
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

1Abstract—One of the most critical router’s functions is the

IP lookup. For each incoming IP packet, IP lookup determines

the output port to which the packet should be forwarded. IPv6

addresses are envisioned to replace IPv4 addresses because the

IPv4 address space is exhausted. Therefore, modern IP routers

need to support IPv6 lookup. Most of the existing IP lookup

algorithms are adjusted for the IPv4 lookup, but not for the

IPv6 lookup. Scalability represents the main problem in the

existing IP lookup algorithms because the IPv6 address space is

much larger than the IPv4 address space due to longer IPv6

addresses. In this paper, we propose a novel IPv6 lookup

algorithm that supports very large IPv6 lookup tables and

achieves high IP lookup throughput.

 Index Terms—IP lookup; IP networks; Packet switching;

Routers.

I. INTRODUCTION

The Internet constantly grows in every aspect: number of

hosts and network devices, number of links, link capacities,

variety of services and applications, QoS demands. Internet

routers are the main components of the Internet

infrastructure because the routers are responsible for the

forwarding of IP packets to their proper destinations. Thus,

routers enable the Internet’s global connectivity. Therefore,

performances of the Internet routers must be continuously

upgraded so that the routers could support and enable

Internet’s growth. The Internet routers must implement

efficient high-speed packet processing to keep up with the

Internet’s growth. Packet processing includes complex

tasks, such as IP lookup, packet classification, packet

scheduling and switching, packet buffering, etc. [1].

IP lookup is one of the most critical packet processing

functions [1]–[3]. For each incoming packet, IP lookup

examines the lookup table using the packet’s destination IP

address and retrieves the next-hop information. Lookup

table contains forwarding information for all the networks

known to the router. Forwarding information, collected via

routing protocols (BGP, OSPF, RIP, IS-IS), comprises the

pairs IP prefix and next-hop information (NHI). IP prefix

represents the destination network address (or aggregated

network address that represents multiple destination

networks). We use term “prefix” to denote IP prefix in the

remaining part of the paper. NHI represents the ID of the

output port to which a packet needs to be forwarded.

Manuscript received 3 February, 2021; accepted 11 June, 2021.

The worst case, considering the IP lookup, is when only

the shortest possible packets are arriving at a router. In this

worst case scenario, IP lookup must be completed in a time

that is equal to the shortest packet duration. Otherwise,

packets would pile up and eventually some packets would

be dropped. Nowadays, link capacities are extremely high,

so the shortest packet duration is very small. For example,

IP lookup function should support one IP lookup per 5.12 ns

in case of ethernet frames on 100 Gbps link [1]. This is a

challenging goal even with today’s technology. Since link

capacities continue to grow, the lookup time budget

decreases.

Also, as a consequence of the Classless Inter-Domain

Routing (CIDR), IP lookup can find multiple solutions

(matching prefixes) for the given destination IP address [3].

The Longest Prefix Matching (LPM) rule is applied when

multiple solutions are found [3]. LPM rule selects the prefix

that has the longest match to a given destination IP address.

Therefore, it is not enough to find a match during the

lookup, but a found match must be the longest match as

well. This makes the IP lookup a complex function because

IP lookup is a two-dimensional problem because two prefix

properties (prefix value and prefix length) need to be

checked during the search process.

Most of the existing IP lookup algorithms have been

developed to support IPv4 addresses, and many of them

scale poorly to IPv6 addresses. However, transition to

longer IPv6 addresses is inevitable. This transition increases

lookup table size because of the larger IPv6 address space.

The larger lookup table size makes more difficult the

efficient IP lookup implementation. Therefore, IP lookup

algorithms should have frugal memory requirements even

when lookup table contains large number of entries (one

million entries and beyond). Frugal memory requirements

enable high-level of parallelization and use of fast on-chip

memories, so faster IP lookup can be performed.

Network topology changes (router/link failure, traffic

congestion in some parts of network) can be very frequent

and they require lookup table updates. A lookup algorithm

has to efficiently update lookup table entries. Otherwise, IP

lookup process could be affected and as a consequence

packets could be incorrectly forwarded or even dropped.

