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1Abstract—This article focuses on applying a deep learning 

approach to predict daily total solar energy for the next day by 

a neural network. Predicting future solar irradiance is an 

important topic in the renewable energy generation field to 

improve the performance and stability of the system. The 

forecast is used as a support parameter to control the 

operation duty-cycle, data collection or communication 

activities at energy-independent energy harvesting embedded 

devices. The prediction is based on previous hourly-measured 

atmospheric pressure values. For prediction, a back-

propagation algorithm in combination with deep learning 

methods is used for multilayer network training. The ability of 

the proposed system to estimate the daily solar energy is 

compared to the support vector regression model and to the 

evolutionary-fuzzy prediction scheme presented in previous 

research studies. It is concluded that the presented neural 

network approach gave satisfying predictions in early spring, 

autumn, and winter. In a particular setting, the proposed 

solution provides better results than a model using the support 

vector regression method (e.g., the MAPE value of the 

proposed algorithm is 0.032 less than the MAPE value of 

support vector regression method). The time and 

computational complexity for neural network training is 

considerable, and therefore it was assumed to train the 

network on an external computer or a cloud, where only the 

network parameters have been obtained and transferred to the 

embedded devices. 

 

 Index Terms—Energy management; Environmental 

monitoring; Neural networks; Prediction algorithms.  

I. INTRODUCTION 

Energy-independent embedded systems are specially 

designed for deployment sites [1], where it is not possible to 

connect such devices to a power grid. A common solution 

for supplying energy to these devices is using batteries to 

satisfy energy demands. Due to the frequent deployment in 

inaccessible locations, this solution has several drawbacks. 

Another solution includes a combination of rechargeable 

batteries and an energy harvesting subsystem. This 
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approach, compared to a solution without energy harvesting, 

needs an energy management strategy, where a knowledge 

of the future energy availability can help to design a more 

efficient energy management strategy. This approach 

provides important input parameters represented by a future 

energy estimation and it allows the better scheduling of data 

collection tasks and the system can work efficiently in terms 

of the distribution of computational power [2], [3]. 

In general, predicting the future solar irradiance is an 

important topic in the renewable energy generation field. It 

is used to improve the planning and operation of the 

photovoltaic systems [4]. The accuracy of the prediction 

improves the performance and stability of the systems [5]. 

The solar availability can be predicted using many methods, 

such as statistical methods, artificial neural networks (NN), 

support vector machines, and autoregressive moving 

averages [4]. Besides these methods, other methods can also 

be used (regression tree, random forest, gradient boosting, 

and many others) in the context of the estimation of the 

future solar energy [6]. In general, these principles can be 

transferred to the energy harvesting embedded system area 

to estimate the future obtained energy when the estimation 

is based on an internal atmospheric pressure sensor. 

Machine learning (ML) methods, such as deep NN, are 

suitable for estimating future solar energy because they add 

complexity to a model without specifying what form the 

variation should take and allow the extraction of high-level 

features [7]. To improve the prediction performance, some 

authors proposed using hybrid models or an ensemble 

forecast approach [6], [8]. Deep learning enables the 

computational model (e.g., a multilayer NN) to create and 

remember a new representation of the input data [9]. 

Nowadays, models trained through deep learning have 

succeeded in the fields of speech and image recognition, 

object detection, time regression rows, etc. [10].  

Deep learning provides tools for solving complex 

problems using multilayer NN. A fusion of NN and deep 

learning approaches lead to Deep NN, which can be defined 

as NN with several (at least three or more) hidden layers [9]. 

The NN ability to solve more complex tasks increases with 

the increasing number of layers, but there are increasing 

demands on the complexity and time to train such a NN. 

Many problems solved by deep NN are based on mapping 

input data vectors to output vectors. The fulfilment of these 

tasks is conditioned by a sufficiently complex NN topology 
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with a large task-representing data set consisting of a set of 

input vectors and their corresponding output vectors. Tasks 

that cannot be implemented using input-to-output mapping 

are now largely beyond deep learning [10]. 

