
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

1Abstract—This article focuses on applying a deep learning

approach to predict daily total solar energy for the next day by

a neural network. Predicting future solar irradiance is an

important topic in the renewable energy generation field to

improve the performance and stability of the system. The

forecast is used as a support parameter to control the

operation duty-cycle, data collection or communication

activities at energy-independent energy harvesting embedded

devices. The prediction is based on previous hourly-measured

atmospheric pressure values. For prediction, a back-

propagation algorithm in combination with deep learning

methods is used for multilayer network training. The ability of

the proposed system to estimate the daily solar energy is

compared to the support vector regression model and to the

evolutionary-fuzzy prediction scheme presented in previous

research studies. It is concluded that the presented neural

network approach gave satisfying predictions in early spring,

autumn, and winter. In a particular setting, the proposed

solution provides better results than a model using the support

vector regression method (e.g., the MAPE value of the

proposed algorithm is 0.032 less than the MAPE value of

support vector regression method). The time and

computational complexity for neural network training is

considerable, and therefore it was assumed to train the

network on an external computer or a cloud, where only the

network parameters have been obtained and transferred to the

embedded devices.

 Index Terms—Energy management; Environmental

monitoring; Neural networks; Prediction algorithms.

I. INTRODUCTION

Energy-independent embedded systems are specially

designed for deployment sites [1], where it is not possible to

connect such devices to a power grid. A common solution

for supplying energy to these devices is using batteries to

satisfy energy demands. Due to the frequent deployment in

inaccessible locations, this solution has several drawbacks.

Another solution includes a combination of rechargeable

batteries and an energy harvesting subsystem. This

Manuscript received 5 February, 2021; accepted 19 May, 2021.

This work was supported by the project No. SP2021/29, “Development

of algorithms and systems for control, measurement and safety applications

VII” of the Student Grant System, VSB-TU Ostrava. This work was also

supported by the European Regional Development Fund in the Research

Centre of Advanced Mechatronic Systems project, project No.

CZ.02.1.01/0.0/0.0/16_019/0000867, within the Operational Programme

Research, Development and Education. This work has received funding

from the European Union’s Horizon 2020 research and innovation

programme under Grant No. 856670.

approach, compared to a solution without energy harvesting,

needs an energy management strategy, where a knowledge

of the future energy availability can help to design a more

efficient energy management strategy. This approach

provides important input parameters represented by a future

energy estimation and it allows the better scheduling of data

collection tasks and the system can work efficiently in terms

of the distribution of computational power [2], [3].

In general, predicting the future solar irradiance is an

important topic in the renewable energy generation field. It

is used to improve the planning and operation of the

photovoltaic systems [4]. The accuracy of the prediction

improves the performance and stability of the systems [5].

The solar availability can be predicted using many methods,

such as statistical methods, artificial neural networks (NN),

support vector machines, and autoregressive moving

averages [4]. Besides these methods, other methods can also

be used (regression tree, random forest, gradient boosting,

and many others) in the context of the estimation of the

future solar energy [6]. In general, these principles can be

transferred to the energy harvesting embedded system area

to estimate the future obtained energy when the estimation

is based on an internal atmospheric pressure sensor.

Machine learning (ML) methods, such as deep NN, are

suitable for estimating future solar energy because they add

complexity to a model without specifying what form the

variation should take and allow the extraction of high-level

features [7]. To improve the prediction performance, some

authors proposed using hybrid models or an ensemble

forecast approach [6], [8]. Deep learning enables the

computational model (e.g., a multilayer NN) to create and

remember a new representation of the input data [9].

Nowadays, models trained through deep learning have

succeeded in the fields of speech and image recognition,

object detection, time regression rows, etc. [10].

Deep learning provides tools for solving complex

problems using multilayer NN. A fusion of NN and deep

learning approaches lead to Deep NN, which can be defined

as NN with several (at least three or more) hidden layers [9].

The NN ability to solve more complex tasks increases with

the increasing number of layers, but there are increasing

demands on the complexity and time to train such a NN.

Many problems solved by deep NN are based on mapping

input data vectors to output vectors. The fulfilment of these

tasks is conditioned by a sufficiently complex NN topology

Estimating Harvestable Solar Energy from

Atmospheric Pressure Using Deep Learning

Tereza Paterova*, Michal Prauzek

Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava,

Ostrava, Czech Republic

tereza.paterova@vsb.cz

http://dx.doi.org/10.5755/j02.eie.28874

18

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

with a large task-representing data set consisting of a set of

input vectors and their corresponding output vectors. Tasks

that cannot be implemented using input-to-output mapping

are now largely beyond deep learning [10].