In this paper, we propose a novel IPv6 lookup algorithm

Balanced Pipelined Lookup (BPL). BPL uses pipeline

technique to achieve high lookup throughput and to support

Scalable Balanced Pipelined IPv6 Lookup

Algorithm

Zoran Cica

Department of Telecommunications, University of Belgrade School of Electrical Engineering,

Bul. kralja Aleksandra 73, 11120 Belgrade, Serbia

zoran.cica@etf.bg.ac.rs

http://dx.doi.org/10.5755/j02.eie.28903

69

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

high-speed links. BPL is based on the binary tree that is split

into non-overlapping subtrees. The nodes of the subtrees are

evenly distributed across the pipeline stages. Each stage

contains similar number of nodes. In this way, each pipeline

stage uses the same type of memory making hardware

implementation very efficient. Only non-empty nodes of the

subtrees are stored to reduce the memory requirements.

Non-empty node is a node that contains an existing IP

prefix. The main contribution of the paper is the proposed

scalable BPL scheme suitable for fast and efficient IPv6

lookups. BPL has lower memory requirements compared to

other similar tree based lookup schemes. Also, BPL

supports efficient lookup table updates that do not decrease

the lookup performance.

The paper is organized as follows. Section II presents the

related work. We give special attention to the tree based

lookup algorithms because BPL belongs to this class of IP

lookup algorithms. Section III contains detailed description

of BPL. Section IV presents performance analysis of BPL.

Also, we compare the BPL with the lookup algorithms that

use similar techniques as the BPL. Section V concludes the

paper.

II. RELATED WORKS

IP lookup was recognized as router’s critical function

very early [3]. Many lookup algorithms have been proposed

so far [2]–[29]. Most of the lookup algorithms are designed

to support IPv4 addresses, but they usually do not scale well

to longer IPv6 addresses. There is an ongoing effort to

develop IP lookup algorithms that achieve efficient IPv6

addresses support [2], [7], [9]–[10], [12], [14], [16], [19]–

[20], [22], [25]–[26], [29]. All lookup algorithms can be

classified into three main categories [2]: tree based

algorithms [3]–[22], Ternary Content-Addressable Memory

(TCAM) based algorithms [23]–[25], and hash based

algorithms [26]–[29]. We present the tree based algorithms

related work in this section because BPL belongs to this

category.

The binary tree represents a natural way to describe

lookup table content [3]. Each prefix is represented as a

node in the binary tree. Path to the node represents the

prefix value. The binary tree is traversed using one

corresponding bit from the given destination IP address in

each step. Obviously, the main disadvantage of the binary

trees is large number of steps in the worst case. Thus, IP

lookup is very slow because many memory accesses are

required in the worst case. Since IP lookup should be very

fast, small number of memory accesses per one lookup is

allowed (only one for high-speed links).

The first technique that was introduced to optimize the

binary tree was the path compression that collapses one-way

branch nodes to reduce number of memory accesses on such

paths [3]. Multiple nodes with prefixes can be visited in the

binary tree during one lookup. Thus, the best current match

must be remembered during the tree traversal. To avoid the

remembering of the best current match, leaf pushing

technique is introduced [4]–[6], [18]. Leaf pushing

technique pushes the prefixes from the internal tree nodes to

leaf nodes, where a leaf node is the node without any child

nodes. In this way, the lookup result can be obtained only in

the leaf nodes. Downside of the leaf pushing technique is

increased number of nodes in the tree.

To reduce the number of memory accesses during lookup,

m-ry trees are introduced [3], [6], [8], [17], [21]. M-ry trees

use a stride of m bits in each step, so the number of memory

accesses in the worst case is m times lower than in the

binary tree’s worst case. Downside is that each node in m-ry

tree has 2
m
 child nodes, i.e., 2

m
 pointers must be stored in

each node of the m-ry tree. Stride size can be different in

each step to optimize the structure of the m-ry tree. Some

prefixes are not visible in m-ry tree because they belong to

binary tree levels that are not visible in the m-ry tree.

Therefore, these prefixes need to be pushed to the closest

level that is visible in m-ry tree. In [17], Huffman coding is

used to compress the lookup table entries into resulting m-ry

tree structure. Memory requirements are decreased

compared to classic m-ry tree solution, but the main

problem of multiple memory accesses remains.

The bitmap technique was introduced to minimize the

memory requirements of the lookup algorithm [2], [6]–[7],

[15], [18], [20]. One way to use the bitmap technique is to

reduce the number of pointers in the m-ry trees [6], [20].

Instead of 2
m
 pointers in a m-ry tree node, only one pointer

and associated bitmap vector are used. Pointer points to a

start location of a memory block that contains child nodes.

Bitmap vector length is equal to 2
m
 and each bit corresponds

to one child node. Bit in the bitmap vector represents the

existence of the corresponding child node. In this way,

memory size of one node in the m-ry tree is significantly

reduced. Typically, memory block, where child nodes of

one m-ry tree node are stored, is sized to store all child

nodes. Memory block can be sized to contain only the

existing child nodes to decrease lookup table memory

requirements, but it is very complicated to efficiently

manage the positions of these memory blocks in the

memory.