This paper focuses on the application of deep learning 

and NN approaches, especially on deep feedforward 

networks, to forecast the next-day solar energy availability 

from the atmospheric pressure in an energy harvesting 

embedded system. A back-propagation method is used to 

train a multilayer NN in combination with deep learning 

methods, such as optimalization, batch normalization, and 

initialization of weights. The algorithm implementation was 

executed in the C programming language. The results of 

each combination are compared to previous published 

approaches and an overall evaluation is provided. 

II. DEEP FEEDFORWARD NETWORKS 

The aim of the deep feedforward NN is to approximate a 

complex function f   by defining the mapping of the input 

vector x  to the initial vector .y  The mapping has the form 

of (1), where   represents the set of parameters resulting 

from the functional approximation [10] 

  , .y f x   (1) 

The deep feedforward NNs are formed by the hidden 

layers. The input and output layer are defined by the 

structure of the input and output data. The properties of a 

NN are determined by a topology, number, and width of the 

hidden layers. With the increasing number of layers and 

neurons, the complexity of the network training increases, 

but the ability of NN to solve more complex tasks also 

increases [11], [12].  

One of the deep learning methods is the gradient descent 

algorithm, which is used for NN learning. The gradient 

descent is a method of minimizing the purpose function 

 J   by parameterizing the model parameters .nR  

The parameterization is realized by updating the parameters 

in the direction opposite to the gradient of the objective 

function  J   [13].  

In general, there are three basics configurations of the 

gradient descent - a batch gradient descent (an ordinary 

gradient descent), a stochastic gradient descent, and a mini-

batch gradient descent - which differ according to the 

volume of data from the total dataset that is used to calculate 

the gradient of the objective function [14]. The most used 

gradient algorithm for descent optimization is back-

propagation (BP). Generally, BP is a type of batch gradient 

descent, but it can be converted to the other two types. The 

choice of type depends on the application, time 

requirements, availability, and data content [10]. 

The form of the stochastic gradient descent is shown in 

(2) 

  ; ; .new d dJ x t       (2) 

The parameter is updated for each training sample xd and 

its corresponding result td [15]. 

The stochastic gradient descent performs frequent updates 

with a high deviation, which causes high fluctuations in the 

purpose function. However, these fluctuations may allow 

them to escape from the local minimum, which may be 

advantageous, especially for the non-convex surfaces of the 

purpose function. On the other hand, it slows down 

convergence to the exact minimum, though this can be 

removed to some extent by optimizing the learning 

coefficient   (with a very good choice of ,  the same 

convergent behavior can be achieved as with the batch 

gradient descent) [14]–[30]. The learning coefficient α 

determines the length of the step that is in progress when 

updating to reach the (local) minimum. In other words, we 

follow the direction of the steepest slope of the surface of 

the purpose function in steps [30] 

  ; ;; ; .new d d n d d nJ x t        (3) 

The Mini-batch gradient descent is a compromise 

between the two approaches. This gradient descent method 

performs an update for each mini-batch of training data; 

therefore, the entire training data set is not used, but only a 

certain part of it, see (3) [16], [17]. Unlike the stochastic 

gradient descent, this method is not as sensitive to changes 

in hyper-parameters, especially the learning rate used during 

optimization, which leads to a reduction in fluctuations and 

thus to a more stable convergence [14]. 

A. Back-Propagation 

Back-propagation (BP) is a commonly used algorithm for 

training the multilayer feed forward NN [16]. There are 

various learning parameters, such as the learning rate, 

momentum or activation function which can improve the BP 

learning algorithm. These improvements significantly 

speed-up NN convergence and avoid convergences in the 

local minimum [18]. These approaches are described further 

in the subsections “Initialization of weights” and 

“Optimization methods”. 

The BP method requires a set of training data consisting 

of ordered pairs of vectors, where one pair is formed by a 

vector of input values ˆ
jx  and the other pair is formed by a 

vector of required outputs ˆ
jy  for input ˆ .jx  The set contains 

N of these training vector pairs [10]. 