This paper focuses on the application of deep learning

and NN approaches, especially on deep feedforward

networks, to forecast the next-day solar energy availability

from the atmospheric pressure in an energy harvesting

embedded system. A back-propagation method is used to

train a multilayer NN in combination with deep learning

methods, such as optimalization, batch normalization, and

initialization of weights. The algorithm implementation was

executed in the C programming language. The results of

each combination are compared to previous published

approaches and an overall evaluation is provided.

II. DEEP FEEDFORWARD NETWORKS

The aim of the deep feedforward NN is to approximate a

complex function f by defining the mapping of the input

vector x to the initial vector .y The mapping has the form

of (1), where represents the set of parameters resulting

from the functional approximation [10]

 , .y f x (1)

The deep feedforward NNs are formed by the hidden

layers. The input and output layer are defined by the

structure of the input and output data. The properties of a

NN are determined by a topology, number, and width of the

hidden layers. With the increasing number of layers and

neurons, the complexity of the network training increases,

but the ability of NN to solve more complex tasks also

increases [11], [12].

One of the deep learning methods is the gradient descent

algorithm, which is used for NN learning. The gradient

descent is a method of minimizing the purpose function

 J by parameterizing the model parameters .nR

The parameterization is realized by updating the parameters

in the direction opposite to the gradient of the objective

function J [13].

In general, there are three basics configurations of the

gradient descent - a batch gradient descent (an ordinary

gradient descent), a stochastic gradient descent, and a mini-

batch gradient descent - which differ according to the

volume of data from the total dataset that is used to calculate

the gradient of the objective function [14]. The most used

gradient algorithm for descent optimization is back-

propagation (BP). Generally, BP is a type of batch gradient

descent, but it can be converted to the other two types. The

choice of type depends on the application, time

requirements, availability, and data content [10].

The form of the stochastic gradient descent is shown in

(2)

 ; ; .new d dJ x t (2)

The parameter is updated for each training sample xd and

its corresponding result td [15].

The stochastic gradient descent performs frequent updates

with a high deviation, which causes high fluctuations in the

purpose function. However, these fluctuations may allow

them to escape from the local minimum, which may be

advantageous, especially for the non-convex surfaces of the

purpose function. On the other hand, it slows down

convergence to the exact minimum, though this can be

removed to some extent by optimizing the learning

coefficient (with a very good choice of , the same

convergent behavior can be achieved as with the batch

gradient descent) [14]–[30]. The learning coefficient α

determines the length of the step that is in progress when

updating to reach the (local) minimum. In other words, we

follow the direction of the steepest slope of the surface of

the purpose function in steps [30]

 ; ;; ; .new d d n d d nJ x t (3)

The Mini-batch gradient descent is a compromise

between the two approaches. This gradient descent method

performs an update for each mini-batch of training data;

therefore, the entire training data set is not used, but only a

certain part of it, see (3) [16], [17]. Unlike the stochastic

gradient descent, this method is not as sensitive to changes

in hyper-parameters, especially the learning rate used during

optimization, which leads to a reduction in fluctuations and

thus to a more stable convergence [14].

A. Back-Propagation

Back-propagation (BP) is a commonly used algorithm for

training the multilayer feed forward NN [16]. There are

various learning parameters, such as the learning rate,

momentum or activation function which can improve the BP

learning algorithm. These improvements significantly

speed-up NN convergence and avoid convergences in the

local minimum [18]. These approaches are described further

in the subsections “Initialization of weights” and

“Optimization methods”.

The BP method requires a set of training data consisting

of ordered pairs of vectors, where one pair is formed by a

vector of input values ˆ
jx and the other pair is formed by a

vector of required outputs ˆ
jy for input ˆ .jx The set contains

N of these training vector pairs [10].