The other way to use the bitmap technique is to replace

the parts of the binary tree (subtrees) with bitmaps [7], [20].

Instead of storing complete subtree with all the subtree

nodes and their pointers, the subtree can be presented via

bitmap vector where each bit corresponds to one subtree

node. A bit in the bitmap vector signals the state of the

corresponding subtree node (empty or non-empty). In this

way, memory requirements for the subtree storage are

reduced, and the subtree search is faster because only the

bitmap vector is inspected.

To achieve high speed lookups, the maximal number of

memory accesses per one lookup should be only one. The

pipeline technique with multiple memory instances needs to

be used to virtually achieve this goal [4], [7], [13]–[14],

[18]. There are still multiple accesses per one lookup.

However, pipeline and multiple memory instances enable

lookups for multiple destination IP addresses in parallel.

Thus, it virtually seems like there is only one memory

access per one lookup. For efficient hardware

implementation, tree nodes need to be evenly distributed

across the pipeline stages so that each stage contains the

similar number of nodes [4], [14]. The even distribution of

nodes enables the use of the same type of memories in the

pipeline stages making the hardware implementation more

70

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

efficient. However, in these solutions, the first few stages

have lower number of stored nodes. In [13], the imbalance

problem of the early pipeline stages is avoided by using the

randomization principle and circular pipeline. The circular

pipeline enables to start searching at any pipeline stage and

the randomization principle enables even distribution of

nodes across all stages. However, the problem is a need for

scheduling algorithm that schedules the starts of the

requested IP lookups. Scheduling is needed to avoid the

potential collisions during the parallel lookups that started in

different pipeline stages.

One of the greatest problems of the tree based lookup

algorithms is transition to IPv6 addresses [2]. The IPv6

prefixes are longer than the IPv4 prefixes. The number of

empty nodes is very large in IPv6 case because the nodes in

the earlier tree levels are empty. The large number of empty

nodes leads to non-efficient memory usage and increases the

memory requirements [2].

In [14], the multilayer B-trees containing only non-empty

nodes are created. In this way, storage of empty nodes is

avoided and memory requirements are decreased. Each node

stores multiple prefixes, however, some free space should

be left in the nodes for efficient updates. In [5], the priority

tree structure is proposed. Priority tree eliminates the empty

nodes in the tree structure. Priority tree is constructed from

the binary tree in the following way. Each empty node is

filled with the prefix moved from the leaf that represents the

descendent of the corresponding empty node. If multiple

descendent leaves exist, then the leaf that corresponds to the

longest prefix is selected. After that, the selected leaf node

is deleted from the tree and all its parent nodes are also

deleted until the non-empty node is reached or the node that

has a child on the other side is reached. By repeating this

process, all empty nodes are eliminated from the tree. The

main advantage is that the number of nodes in the priority

tree is always equal to the number of prefixes, so the

priority tree solution is very scalable. It is very easy to

calculate the memory requirements for the priority tree

because the priority tree does not depend on the prefix

distribution. The downside is that each node in the priority

tree must contain the prefix value because the priority tree

path itself is not sufficient to determine the value of the

prefix associated with the node. In addition, the depth of the

priority tree is usually not significantly smaller than the

depth of the original binary tree, so the multiple memory

accesses problem still remains. The priority tree technique

can be applied to m-ry trees as well [8]. In [16], a

hierarchical-balanced search tree is constructed. This tree

contains only non-empty nodes that store prefix range

information. Memory requirements are very similar to the

priority tree ones, and the same problem of multiple

memory requirements is also present. In [19], priority trees

are combined with B+ trees and index tables to utilize the

prefix length distribution characteristics. Multiple priority

subtrees are created and consequently tree depth is

decreased.

Many novel solutions are adjusted and tuned for specific

platforms [20]–[22]. In [20], IP lookup is adjusted for

Phase-Change Memory (PCM) based memory system, and

in [21], the proposed IP lookup solution utilizes the

Graphics Processing Unit (GPU) parallel computing. IP

lookup solution proposed in [22] exploits the Single

Instruction, Multiple Data (SIMD) instructions.

III. BPL

The tree based IP lookup solutions usually have two

major problems that impact the overall performance. The

first problem is the large memory requirements because the

empty nodes are stored. The empty nodes do not carry any

useful information and they are only needed to enable the

tree traversing. On the other hand, frugal memory

requirements are desirable to fit the IP lookup solution on-

chip because only on-chip memory would be used then.

