is 1. Then the denominator of 

the pre-controller is designed as 2 0.9 0.02.z z   However, 

the quadrotor dynamics is affected by the time-varying 

disturbances. For robustifying on this problem, the NDO 

with the two mentioned controller parts is combined. The 

observer design gain 2L   in the auxiliary nonlinear function 

    2 2 2x k L x k     is set to 0.35 regarding the speed of 

the quadrotor UAV.  

In the uncertain quadrotor system, the matched and 

unmatched uncertainties directly deform the performance of 

the system, i.e., transient and steady-state responses. The 

input-output linearization controller with the designed pre-

filter in the discrete-time domain has been performed under 

all constant system parameter uncertainties, discretized 

errors, and constant/time-varying disturbances. Note that the 

aforesaid constant uncertainties and constant disturbance 

occur the steady-state error throughout the system output. 

The devised pre-filter is activated with the simulation run 

time. Thus, the effect of the parameter uncertainties is not 

observed from the simulation results in 0 s–5 s (see (a) in 

Figs. 3–5). However, it can be understood from the 

simulation results in 5 s–8 s (see (b) in Figs. 3–5) which 

effect is completely rejected. When applied the constant 

disturbances to each Euler angle at the fifth second, the 

disturbance influences have been suppressed without the 

disturbance estimation.  

The simulation studies have been carried out under fixed 

and random disturbances, considering the full uncertain 

attitude quadrotor dynamics. In this context, the results for 

each Euler angle can be seen in Fig. 3, Fig. 4, and Fig. 5. 

These figures are given for three different scenarios: 

disturbance observer within the control structure, the control 

structure without disturbance observer, and the assumption 

in which the controller estimates the disturbance signal 

exactly. The results for each scenario are presented in the 

order of Euler angle positions (see a(1), b(1), c(1) in Figs. 

8
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3–5), Euler angle velocities (see a(2), b(2), c(2) in Figs. 3–

5), real disturbance and the estimated disturbance values 

(see a(3), b(3), c(3) in Figs. 3–5), and the control signal for 

each angle (see a(4), b(4), c(4) in Figs. 3–5). In Fig. 3(a), 

the uncertain attitude quadrotor dynamics guarantees the 

asymptotic stability. At the end of the fifth second, it is seen 

that the effect of the given constant disturbance is 

successfully suppressed for all three scenarios (see Fig. 

3(b)). It is understood from this point that without NDO the 

system is already asymptotically stable and performs a 

robust behaviour. On the other hand, when a time-varying 

arbitrary disturbance at the eighth second is presented to the 

system, the results do not execute the same performance 

anymore (see Fig. 3(c)). Here, without NDO, it is easy to 

see that the peak value of the disturbance behaviour of the 

closed-loop system is roughly four times bigger than the 

response value of the system with NDO. Besides, there is 

almost no difference between the controller which utilizes 

the estimated disturbance signal and the used assumption in 

which the controller estimates precisely the disturbance 

signal in the control loop. This result illustrates the superior 

performance of the NDO, which can be seen in Fig. 4(a), 

Fig. 4(b), and Fig. 4(c) and in Fig. 5(a), Fig. 5(b), and Fig. 

5(c), respectively. All aforementioned comments for Fig. 3 

are also valid for the other two figures. As a result, the 

proposed control structure solves asymptotically the stability 

and tracking problem in the quadrotor attitude subsystem 

local in discrete-time. Moreover, the effects of the time-

varying disturbance signal like wind-gust is suppressed as 

well as it is aimed. 

 

Fig. 3.  Results of 1 2( ) , .t x x    Response with NDO: blue dash-dotted line; response without NDO: black dashed line; response without NDO, but with 

full information disturbance of controller: red dashed line; estimated disturbance: blue dash-dotted line 2
ˆ( );d  real disturbance: red solid line 2( ).d   

 

Fig. 4.  Results of 3 4( ) , .t x x    Response with NDO: blue dash-dotted line, response without NDO: black dashed line; response without NDO, but with 

full information disturbance of controller: red dashed line; estimated disturbance: blue dash-dotted line 3
ˆ( );d  real disturbance: red solid line 3( ).d  

To better express the contribution of the proposed control 

structure, some comparisons from studies in the literature 

have been added to this section. In [21], a robust attitude 

controller based on a nonlinear disturbance observer 

(NDOB) is presented. In the cited paper, the peak-to-peak 

value for the attitude disturbance response of the quadrotor 

system without NDOB is approximately 20 deg. This value 

is 4 deg when including the NDO.  