The algorithm of the BP method consists of the following

steps. Firstly, forward transmission is performed for the

input-output pair of vectors ,d dx t and the vector of the

calculated output values of NN y (
ja and

jy for each

neuron) is stored. Secondly, the reverse transmission is

realized and the result
,

,d

l

i j

E

 where E is error function and

 is set of parameters resulting from the best functional

approximation, is stored. This step can be divided into the

following sub-steps:

1. Calculate
L

j , i.e., calculate the auxiliary variables

for the output layers L, see (4)

 , .L L

j d j jL

j

E
t y

a

 (4)

19

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

2. Perform a calculation of
k

j for all neurons across all

remaining layers (5), where F is the intrinsic potential of

the neuron

1

1 1

,

1

.
k

k r
jk k k

j j l jk
lj

F a

a

 (5)

3. Calculate the individual error
dE according to , .k

j l

 For hidden layers and the output layer by (6)

 1

,

.k k

j ik

i j

E
y

 (6)

 For the input layer by (7)

 ,

,

.k

j d ik

i j

E
x

 (7)

4. Perform steps a-c for all input-output vector pairs.

Combine the individual errors
,

d

k

i j

E

 to obtain the total

error

,

,
k

i j

E X

 for the whole set of training data (input-

output vector pairs) by (8)

1, ,

, 1
.

N
d

k k
di j i j

E X E

N

 (8)

5. Update the weights according to the learning

coefficient by (9)

, ,

,

,
.

new

k k

i j i j k

i j

E X

 (9)

6. Repeat the entire procedure until the total NN error is

less than the specified accuracy, or until the completion

of a specified number of iterations [18], [19].

B. The Problem of the Vanishing-Exploring Gradient

The problem of the vanishing-exploring gradient

especially occurs in recurrent and multi-layered NN. The

problem concerns the updating of NN parameters during

learning. The principle of the vanishing gradient lies in the

decreasing value of the partial derivative of the error

function of a particular parameter during the learning

process, which leads to a complete cessation of

convergence. This causes the parameters in the remote

layers to change significantly more slowly than in the layers

close to the output layer. The simplest solution is to choose

an activation function whose derivative is greater (e.g.,

ReLU). On the other hand, if the learning coefficient is

chosen incorrectly, using the ReLU activation function can

cause divergence. This problem can be largely eliminated by

applying optimization methods and the appropriate

initialization of parameters or pre-training [20], [21].

C. Initialization of Weights

It is necessary to set the NN parameters before starting

the learning algorithm with the proper selection of the

initialization method. Those parameters should correspond

to the chosen activation function (e.g., for sigmoid function

it is suitable to initialize weights in the interval (0, 1), for

hyperbolic tangent function, the interval (-1, 1)) [22] is

more suitable.

There are many weight initialization configurations, such

as the Rectified Linear Unit (ReLU) activation function,

hyperbolic tangent function, and sigmoid function. For the

ReLU activation function, the correct weight initialization is

not a major problem. For any nonnegative number, the

gradient is equal to the internal neuron potential. For a

negative number, the gradient is equal to 0 or the parameter

. However, for faster convergence, it is advisable to

initialize the weights with numbers from the interval defined

by (10), where n is the number of inputs in layer k

1

1 1

2 2
,k k

k k
n n

n n

. (10)

For ReLU, Xavier initialization can be used with a

normal distribution in the interval defined in (11) [23]

1

2
0, .

k kn n

 (11)

For the hyperbolic tangent function, Glorot’s

initialization with normal distribution in the interval defined

by (12) is used [24]

1 1

6 6
, .

k k k kn n n n

 (12)

For the sigmoid activation function, the uniformed Xavier

initialization method in (13) is used [22]

1 1

2 2
, .

k k k kn n n n

 (13)

D. Optimization Methods

Optimization methods compensate for the problem of an

increasing or decreasing gradient (i.e., a situation where

either the gradient converges rapidly to zero or, conversely,

diverges to infinity, such as the problem of a vanishing-

exploring gradient) [25].

Adam is an algorithm for optimizing a stochastic object

function based on the Jacobian calculation. The algorithm is

computationally efficient with no extensive memory

requirements and it is invariant to the diagonal scaling of

gradients. This approach is based on the calculation of

individual learning NN coefficients from the estimation of

the first and second moment of the gradient [22]. The

algorithm combines the advantages of the AdaGrad method,

which is suitable for solving problems with small gradient

values [5], and the RMSProp method, which is suitable for

20

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

the online learning mode (stochastic gradient descent) with

non-stationary settings [26]. The advantage of Adam’s

algorithm is that the magnitudes of the parameter changes

are invariant to the gradient scaling. It does not require a

stationary object and it is also suitable for cases where the

gradient takes on small values [22].