The algorithm of the BP method consists of the following 

steps. Firstly, forward transmission is performed for the 

input-output pair of vectors  ,d dx t  and the vector of the 

calculated output values of NN y  (
ja  and 

jy  for each 

neuron) is stored. Secondly, the reverse transmission is 

realized and the result 
,

,d

l

i j

E






 where E is error function and 

  is set of parameters resulting from the best functional 

approximation, is stored. This step can be divided into the 

following sub-steps: 

1. Calculate 
L

j , i.e., calculate the auxiliary variables   

for the output layers L, see (4) 

  , .L L

j d j jL

j

E
t y

a



  


 (4) 
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2. Perform a calculation of 
k

j  for all neurons across all 

remaining layers (5), where F is the intrinsic potential of 

the neuron 

 
 

 
1

1 1

,

1

.
k

k r
jk k k

j j l jk
lj

F a

a
  



 




 


  (5) 

3. Calculate the individual error 
dE  according to , .k

j l  

 For hidden layers and the output layer by (6) 

 1

,

.k k

j ik

i j

E
y




 


 (6) 

 For the input layer by (7) 

 ,

,

.k

j d ik

i j

E
x




 


 (7) 

4. Perform steps a-c for all input-output vector pairs. 

Combine the individual errors 
,

d

k

i j

E






 to obtain the total 

error 
 

,

,
k

i j

E X



 


 for the whole set of training data (input-

output vector pairs) by (8) 

 
 

1, ,

, 1
.

N
d

k k
di j i j

E X E

N 

   
  

   
  (8) 

5. Update the weights according to the learning 

coefficient   by (9) 

 
 

, ,

,

,
.

new

k k

i j i j k

i j

E X
  



 
 


 (9) 

6. Repeat the entire procedure until the total NN error is 

less than the specified accuracy, or until the completion 

of a specified number of iterations [18], [19]. 

B. The Problem of the Vanishing-Exploring Gradient 

The problem of the vanishing-exploring gradient 

especially occurs in recurrent and multi-layered NN. The 

problem concerns the updating of NN parameters during 

learning. The principle of the vanishing gradient lies in the 

decreasing value of the partial derivative of the error 

function of a particular parameter during the learning 

process, which leads to a complete cessation of 

convergence. This causes the parameters in the remote 

layers to change significantly more slowly than in the layers 

close to the output layer. The simplest solution is to choose 

an activation function whose derivative is greater (e.g., 

ReLU). On the other hand, if the learning coefficient is 

chosen incorrectly, using the ReLU activation function can 

cause divergence. This problem can be largely eliminated by 

applying optimization methods and the appropriate 

initialization of parameters or pre-training [20], [21]. 

C. Initialization of Weights 

It is necessary to set the NN parameters before starting 

the learning algorithm with the proper selection of the 

initialization method. Those parameters should correspond 

to the chosen activation function (e.g., for sigmoid function 

it is suitable to initialize weights in the interval (0, 1), for 

hyperbolic tangent function, the interval (-1, 1)) [22] is 

more suitable. 

There are many weight initialization configurations, such 

as the Rectified Linear Unit (ReLU) activation function, 

hyperbolic tangent function, and sigmoid function. For the 

ReLU activation function, the correct weight initialization is 

not a major problem. For any nonnegative number, the 

gradient is equal to the internal neuron potential. For a 

negative number, the gradient is equal to 0 or the parameter 

.  However, for faster convergence, it is advisable to 

initialize the weights with numbers from the interval defined 

by (10), where n  is the number of inputs in layer k  

 
1

1 1

2 2
,k k

k k
n n

n n



 

 
  
 

. (10) 

For ReLU, Xavier initialization can be used with a 

normal distribution in the interval defined in (11) [23] 

 
1

2
0, .

k kn n 

 
   

 (11) 

For the hyperbolic tangent function, Glorot’s 

initialization with normal distribution in the interval defined 

by (12) is used [24] 

 
1 1

6 6
, .

k k k kn n n n 

 
    

 (12) 

For the sigmoid activation function, the uniformed Xavier 

initialization method in (13) is used [22] 

 
1 1

2 2
, .

k k k kn n n n 

 
    

 (13) 

D. Optimization Methods 

Optimization methods compensate for the problem of an 

increasing or decreasing gradient (i.e., a situation where 

either the gradient converges rapidly to zero or, conversely, 

diverges to infinity, such as the problem of a vanishing-

exploring gradient) [25].  