This would enable more efficient implementation that uses

pipeline and parallelization techniques. In the case of IPv6

lookup, most of the prefixes belong to the range of 32–48

bits [30]. This means that there is a huge number of empty

nodes that need to be stored, which limits the scalability of

the tree based IP lookup algorithms that store the empty

nodes.

The second problem is that the tree structure in its

original form is not suitable for the pipeline technique. The

reason is that the tree’s structure is uneven, and typically

more nodes reside at tree’s bottom levels than in the tree’s

upper levels. In the case of a naive approach, each tree level

would be one pipeline stage. This would create uneven

memory requirements for the pipeline stages and pipeline

implementation would be inefficient. Thus, a balancing of

nodes should be performed to achieve the same memory

requirements for all the pipeline stages.

Our proposed Balanced Pipelined Lookup (BPL) is based

on the tree structure similar to priority tree structure [5] that

stores only the non-empty nodes. This property eliminates

the problem of empty nodes that most of the tree based

solutions have. The tree that represents lookup table is

divided in 2
K
 subtrees, where K represents the top K bits of

the prefix. The non-empty nodes from all the subtrees are

stored across the pipeline stages in a balanced way to

achieve the same memory requirements for each pipeline

stage. In this way, efficient pipeline implementation is

enabled. In the remainder of this chapter, we denote non-

empty nodes as nodes. BPL subtree structure is shown in

Fig. 1. The example shows that the nodes of the subtree are

distributed across the pipeline stages. Taking into account

that all the subtrees are following the same principle, the

number of nodes across the pipeline stages can be balanced.

Thus, similar number of nodes in each pipeline stage can be

achieved. This enables very efficient pipeline

implementation of BPL. The children nodes of a subtree

node are placed in the same pipeline stage as we explain in

the following paragraph.

Note that each node in a subtree contains the prefix value

and the right/left child pointer. The right and left child of a

subtree node are stored in successive locations of the same

pipeline stage in the case when both children exist. In this

way, the memory requirements are decreased because only

one pointer is used in each subtree node. During the lookup,

the subtree is traversed using the bits of the destination IP

address. In each visited node, IP address is compared to the

prefix value stored in the node. When the end of the subtree

71

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

is reached, the last found positive match represents the

longest matching prefix.

Figure 2 shows the architecture of our proposed BPL. IP

lookup is very simple. The selector selects the subtree that

should be searched. All subtrees are stored in the pipeline

stages. The selected subtree is traversed and the longest

matching prefix is found. The corresponding next-hop

information (NHI) is retrieved from the next-hop memory

(NHM) at the final step of the IP lookup process.

Fig. 1. BPL subtree structure.

Fig. 2. BPL architecture.

The selector selects the subtree based on the top K bits of

the destination IP address because the top K bits represent

the common part for all the prefix values stored in the same

subtree. We choose the value of K = 16 for two reasons. The

first reason is that it provides sufficient number of subtrees

for efficient balancing of nodes across the pipeline stages.

The second reason is that typically there are no IPv6

prefixes shorter than 16 bits [30]. The selector comprises the

memory that contains the pointers to the roots of all the

subtrees. The pointer comprises two parts, the stage ID and

the location address. The stage ID identifies the pipeline

stage and the location address represents the location in the

corresponding pipeline stage memory where the root node

resides. The selector memory is addressed with the top K

bits of the destination IP address and the pointer to subtree’s

root is retrieved. The selector also removes the top K bits

from the IP address as they are no longer needed because all

the prefixes in the selected subtree match these top K bits.

Each node in the subtree contains the prefix value and the

left/right child pointer. The prefix value does not contain the

top K bits as they are already inspected in the selector. If the

node has both children, the left and right child nodes are

stored in the same pipeline stage in the successive memory

locations. Therefore, the pointer comprises a pointer value

and a 2-bit indicator that indicates the existence of the

left/right child node. The pointer value comprises two parts,

the stage ID and the location address. During the lookup,

subtree is traversed. In each visited node, the remaining part

of IP address (the top K bits are removed by the selector) is

compared to the stored prefix value. If there is a match, the

stage ID and the location address of the matched node are

remembered as the best solution. Each location in the NHM

corresponds to one location in the pipeline (pipeline stage

memories). In this way, the pointers to NHM locations are

avoided and thus the memory requirements are reduced.