Nesterov Momentum is a modification of the traditional

momentum method. The gradient is calculated at the point

that would be reached after performing a previous step

times. This point is obtained by summing the original values

of the parameter with a multiple of the previous vector V

(initialized to zero) with the friction parameter [25].

RMSProp is one of the adaptive learning rate methods, i.e.,

methods that optimize the learning coefficient during NN

training. It uses “signal-to-noise” normalization with an

absolute magnitude of the gradient in combination with

exponential averaging [25], [26].

E. Batch Normalization

The training of deep NN is complicated by the fact that

the inputs of all neurons in the hidden layers and the output

layer are affected by the parameters of the previous layer’s

neurons. During training, the parameters of neurons, and

thus the activation variables and inputs of neurons, are

changing. Changes in neuron inputs in the previous layer are

transmitted to the current and subsequent layer. This

propagation causes instability leading to reduced

convergence or even divergence in the deeper layers. Such a

problem is described as a change in the distribution of layer

inputs. The change in layer distribution is referred to as an

internal covariance shift [27], [28].

The aim of the batch normalization is to reduce the

internal covariance shift by adding a normalization layer.

The normalization layer can theoretically be placed before

the activation function application (this is pre-activation

batch normalization) or at the output of the activation

function (post-activation batch normalization). Practically,

only the pre-activation version is usually used [27]. Batch

normalization allows the application of a larger learning

coefficient without the risk of divergence. It also performs

model control and thus eliminates the need to use the

Dropout control [29]. The normalization pre-activation layer

is added for each neuron according to (14)–(18):

1 ,

m r

ir

i

v

m

 (14)

,

1

,
k

r r

i j i j i

j

v x b

 (15)

2

12 ,

m r

i ir

i

v

m

 (16)

,

r

r i i

i

i

v
v

 (17)

,
r r

i i ia v (18)

where
 r

iv is the r-th sample of the non-normalized

potential of the i-th neuron,
 r

iv is the r-th sample of the

normalized potential of the i-th neuron,
 r

ia is the r-th

sample of the output of the normalization step of the i-th

neuron, is the offset to prevent the failure of the power

factor calculation selected in the order of 810 . ,i
i are

neuron parameters introduced by batch normalization. These

layers are always applied to one batch of samples of size m

[27].

III. DEEP LEARNING EXPERIMENT

The aim of the presented experiment was forecasting a

solar energy availability for the following day by using a

deep learning algorithm with a multilayer perceptron. A

back-propagation algorithm was used to train multilayer NN

in combination with deep learning methods, such as

optimalization, batch normalization or the initialization of

weights. Each of these deep learning methods has several

configurations which will be compared. The deep learning

experiment algorithm for one configuration of deep learning

methods is shown on Fig. 1.

Fig. 1. The deep learning experimental algorithm.

First, a test configuration of deep learning methods is set.

Then the NN training is performed using the dataset 2012.

Subsequently, the trained network is tested using the dataset

2013, which results are the prediction of the available solar

energy. Then the evaluation parameters of the resulting

dataset are calculated. These parameters are used for

comparison to other test configurations of deep learning

methods, which are performed.

Outputs of the forecast algorithm were validated by a

Mean absolute percentage error (MAPE). All the

experimentally chosen combinations of the learning

algorithm settings and other forecasting approaches were

compared using a Root mean squared error (RMSE).

Two datasets (2012, 2013), which contain hourly

measured values of the atmospheric pressure, were used in

this experiment. The dataset from 2012 was selected for NN

training. The trained NN was tested using the dataset from

2013. The prediction of the solar energy availability for the

following day based on the test dataset (2013), the

21

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

calculation of the evaluation parameters (MAPE, RMSE),

and the storage of the forecast output data is intended. The

evaluation parameters were compared among all chosen

combinations of the learning algorithm settings.