Adam is an algorithm for optimizing a stochastic object 

function based on the Jacobian calculation. The algorithm is 

computationally efficient with no extensive memory 

requirements and it is invariant to the diagonal scaling of 

gradients. This approach is based on the calculation of 

individual learning NN coefficients from the estimation of 

the first and second moment of the gradient [22]. The 

algorithm combines the advantages of the AdaGrad method, 

which is suitable for solving problems with small gradient 

values [5], and the RMSProp method, which is suitable for 
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the online learning mode (stochastic gradient descent) with 

non-stationary settings [26]. The advantage of Adam’s 

algorithm is that the magnitudes of the parameter changes 

are invariant to the gradient scaling. It does not require a 

stationary object and it is also suitable for cases where the 

gradient takes on small values [22].  

Nesterov Momentum is a modification of the traditional 

momentum method. The gradient is calculated at the point 

that would be reached after performing a previous step   

times. This point is obtained by summing the original values 

of the parameter with a multiple of the previous vector V  

(initialized to zero) with the friction parameter   [25]. 

RMSProp is one of the adaptive learning rate methods, i.e., 

methods that optimize the learning coefficient during NN 

training. It uses “signal-to-noise” normalization with an 

absolute magnitude of the gradient in combination with 

exponential averaging [25], [26]. 

E. Batch Normalization 

The training of deep NN is complicated by the fact that 

the inputs of all neurons in the hidden layers and the output 

layer are affected by the parameters of the previous layer’s 

neurons. During training, the parameters of neurons, and 

thus the activation variables and inputs of neurons, are 

changing. Changes in neuron inputs in the previous layer are 

transmitted to the current and subsequent layer. This 

propagation causes instability leading to reduced 

convergence or even divergence in the deeper layers. Such a 

problem is described as a change in the distribution of layer 

inputs. The change in layer distribution is referred to as an 

internal covariance shift [27], [28].  

The aim of the batch normalization is to reduce the 

internal covariance shift by adding a normalization layer. 

The normalization layer can theoretically be placed before 

the activation function application (this is pre-activation 

batch normalization) or at the output of the activation 

function (post-activation batch normalization). Practically, 

only the pre-activation version is usually used [27]. Batch 

normalization allows the application of a larger learning 

coefficient without the risk of divergence. It also performs 

model control and thus eliminates the need to use the 

Dropout control [29]. The normalization pre-activation layer 

is added for each neuron according to (14)–(18): 
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   

,
r r

i i ia v     (18) 

where 
 r

iv  is the r-th sample of the non-normalized 

potential of the i-th neuron, 
 r

iv  is the r-th sample of the 

normalized potential of the i-th neuron, 
 r

ia  is the r-th 

sample of the output of the normalization step of the i-th 

neuron,   is the offset to prevent the failure of the power 

factor calculation selected in the order of 810 .  ,i  
i  are 

neuron parameters introduced by batch normalization. These 

layers are always applied to one batch of samples of size m  

[27]. 

III. DEEP LEARNING EXPERIMENT 

The aim of the presented experiment was forecasting a 

solar energy availability for the following day by using a 

deep learning algorithm with a multilayer perceptron. A 

back-propagation algorithm was used to train multilayer NN 

in combination with deep learning methods, such as 

optimalization, batch normalization or the initialization of 

weights. Each of these deep learning methods has several 

configurations which will be compared. The deep learning 

experiment algorithm for one configuration of deep learning 

methods is shown on Fig. 1. 

 
Fig. 1.  The deep learning experimental algorithm. 

First, a test configuration of deep learning methods is set. 

Then the NN training is performed using the dataset 2012. 

Subsequently, the trained network is tested using the dataset 

2013, which results are the prediction of the available solar 

energy. Then the evaluation parameters of the resulting 

dataset are calculated. These parameters are used for 

comparison to other test configurations of deep learning 

methods, which are performed. 

Outputs of the forecast algorithm were validated by a 

Mean absolute percentage error (MAPE). All the 

experimentally chosen combinations of the learning 

algorithm settings and other forecasting approaches were 

compared using a Root mean squared error (RMSE). 