Based on the stage ID and the location address of the

longest matching prefix, the corresponding NHM location is

determined and accessed to retrieve NHI as the final result

of IP lookup. NHM stores only NHI.

Figure 3 shows the design of one pipeline stage.

Pointer_in represents the address of the next node that

should be visited. Result_in represents the current lookup

solution. IP_addr_in represents the IP address without top K

bits that are removed by the selector. Bit_position_in

represents the position of the bit in the IP_addr_in that

should be used for determining the next node (left or right

child). All these inputs are delayed because the stage

memory introduces read latency. Location part of the

Pointer_in represents the stage memory read address. The

delayed Stage_ID part is compared to hardcoded ID of the

current pipeline stage. If there is no match, all input values

are passed to corresponding outputs without any processing

because the current stage does not contain the node of

interest. If there is a match, the node of interest is accessed

in the current pipeline stage and processing of the delayed

input values and node’s content is performed. The bit

position value is incremented. IF_INC increments the

pointer value if both child nodes exist and the right child

should be visited next, otherwise the pointer is not

incremented. The corresponding multiplexer is set to pass

the new pointer value to Pointer_out output. If there is a

match between the IP address and prefix value, we set the

currently best solution to address of the visited node and set

the corresponding multiplexer to pass this new solution to

Result_out output.

Fig. 3. Pipeline stage design.

We use incremental updates to update the lookup table.

The algorithm for adding a new prefix is very simple. First,

the top K bits of the prefix are inspected to determine the

existence of the corresponding subtree. If the subtree is

empty, the root node is created and the new prefix is placed

in the root node. Note that prefixes stored in the subtrees are

the original prefixes with the top K bits removed since all

the prefixes in the same subtree have the same value of the

top K bits. If the subtree is not empty, we traverse the

subtree starting from the root node. The traversed path is

determined by the bits of the new prefix (top K bits are

omitted). In the traversal step i, we inspect the bit on

position i to determine the direction of the next step. In each

72

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

visited node, we compare the length of the new prefix with

the length of the prefix stored in the currently visited node.

If the new prefix is longer or has equal length, then we just

move to the child node determined by the value of the

corresponding bit in the new prefix. If the new prefix is

shorter, then we store the new prefix in the currently visited

node, and the prefix that was previously stored in that node

becomes the new prefix and we continue to traverse the tree.

When the end of the path is reached (there is no

corresponding child to traverse to), a new node is created

and the new prefix is stored in the new node.

To achieve similar number of nodes in each pipeline

stage, the update process evenly distributes the subtree

nodes across the pipeline stages. When a new node is added,

the leaf node in the corresponding subtree is created. If the

parent of the created leaf node already has the other child,

the new node will be added in the pipeline stage where that

other child resides, because the child nodes must be in

successive locations. Note that we reserve location for the

missing child node when both children do not exist to

simplify the update process. The justification for this is that

the number of the non-leaf nodes that do not have both child

nodes is negligible compared to the total number of the non-

leaf nodes. If the parent of the created leaf node does not

have the other child, the created node will be added in the

least populated pipeline stage. If the least populated stage is

located after the pipeline stage where the parent node

resides, then the new node is simply stored in the least

populated pipeline stage. However, if the least populated

stage is located prior the pipeline stage where the parent

node resides, then nodes on the path to the added leaf node

are moved to prior stages as depicted in Fig. 4. An example

in Fig. 4 shows that the least populated pipeline stage is

stage 2. The prefixes P2, P3, and P4 are moved to the prior

stages. The P2 is moved to the stage 2, while the P3 is

moved to the place previously occupied by P2 in the stage 4.

In the same way, the P4 is moved to the location previously

occupied by P3 in the stage 6, while the P5 is stored in the

location previously occupied by P4 in the stage 12. Note

that Fig. 4 shows only the nodes on corresponding path of

the subtree. However, the movement of the nodes comprises

the movement of both nodes in successive locations. For

example, when P3 as a right child moves to P2’s old

location (right child location), the P2’s left child also moves

to P2’s old location (left child location). This does not

disturb the remaining part of the subtree because the P2’s

left child points to stages latter than stage 4 if P2’s left child

has descendant nodes. This means that the update process

does not disrupt the subtree structure and connectivity. As a

result of the described update process, we are able to keep

the even distribution of the nodes across the pipeline stages.

Fig. 4. Pipeline stage design.

The update part of the pipeline stage is not shown in Fig.