9
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Fig. 5.  Results of 5 6( ) , .t x x    Response with NDO: blue dash-dotted line; response without NDO: black dashed line; response without NDO, but with 

full information disturbance of controller: red dashed line; estimated disturbance: blue dash-dotted line 4
ˆ( );d  real disturbance: red solid line 

4( ).d  

Namely, the method proposed in [21] has the capability 

of suppressing the amplitude of a sinusoidal disturbance to 

be approximately 0.2. In this paper, the proposed attitude 

controller with NDO has suppressed with the 0.1923 

capacity the amplitude of the considered time-varying 

disturbance signal. On the other hand, a nonlinear feedback 

controller with a nonlinear extended state observer is 

proposed for the attitude control of a quadrotor [22]. 

Besides, a robust sliding mode controller is given in [23] 

which was added as a comparison paper to [22]. In these 

papers, the time durations of the rejection of the constant 

disturbance are approximately attained as 1 s and 2.5 s, 

respectively. In this paper, the duration is approximately 

1.5 s. Note that these striking points are changeable 

according to case-by-case operation points. Consequently, 

the proposed control method in this paper successfully 

achieved its aim considering comparison values. 

VII. DISCUSSION 

The comprehensive simulation studies have been carried 

out to evaluate the different type uncertainties (constant 

system parameter, constant and time-varying disturbances) 

on attitude control of a quadrotor UAV under robust 

discrete-time I & O feedback linearizing controller with 

NDO. It can be clearly seen that the stabilization problem is 

overcome by an I & O feedback linearizing controller, 

which transforms the nonlinear attitude dynamics into a 

second-order linear system, and a pre-controller, which 

indicates the response of a PI-like digital filter, under 

constant any uncertainties. Hence, a linear and nonlinear 

combined robust controller is constructed with an offset-less 

response, but still taking effect time-varying disturbances, 

such as wind-gust. The NDO in the discrete-time setting is 

proposed to reduce the time-varying external disturbance 

effects. The estimated time-varying disturbance values are 

directly utilized in the controller input. Applying the 

proposed controller without any time-varying disturbances, 

the attitude tracking error asymptotically stabilized, 

however, this is not the case when there is such a 

disturbances effect. It can be clearly shown that the 

capability of attenuating the external time-varying 

disturbance of the proposed controller with NDO has a rate 

of roughly four times. The applicability of the established 

controller structure is successfully validated through 

simulation studies. 

VIII. CONCLUSIONS 

A discrete-time robust controller with an NDO is 

proposed for attitude stabilization of the nonlinear quadrotor 

UAV. The main conclusions are summarized as follows. 

 In the discrete-time setting, the attitude stabilization of 

a quadrotor system is performed considering system 

internal and external uncertainties and linearization 

errors.  

 The attitude performance is strengthened with an NDO 

design by employing the stability analysis in discrete-

time.  

 The stability of the attitude closed-loop system is 

evaluated in the sense of by the Jury criterion.  

 To test the performances of the devised controller 

structure, the simulation works are executed in detail. The 

effectiveness and robustness of the discrete-time 

proposed control structure have been demonstrated, and 

the presented results with comparisons have been 

promising in control of attitude tracking and stabilization 

for the aircraft systems. 

APPENDIX A 

In this section, the extraction of (8) and (9) formulation is 

presented in detail. At first, discretized of (5) using (11) and 

(12) it is derived as follows 

 
     

2

2 2 1 ( 1) ( )

ss

k k k k k

TT

         
    
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r( 1) ( )

( ) ( 1) ( )
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Ωy z
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s
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r

x

I I k k

I T

lu k K l k k
T d k

I I T

J

I

 

 

  
  

 





 
   

 
 (A.1) 

Let define 
1 ),( ()x kk   

2 ),( 1) (x k k    

1 ),( ()x kk   
2 ),( 1) (x k k    

1 ( ) ( ),kx k   and 

1 ( ) ( 1),x k k    the obtained last equation can be 

organized as with first-order difference equations below: 

  

 1 2( 1) ( ),x k x k    (A.2) 
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   (A.3) 

Thus, (31) and (32) are indicated in (8) and (9) in the case 

of selecting    , , 2 .i    With similar mathematical steps, 

   , ,3i    and    , ,3i    can be easily obtained as: 

 1 2( 1) ( ),x k x k    (A.4) 
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 (A.5) 

 1 2( 1) ( ),x k x k    (A.6) 
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 (A.7) 

respectively. Therefore, ( )f k  and ( )g k  in (8) and (9) can 

be explicitly matched to (A.2)–(A.7). 
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