A. Deep Learning Experimental Settings

A deep feedforward network approach was selected for

the realization of the experiment. The structure of the

network was designed by an experimentally chosen number

of layers and various types of activation functions (sigmoid,

hyperbolic tangent, softsign, and ReLU (R), identity (I)). BP

in three variants of gradient mode (mini-batch gradient

descent (M), stochastic gradient descent (S), and batch

gradient descent) was selected for the network training. BP

in mini-batch mode was used to learn a model using back-

normalization (BN). Due to the small number of data

samples, the batch size was always chosen for the mini-

batch gradient descent variant in the range from 0 to 10. The

optimization was chosen among three optimization modes

(ADAM, RMSProp with Nesterov Momentum (RMSProp)

and Nesterov Momentum (NEST), none of them). There

were three options to select from the initialization of the

weights (Xavier, Sigmoid, and Glorot). The network

configuration and training process settings were chosen

experimentally.

B. Experimental Data

The experiment input data consisted of hourly measured

values of the atmospheric pressure. The dataset from the

entire year of 2012 was used for training the deep NN, and

the dataset from the entire year of 2013 was used for the

algorithm testing. The values of the atmospheric pressure in

one day (24 values) and the value of available daily solar

energy represented one input vector of the NN. The output

vector consisted of an estimate of the value of the available

solar energy for the following day. The range of input and

output data values was normalized to a range from 0 to 1.

The input vector (the measured pressure values in Pa)

and the output vector (the values of the daily solar energy

availability in
2/J m) of the training dataset must be

normalized. Therefore, a data scaling procedure by mean

normalization (19) was implemented

 ,
max() min()

x
z

x x

 (19)

where x is the vector of original values, z is the vector of

new values, μ is the average value, a and b are the min. and

max. values of the required interval.

Equation 20 was used to calculate an estimate of the

available daily solar energy ˆ
AE in 2/ ,J m which is

dependent on the day of the year, solar elevation, and solar

altitude

 ˆ 3600 sin .AE G

 (20)

These parameters are represented by: is the site

latitude, is the transmissivity estimate, and G is the

extra-terrestrial solar radiation. This calculation was taken

from the work in [30] and ˆ
AE values were used for

designing the output vector of the training dataset for the

NN learning.

IV. EXPERIMENTAL EVALUATION

A. Reference Methods

The ability of the deep learning system to estimate daily

solar energy was compared to the evolutionary-fuzzy

prediction scheme (FR) and support regression model (SV).

The reference results, which stated FR demonstrates better

results than SV, were obtained from the work in [30].

B. Evaluation Parameters

After the NN training, the NN was tested using a dataset

from the year 2013. The results of the forecast algorithm

were validated by calculation of MAPE (21)

1

1
,

n
i i

i i

x y
MAPE

n y

 (21)

where n is the number of the predictions,
iy is the real

value of the pressure, and
ix is the predicted value of the

pressure.

To compare the accuracy of the forecast with other

approaches, the RMSE (22) was calculated

2

1

1
.

n

i i

i

RMSE x y
n

 (22)

where n is the number of the predictions,
iy is the real value

of the pressure, and
ix is the predicted value of the

pressure.

V. RESULTS AND DISCUSSION

The NN was tested with the experimentally chosen

settings of the training parameters. The experiment used two

datasets which contain hourly measured values of the

atmospheric pressure. The first of them was used for

network training and the second one was used for the

trained network testing. The evaluation parameters were

calculated to compare them to each other and to the results

of the reference methods for each experiment configuration.

Table I shows the MAPE and RMSE values of the

individual configuration settings in the deep learning

experiment, which performed best in experimental testing.

The selected methods of the individual configurations are

described in Table II. The N2 configuration (Nesterov,

Batch Normalization) has the lowest value of MAPE (0.235)

of all the proposed setting combinations. A comparison of

MAPE values of the N1 (0.244) and N2 (0.235)

configurations, which had the same settings except for the

number of layers, shows that it is better to choose a larger

number of layers for a more accurate forecast. The A1

(MAPE = 0.249) and A2 (MAPE = 0.240) also had the same

configuration apart from the initialization method and their

comparison showed that the mode with Sigmoid is better

than with Xavier. Once the optimization methods were

22

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

compared, it was shown that the best results are

characterized by NEST (N1 - MAPE = 0.244), followed by

ADAM (A1 - MAPE = 0.249, A4 - MAPE = 0.310) and

RMSProp (R1 - MAPE = 0.330).