3 for the sake of simplicity. The update is very simple. The

update data are pushed in the pipeline in the form of the

address/data pair. The address represents the stage and the

location where the data should be written. Since dual-port

memories are used, the IP lookup is not interrupted with the

update. The replica of the lookup table is stored in the

control plane. In this way, all calculations are performed in

the control plane, and the data plane receives only the

aforementioned address/data pairs for the update process.

This decoupling of the control and data plane enables the

Software Defined Networking (SDN) support as well.

IV. PERFORMANCE EVALUATION

We compare our proposed lookup algorithm to several

recently proposed tree based lookup algorithms. We select

Linear Pipelined IPv6 Lookup Architecture (LPILA) [14],

Hierarchical Balanced Search Tree (Hi-BST) [16], Splitting

Approach to IP Lookup with Population Counting (SAIL-

PC) [18], and Multilevel Length-based-classified Index

Table (MLIT) [19] algorithms because each of them uses

some of the techniques used in BPL (balancing technique,

pipeline technique, and only non-empty nodes storage). To

achieve high lookup throughput, the on-chip memories need

to be used for the lookup table implementation. We compare

the on-chip memory requirements of the lookup algorithms

because the memory requirements of the lookup algorithm

need to be small enough to fit the on-chip memory. We

assume the NHI in all inspected lookup algorithms is stored

in the external memory as the NHI is accessed in the last

step of the lookup. Since IPv6 lookup tables are still not

very large (~100 K prefixes [30]), we simulate the contents

of the large IPv6 lookup tables using the concept of the

FRuG tool [31].

Table I shows the on-chip memory requirements for the

compared lookup algorithms for the table sizes 500 K–

1500 K prefixes. The on-chip memory is a critical resource

for the efficient IP lookup implementation. When the on-

chip memory requirements are too large, the slower external

memory needs to be used which negatively impacts the IP

lookup performance. Table I shows that the proposed BPL

has the lowest on-chip memory requirements. BPL has

lower memory requirements than Hi-BST because the top K

bits are omitted from the stored prefix values. In LPILA

scheme, the multiple prefixes are stored in one B-tree node.

LPILA has slightly larger memory requirements than Hi-

BST and BPL, because a free space is required in B-tree

nodes for fast updates. SAIL-PC is the second best solution

in terms of on-chip memory requirements due to efficient

utilization of bitmap technique and population counting

technique that decreases the memory requirements for

pointers. MLIT exhibits good performance for 500 K table

size, however, the memory requirements significantly

increase for the larger table sizes. Compared to the next best

lookup algorithm, the BPL has around 27 % lower on-chip

memory requirements that represent critical resource for the

IP lookup implementation.

We have also tested BPL on the FPGA chip XC7VX980T

from the Virtex7 family. For the lookup table of 753 K IPv6

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

prefixes, the design requires 6.44 MB (100 %) of the on-

chip memory, 31 K (5 %) LUTs, and 13.5 K (1 %) regs. The

achieved lookup throughput is the 120 millions of lookups

per second. The critical resource is the on-chip memory.

Larger IPv6 tables can be supported using the chips with

larger on-chip memories. For example, the FPGA chips

from Xilinx’s Virtex UltraScale family have up to 15.8 MB

on-chip memory [32]. Thus, our solution can support even

lookup tables with 1500 K prefixes according to the results

shown in Table I.

TABLE I. ON-CHIP MEMORY REQUIREMENTS.

 Algorithm
Table size

500 K 1000 K 1500 K

On-chip

memory

[MB]

BPL 4.39 8.75 13.04

LPILA 7.97 13.81 19.91

Hi-BST 6.37 12.99 19.85

SAIL-PC 6.01 12.03 18.07

MLIT 8.00 16.15 32.32

V. CONCLUSIONS

In this paper, we have proposed a novel lookup algorithm

BPL. BPL combines several techniques to achieve high

performances: pipeline, even distribution of nodes across

the pipeline stages, and tree with the non-empty nodes

structure. By comparing the BPL with the existing tree

based IP lookup algorithms, we show that BPL solves the

common problem of large on-chip memory requirements of

the tree based lookup algorithms. BPL has 27 % lower on-

chip memory requirements when compared to the next best

tree based lookup solution. Using the pipeline technique,

BPL achieves high lookup throughput of one lookup per

clock cycle, thus supporting link capacities of 100 Gbps and

beyond. BPL’s even distribution of nodes across the

pipeline stages is very attractive property for the efficient

hardware implementation. Since only non-empty nodes are

stored, BPL has frugal memory requirements. The frugal

memory requirements enable the BPL to fit on today’s

FPGA chips. BPL supports very large IPv4 and IPv6 lookup

tables. Update complexity of BPL is low, so BPL can

support frequent network topology changes without

negative effects on the IP lookup performance.