Two datasets (2012, 2013), which contain hourly 

measured values of the atmospheric pressure, were used in 

this experiment. The dataset from 2012 was selected for NN 

training. The trained NN was tested using the dataset from 

2013. The prediction of the solar energy availability for the 

following day based on the test dataset (2013), the 

21



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021 

calculation of the evaluation parameters (MAPE, RMSE), 

and the storage of the forecast output data is intended. The 

evaluation parameters were compared among all chosen 

combinations of the learning algorithm settings. 

A. Deep Learning Experimental Settings 

A deep feedforward network approach was selected for 

the realization of the experiment. The structure of the 

network was designed by an experimentally chosen number 

of layers and various types of activation functions (sigmoid, 

hyperbolic tangent, softsign, and ReLU (R), identity (I)). BP 

in three variants of gradient mode (mini-batch gradient 

descent (M), stochastic gradient descent (S), and batch 

gradient descent) was selected for the network training. BP 

in mini-batch mode was used to learn a model using back-

normalization (BN). Due to the small number of data 

samples, the batch size was always chosen for the mini-

batch gradient descent variant in the range from 0 to 10. The 

optimization was chosen among three optimization modes 

(ADAM, RMSProp with Nesterov Momentum (RMSProp) 

and Nesterov Momentum (NEST), none of them). There 

were three options to select from the initialization of the 

weights (Xavier, Sigmoid, and Glorot). The network 

configuration and training process settings were chosen 

experimentally. 

B. Experimental Data 

The experiment input data consisted of hourly measured 

values of the atmospheric pressure. The dataset from the 

entire year of 2012 was used for training the deep NN, and 

the dataset from the entire year of 2013 was used for the 

algorithm testing. The values of the atmospheric pressure in 

one day (24 values) and the value of available daily solar 

energy represented one input vector of the NN. The output 

vector consisted of an estimate of the value of the available 

solar energy for the following day. The range of input and 

output data values was normalized to a range from 0 to 1.  

The input vector (the measured pressure values in Pa) 

and the output vector (the values of the daily solar energy 

availability in 
2/J m ) of the training dataset must be 

normalized. Therefore, a data scaling procedure by mean 

normalization (19) was implemented 

 ,
max( ) min( )

x
z

x x





 (19) 

where x  is the vector of original values, z  is the vector of 

new values, μ is the average value, a and b are the min. and 

max. values of the required interval. 

Equation 20 was used to calculate an estimate of the 

available daily solar energy ˆ
AE  in 2/ ,J m  which is 

dependent on the day of the year, solar elevation, and solar 

altitude 

 ˆ 3600 sin .AE G



 


   (20) 

These parameters are represented by:   is the site 

latitude,   is the transmissivity estimate, and G  is the 

extra-terrestrial solar radiation. This calculation was taken 

from the work in [30] and ˆ
AE  values were used for 

designing the output vector of the training dataset for the 

NN learning. 

IV. EXPERIMENTAL EVALUATION 

A. Reference Methods 

The ability of the deep learning system to estimate daily 

solar energy was compared to the evolutionary-fuzzy 

prediction scheme (FR) and support regression model (SV). 

The reference results, which stated FR demonstrates better 

results than SV, were obtained from the work in [30].  

B. Evaluation Parameters 

After the NN training, the NN was tested using a dataset 

from the year 2013. The results of the forecast algorithm 

were validated by calculation of MAPE (21) 

  
1

1
,

n
i i

i i

x y
MAPE

n y


   (21) 

where n  is the number of the predictions, 
iy  is the real 

value of the pressure, and 
ix  is the predicted value of the 

pressure. 

To compare the accuracy of the forecast with other 

approaches, the RMSE (22) was calculated 

  
2

1

1
.

n

i i

i

RMSE x y
n 

   (22) 

where n is the number of the predictions, 
iy  is the real value 

of the pressure, and 
ix  is the predicted value of the 

pressure. 

V. RESULTS AND DISCUSSION 

The NN was tested with the experimentally chosen 

settings of the training parameters. The experiment used two 

datasets which contain hourly measured values of the 

atmospheric pressure. The first of them was used for 

network training and the second one was used for the 

trained network testing. The evaluation parameters were 

calculated to compare them to each other and to the results 

of the reference methods for each experiment configuration.  