It was also observed that the vanishing-exploring gradient

problem occurs in several initial iterations with

inappropriately chosen settings. The vanishing-exploring

gradient problem more often occurs at settings without an

optimization method or, in the case of the NEST

optimization method, with an inappropriately chosen

learning coefficient, which confirms the described

theoretical background. The RMSProp and ADAM

optimization methods generally required a smaller value of

the learning coefficient then NEST. The learning coefficient

value was also dependent on the selected learning mode,

i.e., if a stochastic gradient descent or mini-batch gradient

descent was selected (for the mini-batch gradient descent, it

also depended on the batch size). In general, it could be said

that the result of the learning was highly conditioned by the

selection of the learning coefficient. The speed of the

convergence was also affected by the initial parameter

initializations, which were initialized by the Xavier or

Sigmoid method. Better results were obtained with the

Xavier initialization method.

During the testing of various testing configurations, it

was observed that if the total iteration number was

increased, the network was re-learned and was not able to

respond to sharp fluctuations (typical for the summer

period). The forecast of the re-learned network

corresponded to a filtering type or actual value averaging.

The optimal number of iterations was between 10,000 and

15,000 for the value of MAPE of each configuration except

A3 and A4 (the number of iterations was set at 80,000).

Regarding the gradient mode, it was empirically

established that the batch gradient was not suitable for

network training with the dataset (2012) because of

unsatisfactory results. Therefore, no configuration with the

batch gradient mode appeared in the top results of Table I

and the gradient descent mode was just chosen from among

the mini-batch mode and stochastic batch mode. A

comparison of the results of A3 (MAPE = 0.240) with A1

(MAPE = 0.249) and A4 (MAPE = 0.310) shows that the

stochastic gradient descent is significantly better than the

mini-batch.

A comparison of the results from the previous study [4] to

the deep learning experiment is shown in Table III. The

table shows that the best result was achieved using the

evolutionary fuzzy rules model (FR), which exceeds all the

predictions obtained. However, the best forecasts from the

trained NN surpassed all the above support vector

regression models (SV). It could also be said that the

forecasts in spring, autumn, and winter were more accurate

in the case of the deep learning experiment.

Figure 2 shows that the NN presents satisfying

predictions in early spring, autumn, and winter because

there were no significant fluctuations in daily solar energy

availability. In terms of summer months and late spring, the

forecast did not correspond to sudden fluctuations, which

are typical for these months. In Fig. 2, a prediction of the

specific configurations (A2, N2, and R2) is shown. The

differences among these individual configurations are not

statistically significant, as evidenced by the MAPE values.

TABLE I. RESULTS OF THE EXPERIMENTAL INDIVIDUAL

CONFIGURATION SETTINGS.

Label MAPE
RMSE

 2MJ / m

A1 0.249 2.958

A2 0.240 2.945

A3 0.240 3.009

A4 0.310 3.248

N1 0.244 3.020

N2 0.235 2.935

R1 0.330 3.402

R2 0.249 2.975

TABLE II. PARTICULAR COMBINATIONS OF THE INDIVIDUAL

SETTING CONFIGURATIONS.

Label Algorithm Mode Optimalization Initiation Act. function

A1 BP M ADAM Xavier R, R, I

A2 BP M ADAM Sigmoid R, R, I

A3 BP S ADAM Xavier R, R, R, I

A4 BN M ADAM Xavier R, R, R, I

N1 BN M NEST Xavier R, R, I

N2 BN M NEST Xavier R, R, R, R, R, I

R1 BP M RMSProp Xavier R, R, I

R2 BP M ADAM Sigmoid R, R, R, R, R, I

TABLE III. COMPARISON OF THE DEEP LEARNING EXPERIMENT

RESULTS (N2) TO REFERENCE APPROACHES (FR, SV R_L, SV_RP,

SV_RR).

Model MAPE RMSE

N2 0.235 2.935

FR 0.224 2.960

SV R_L 0.267 3.160

SV RP 0.362 3.444

SV RR 0.387 3.472

Fig. 2. Comparison of the solar energy prediction for various

configurations of the proposed deep learning approach.

VI. CONCLUSIONS

This paper introduces the application of deep learning

methods with the aim of training a multilayer NN, which

can use a prediction tool to estimate future incoming solar

energy. The BP algorithm in combination with deep

learning methods, such as optimalization, batch

normalization, and the initialization of weights, was used for

network training.