CONFLICTS OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES

[1] Z. Cica, “Analysis and implementation of packet processing functions

in internet routers”, in Proc. of 2012 20th Telecommunications Forum

(Telfor), Belgrade, Serbia, 2012, pp. 218–225. DOI:

10.1109/TELFOR.2012.6419186.

[2] A. Smiljanic and Z. Cica, “A comparative review of scalable lookup

algorithms for IPv6”, Computer Networks, vol. 56, no. 13, pp. 3040–

3054, 2012. DOI: 10.1016/j.comnet.2012.04.027.

[3] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and

taxonomy of IP address lookup algorithms”, IEEE Network, vol. 15,

no. 2, pp. 8–23, 2001. DOI: 10.1109/65.912716.

[4] W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond TCAMs: An

SRAM-based parallel multi-pipeline architecture for terabit IP

lookup”, in Proc. of IEEE INFOCOM 2008 - The 27th Conference on

Computer Communications, Phoenix, USA, 2008, pp. 1786–1794.

DOI: 10.1109/INFOCOM.2008.241.

[5] H. Lim, C. Yim, and E. E. Swartzlander, “Priority tries for IP address

lookup”, IEEE Transactions on Computers, vol. 59, no. 6, pp. 784–

794, 2010. DOI: 10.1109/TC.2010.38.

[6] W. Eatherton, Z. Dittia, and G. Varghese, “Tree bitmap:

Hardware/Software IP lookups with incremental updates”, ACM

SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 97–

122, 2004. DOI: 10.1145/997150.997160.

[7] Z. Cica and A. Smiljanic, “Balanced parallelised frugal IPv6 lookup

algorithm”, IET Electronics Letters, vol. 47, no. 17, pp. 963–965,

2011. DOI: 10.1049/el.2011.0966.

[8] S.-Y. Hsieh and Y.-C. Yang, “A classified multi-suffix trie for IP

lookup and update”, IEEE Transactions on Computers, vol. 61, no. 5,

pp. 726–731, 2012. DOI: 10.1109/TC.2011.86.

[9] T. Ganegedara and V. Prasanna, “A high-performance IPV6 lookup

engine on FPGA”, in Proc. of 2013 23rd International Conference on

Field programmable Logic and Applications, Porto, Portugal, 2013,

pp. 1–4. DOI: 10.1109/FPL.2013.6645558.

[10] O. Erdem and A. Carus, “Clustered linked list forest for IPv6 lookup”,

in Proc. of 2013 IEEE 21st Annual Symposium on High-Performance

Interconnects (HOTI), San Jose, USA, 2013, pp. 33–40. DOI:

10.1109/HOTI.2013.11.

[11] K. Huang, G. Xie, Y. Li, and A. X. Liu, “Offset addressing approach

to memory-efficient IP address lookup”, in Proc. of IEEE INFOCOM

2011, Shanghai, China, 2011, pp. 306–310. DOI:

10.1109/INFCOM.2011.5935151.

[12] Y.-H. Yang, Y. Qu, S. Haria, and V. K. Prasanna, “Architecture and

performance models for scalable IP lookup engines on FPGA”, in

Proc. of 2013 IEEE 14th International Conference on High

Performance Switching and Routing (HPSR), Taipei, Taiwan, 2013,

pp. 156–163. DOI: 10.1109/HPSR.2013.6602306.

[13] Y. Wu, G. Nong, and M. Hamdi, “Scalable pipelined IP lookup with

prefix tries”, Computer Networks, vol. 120, pp. 1–11, 2017. DOI:

10.1016/j.comnet.2017.03.017.

[14] M. M. Vijay and D. S. Punithavathani, “Implementation of memory-

efficient linear pipelined IPv6 lookup and its significance in smart

cities”, Computers & Electrical Engineering, vol. 67, pp. 1–14, 2018.

DOI: 10.1016/j.compeleceng.2018.02.044.

[15] T. Yang, G. Xie, A. X. Liu, Q. Fu, Y. Li, X. Li, and L. Mathy,

“Constant IP lookup with FIB explosion”, IEEE/ACM Transactions

on Networking, vol. 26, no. 4, pp. 1821–1836, Aug. 2018. DOI:

10.1109/TNET.2018.2853575.

[16] T. Shen, X. Yu, G. Xie, and D. Zhang, “High-performance IPv6

lookup with real-time updates using hierarchical-balanced search

tree”, in Proc. of 2018 IEEE Global Communications Conference

(GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1–7.