Table I shows the MAPE and RMSE values of the 

individual configuration settings in the deep learning 

experiment, which performed best in experimental testing. 

The selected methods of the individual configurations are 

described in Table II. The N2 configuration (Nesterov, 

Batch Normalization) has the lowest value of MAPE (0.235) 

of all the proposed setting combinations. A comparison of 

MAPE values of the N1 (0.244) and N2 (0.235) 

configurations, which had the same settings except for the 

number of layers, shows that it is better to choose a larger 

number of layers for a more accurate forecast. The A1 

(MAPE = 0.249) and A2 (MAPE = 0.240) also had the same 

configuration apart from the initialization method and their 

comparison showed that the mode with Sigmoid is better 

than with Xavier. Once the optimization methods were 
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compared, it was shown that the best results are 

characterized by NEST (N1 - MAPE = 0.244), followed by 

ADAM (A1 - MAPE = 0.249, A4 - MAPE = 0.310) and 

RMSProp (R1 - MAPE = 0.330).  

It was also observed that the vanishing-exploring gradient 

problem occurs in several initial iterations with 

inappropriately chosen settings. The vanishing-exploring 

gradient problem more often occurs at settings without an 

optimization method or, in the case of the NEST 

optimization method, with an inappropriately chosen 

learning coefficient, which confirms the described 

theoretical background. The RMSProp and ADAM 

optimization methods generally required a smaller value of 

the learning coefficient then NEST. The learning coefficient 

value was also dependent on the selected learning mode, 

i.e., if a stochastic gradient descent or mini-batch gradient 

descent was selected (for the mini-batch gradient descent, it 

also depended on the batch size). In general, it could be said 

that the result of the learning was highly conditioned by the 

selection of the learning coefficient. The speed of the 

convergence was also affected by the initial parameter 

initializations, which were initialized by the Xavier or 

Sigmoid method. Better results were obtained with the 

Xavier initialization method.  

During the testing of various testing configurations, it 

was observed that if the total iteration number was 

increased, the network was re-learned and was not able to 

respond to sharp fluctuations (typical for the summer 

period). The forecast of the re-learned network 

corresponded to a filtering type or actual value averaging. 

The optimal number of iterations was between 10,000 and 

15,000 for the value of MAPE of each configuration except 

A3 and A4 (the number of iterations was set at 80,000). 

Regarding the gradient mode, it was empirically 

established that the batch gradient was not suitable for 

network training with the dataset (2012) because of 

unsatisfactory results. Therefore, no configuration with the 

batch gradient mode appeared in the top results of Table I 

and the gradient descent mode was just chosen from among 

the mini-batch mode and stochastic batch mode. A 

comparison of the results of A3 (MAPE = 0.240) with A1 

(MAPE = 0.249) and A4 (MAPE = 0.310) shows that the 

stochastic gradient descent is significantly better than the 

mini-batch.  

A comparison of the results from the previous study [4] to 

the deep learning experiment is shown in Table III. The 

table shows that the best result was achieved using the 

evolutionary fuzzy rules model (FR), which exceeds all the 

predictions obtained. However, the best forecasts from the 

trained NN surpassed all the above support vector 

regression models (SV). It could also be said that the 

forecasts in spring, autumn, and winter were more accurate 

in the case of the deep learning experiment.  

Figure 2 shows that the NN presents satisfying 

predictions in early spring, autumn, and winter because 

there were no significant fluctuations in daily solar energy 

availability. In terms of summer months and late spring, the 

forecast did not correspond to sudden fluctuations, which 

are typical for these months. In Fig. 2, a prediction of the 

specific configurations (A2, N2, and R2) is shown. The 

differences among these individual configurations are not 

statistically significant, as evidenced by the MAPE values. 

TABLE I. RESULTS OF THE EXPERIMENTAL INDIVIDUAL 

CONFIGURATION SETTINGS. 

Label MAPE 
RMSE  

 2MJ / m  

A1 0.249 2.958 

A2 0.240 2.945 

A3 0.240 3.009 

A4 0.310 3.248 

N1 0.244 3.020 

N2 0.235 2.935 

R1 0.330 3.402 

R2 0.249 2.975 

TABLE II. PARTICULAR COMBINATIONS OF THE INDIVIDUAL 

SETTING CONFIGURATIONS. 