In the results, it was observed that the N2 configuration

had the lowest value of MAPE (0.235) than the other deep

learning settings configurations. This MAPE value was

0.032 less than the lowest value of the support vector

regression method (the MAPE value of the SV R_L was

0.267). It could be said that the results of the experiment are

23

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

comparable, and settings of the proposed solution are better

than in models using the support vector regression method

because all the MAPE values of the support vector

regression are higher than the MAPE values of the proposed

algorithm (N2). The results also showed that the forecast of

the deep learning model did not perform with as satisfactory

results in comparison to the evolutionary fuzzy rules method

(the MAPE value of the FR was 0.224), based on that the

MAPE value of N2 was 0.011 greater than of FR. Also, it

could be clearly concluded that the NN gave satisfying

predictions in early spring, autumn, and winter because

there were no significant fluctuations in the daily solar

energy availability. In terms of the summer months and late

spring, the forecast did not correspond to sudden

fluctuations, which are typical for these months.

In the article in [31], there were used six neural methods

to predict energy consumption - artificial neural networks

(ANN), general regression trees (CART), exhaustive

regression trees (CHAID), support regression trees (SRT),

support vectors (SV), and multivariant method adaptive

regression splines (MARS). The MAPE results ranged from

0.160 to 0.350, ANN (MAPE = 0,225 - 0,280), CART

(MAPE = 0,190 - 0,280), CHAID (MAPE = 0,230 - 0,280),

MARS (MAPE = 0,175 - 0,350), SRT (MAPE = 0,165 -

0,215), and SV (MAPE = 0,205 - 0,335). It could be said

that the results of the proposed deep leaning experiment are

comparable (MAPE of N2 = 0.235).

The time and computational complexity for NN training

was considerable, and therefore it was assumed the network

was trained on an external computer or a cloud, where only

the network parameters have been obtained and transferred

to the embedded devices. Using the parameters obtained in

this way, it was simple to implement a prediction model of

an NN on an embedded system, because in the prediction

phase, the network is represented by a look-up table. The

memory consumption of the model depended on the size of

the network (which determines the total number of

parameters representing the NN), the type of architecture

and the selected data type.

It is important to emphasize that the outcome of the

learning process was greatly affected by the initialization of

the parameters that used pseudo-random number generators.

Therefore, different NN training results could be achieved

with the same settings. A possible improvement could be the

use of more datasets measured over several years to train the

NN. Another possible aspect could be using the Dropout or

L2 control method.

ACKNOWLEDGMENT

The authors would like to thank Jan Hájek from VSB -

Technical University of Ostrava for cooperation during the

simulation tests and implementation of the deep learning

procedures.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] M. Cepenas, B. Peng, D. Andriukaitis, C. Ravikumar, V. Markevicius,

N. Dubauskiene, D. Navikas, A. Valinevicius, M. Zilys, A. Merfeldas,

and N. Hinov, “Research of PVDF Energy Harvester Cantilever

Parameters for Experimental Model Realization,” Electronics, vol. 9,

no. 12, p. 2030, Dec. 2020 DOI: 10.3390/electronics9122030

[2] P. Kromer, M. Prauzek, and P. Musilek, “Harvesting-aware control of

wireless sensor nodes using fuzzy logic and differential evolution”, in

Proc. of 2014 11th Annual IEEE International Conference on

Sensing, Communication, and Networking Workshops, SECON

Workshops 2014, 2014, pp. 51–56. DOI:

10.1109/SECONW.2014.6979705.

[3] U. B. K. Ramesh, S. Sentilles, and I. Crnkovic, “Energy management

in embedded systems: Towards a taxonomy”, in Proc. of 2012 First

International Workshop on Green and Sustainable Software

(GREENS), 2012. DOI: 10.1109/GREENS.2012.6224254.

[4] A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar irradiance

forecasting using deep neural networks”, Procedia Computer Science,

vol. 114, pp. 304–313, 2017. DOI: 10.1016/j.procs.2017.09.045.

[5] A. Alzahrani, J. W. Kimball, and C. Dagli, “Predicting solar

irradiance using time series neural networks”, Procedia Computer

Science, vol. 36, pp. 623–628, 2014. DOI:

10.1016/j.procs.2014.09.065.

[6] C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte,

and A. Fouilloy, “Machine learning methods for solar radiation

forecasting: A review”, Renewable Energy, vol. 105, pp. 569–582,

2017. DOI: 10.1016/j.renene.2016.12.095.

[7] J. Martens and I. Sutskever, “Training deep and recurrent networks

with hessian-free optimization”, in Neural Networks: Tricks of the

Trade. Lecture Notes in Computer Science, vol. 7700. Springer,

Berlin, Heidelberg, 2012. DOI: 10.1007/978-3-642-35289-8_27.