DOI: 10.1109/GLOCOM.2018.8647190.

[17] B. Indira, K. Valarmathi, and D. Devaraj, “A trie based IP lookup

approach for high performance router/switch”, in Proc. of 2019 IEEE

International Conference on Intelligent Techniques in Control,

Optimization and Signal Processing (INCOS), India, 2019, pp. 1–6.

DOI: 10.1109/INCOS45849.2019.8951425.

[18] M. I. Islam and J. I. Khan, “SAIL based FIB lookup in a

programmable pipeline based Linux router”, in Proc. of 2019 IEEE

20th International Conference on High Performance Switching and

Routing (HPSR), Xi’an, China, 2019, pp. 1–8. DOI:

10.1109/HPSR.2019.8808129.

[19] S.-Y. Hsieh, S.-J. Huang, and T.-H. Ho, “Multilevel length-based

classified index table for IP lookups and updates”, Journal of

Computer and System Sciences, vol. 112, pp. 66–84, 2020. DOI:

10.1016/j.jcss.2020.04.001.

[20] C. Kim and H. Lee, “A high-bandwidth PCM-based memory system

for highly available IP routing table lookup”, IEEE Computer

Architecture Letters, vol. 17, no. 2, pp. 246–249, 2018. DOI:

10.1109/LCA.2018.2883461.

[21] K. Kaczmarski and A. Wolant, “GPU R‐Trie: Dictionary with ultra

fast lookup”, Concurrency and Computation: Practice and

Experience, vol. 31, no. 19, 2019. DOI: 10.1002/cpe.5027.

[22] Y. Ueno, R. Nakamura, Y. Kuga, and H. Esaki, “Fast longest prefix

matching by exploiting SIMD instructions”, IEEE Access, vol. 8, pp.

167027–167041, 2020. DOI: 10.1109/ACCESS.2020.3023156.

[23] J.-Y. Huang and P.-C. Wang, “TCAM-based IP address lookup using

longest suffix split”, IEEE/ACM Transactions on Networking, vol. 26,

no. 2, pp. 976–989, Apr. 2018. DOI: 10.1109/TNET.2018.2815999.

[24] W. Li et al., “A power-saving pre-classifier for TCAM-based IP

lookup”, Computer Networks, vol. 164, Dec. 2019. DOI:

10.1016/j.comnet.2019.106898.

[25] R. Avazeh and N. Yazdani, “A new TCAM architecture for IP routing

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021

with update complexity equal to O(1)”, Canadian Journal of

Electrical and Computer Engineering, vol. 43, no. 4, pp. 207–217,

Fall 2020. DOI: 10.1109/CJECE.2019.2897277.

[26] B. Fradj, B. Wolff, N. Belanger, and Y. Savaria, “Implementation of a

cache-based IPv6 lookup system with hashing”, in Proc. of 2018

IEEE International Symposium on Circuits and Systems (ISCAS),

Florence, Italy, 2018, pp. 1–4. DOI: 10.1109/ISCAS.2018.8351362.

[27] L. Liu, J. Hu, Y. Yan, S. Gao, T. Yang, and X. Li, “Longest prefix

matching with pruning”, in Proc. of 2019 IEEE 20th International

Conference on High Performance Switching and Routing (HPSR),

Xi’an, China, 2019, pp. 1–6. DOI: 10.1109/HPSR.2019.8808125.

[28] H. Byun, Q. Li, and H. Lim, “Vectored-bloom filter for IP address

lookup: Algorithm and hardware architectures”, Applied Sciences,

vol. 9, no. 21, 2019. DOI: 10.3390/app9214621.

[29] T. Stimpfling, N. Belanger, J. M. P. Langlois, and Y. Savaria, “SHIP:

A scalable high-performance IPv6 lookup algorithm that exploits

prefix characteristics”, IEEE/ACM Transactions on Networking, vol.

27, no. 4, pp. 1529–1542, 2019. DOI: 10.1109/TNET.2019.2926230.

[30] IPv6 BGP Table Data. [Online]. Available: https://bgp.potaroo.net

[31] T. Ganegedara, W. Jiang, and V. Prasanna, “FRuG: A benchmark for

packet forwarding in future networks”, in Proc. of International

Performance Computing and Communications Conference (PCCC),

Albuquerque, NM, 2010, pp. 231–238. DOI:

10.1109/PCCC.2010.5682304.

[32] Xilinx, Virtex UltraScale family. [Online]. Available:

https://www.xilinx.com

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

75