Label Algorithm Mode Optimalization Initiation Act. function 

A1 BP M ADAM Xavier R, R, I 

A2 BP M ADAM Sigmoid R, R, I 

A3 BP S ADAM Xavier R, R, R, I 

A4 BN M ADAM Xavier R, R, R, I 

N1 BN M NEST Xavier R, R, I 

N2 BN M NEST Xavier R, R, R, R, R, I 

R1 BP M RMSProp Xavier R, R, I 

R2 BP M ADAM Sigmoid R, R, R, R, R, I 

TABLE III. COMPARISON OF THE DEEP LEARNING EXPERIMENT 

RESULTS (N2) TO REFERENCE APPROACHES (FR, SV R_L, SV_RP, 

SV_RR). 

Model MAPE RMSE 

N2 0.235 2.935 

FR 0.224 2.960 

SV R_L 0.267 3.160 

SV RP 0.362 3.444 

SV RR 0.387 3.472 

 
Fig. 2.  Comparison of the solar energy prediction for various 

configurations of the proposed deep learning approach. 

VI. CONCLUSIONS 

This paper introduces the application of deep learning 

methods with the aim of training a multilayer NN, which 

can use a prediction tool to estimate future incoming solar 

energy. The BP algorithm in combination with deep 

learning methods, such as optimalization, batch 

normalization, and the initialization of weights, was used for 

network training.  

In the results, it was observed that the N2 configuration 

had the lowest value of MAPE (0.235) than the other deep 

learning settings configurations. This MAPE value was 

0.032 less than the lowest value of the support vector 

regression method (the MAPE value of the SV R_L was 

0.267). It could be said that the results of the experiment are 
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comparable, and settings of the proposed solution are better 

than in models using the support vector regression method 

because all the MAPE values of the support vector 

regression are higher than the MAPE values of the proposed 

algorithm (N2). The results also showed that the forecast of 

the deep learning model did not perform with as satisfactory 

results in comparison to the evolutionary fuzzy rules method 

(the MAPE value of the FR was 0.224), based on that the 

MAPE value of N2 was 0.011 greater than of FR. Also, it 

could be clearly concluded that the NN gave satisfying 

predictions in early spring, autumn, and winter because 

there were no significant fluctuations in the daily solar 

energy availability. In terms of the summer months and late 

spring, the forecast did not correspond to sudden 

fluctuations, which are typical for these months.  

In the article in [31], there were used six neural methods 

to predict energy consumption - artificial neural networks 

(ANN), general regression trees (CART), exhaustive 

regression trees (CHAID), support regression trees (SRT), 

support vectors (SV), and multivariant method adaptive 

regression splines (MARS). The MAPE results ranged from 

0.160 to 0.350, ANN (MAPE = 0,225 - 0,280), CART 

(MAPE = 0,190 - 0,280), CHAID (MAPE = 0,230 - 0,280), 

MARS (MAPE = 0,175 - 0,350), SRT (MAPE = 0,165 - 

0,215), and SV (MAPE = 0,205 - 0,335). It could be said 

that the results of the proposed deep leaning experiment are 

comparable (MAPE of N2 = 0.235). 

The time and computational complexity for NN training 

was considerable, and therefore it was assumed the network 

was trained on an external computer or a cloud, where only 

the network parameters have been obtained and transferred 

to the embedded devices. Using the parameters obtained in 

this way, it was simple to implement a prediction model of 

an NN on an embedded system, because in the prediction 

phase, the network is represented by a look-up table. The 

memory consumption of the model depended on the size of 

the network (which determines the total number of 

parameters representing the NN), the type of architecture 

and the selected data type. 

It is important to emphasize that the outcome of the 

learning process was greatly affected by the initialization of 

the parameters that used pseudo-random number generators. 

Therefore, different NN training results could be achieved 

with the same settings. A possible improvement could be the 

use of more datasets measured over several years to train the 

NN. Another possible aspect could be using the Dropout or 

L2 control method. 
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