[8] E. B. Ssekulima, M. B. Anwar, A. Al Hinai, and M. S. El Moursi,

“Wind speed and solar irradiance forecasting techniques for enhanced

renewable energy integration with the grid: A review”, IET

Renewable Power Generation, vol. 10, no. 7, pp. 885–898, 2016.

DOI: 10.1049/iet-rpg.2015.0477.

[9] D. Díaz-Vico, A. Torres-Barrán, A. Omari, and J. R. Dorronsoro,

“Deep neural networks for wind and solar energy prediction”, Neural

Processing Letters, vol. 46, no. 3, pp. 829–844, 2017. DOI:

10.1007/s11063-017-9613-7.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol.

521, pp. 436–444, 2015. DOI: 10.1038/nature14539.

[11] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A.

Senior, V. Vanhoucke, P. Nguyen, and T. N. Sainath, “Deep neural

networks for acoustic modeling in speech recognition”, IEEE Signal

Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012. DOI:

10.1109/MSP.2012.2205597.

[12] D. Andriukaitis, A. Laucka, A. Valinevicius, M. Zilys, V.

Markevicius, D. Navikas, R. Sotner, J. Petrzela, J. Jerabek, N.

Herencsar, D. Klimenta, “Research of the Operator’s Advisory

System Based on Fuzzy Logic for Pelletizing Equipment,” Symmetry,

vol. 11, no. 11, p. 1396, Nov. 2019 DOI:

http://dx.doi.org/10.3390/sym11111396

[13] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size

selection in optimization methods for machine learning”,

Mathematical Programming, vol. 134, no. 1, pp. 127–155, 2012.

DOI: 10.1007/s10107-012-0572-5.

[14] Y. Bengio, “Practical recommendations for gradient-based training of

deep architectures”, in Neural Networks: Tricks of the Trade. Lecture

Notes in Computer Science, vol. 7700. Springer, Berlin, Heidelberg,

2012. DOI: 10.1007/978-3-642-35289-8-26.

[15] L. Jing, T. Wang, M. Zhao, and P. Wang, “An adaptive multi-sensor

data fusion method based on deep convolutional neural networks for

fault diagnosis of planetary gearbox”, Sensors, vol. 17, no. 2, p. 414,

2017. DOI: 10.3390/s17020414.

[16] N. M. Nawi, F. Hamzah, N. A. Hamid, M. Z. Rehman, M. Aamir, and

A. R. Azhar, “An optimized back propagation learning algorithm with

adaptive learning rate”, International Journal on Advanced Science,

Engineering and Information Technology, vol. 7, no. 5, pp. 1693–

1700, 2017. DOI: 10.18517/ijaseit.7.5.2972.

[17] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch

training for stochastic optimization”, in Proc. of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2014, pp. 661–670. DOI: 10.1145/2623330.2623612.

[18] Z. Zhao, Z. Yang, H. Lin, J. Wang, and S. Gao, “A protein-protein

interaction extraction approach based on deep neural network”,

International Journal of Data Mining and Bioinformatics, vol. 15, no.

2, pp. 145–164, 2016. DOI: 10.1504/IJDMB.2016.076534.

[19] J. Schmidhuber, “Deep learning in neural networks: An overview”,

Neural Networks, vol. 61, pp. 85–117, 2015. DOI:

10.1016/j.neunet.2014.09.003.

24

https://doi.org/10.1109/GREENS.2012.6224254
https://doi.org/10.1016/j.procs.2017.09.045
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1504/IJDMB.2016.076534

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 5, 2021

[20] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently recurrent

neural network (IndRNN): Building A longer and deeper RNN”, in

Proc. of 2018 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2018, pp. 5457–5466. DOI:

10.1109/CVPR.2018.00572.

[21] D. Xie, J. Xiong, and S. Pu, “All you need is beyond a good init:

Exploring better solution for training extremely deep convolutional

neural networks with orthonormality and modulation”, in Proc. of

2017 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, 2017, pp. 5075–5084. DOI: 10.1109/CVPR.2017.539.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization”, CoRR, 2015.

[23] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural

networks”, in Proc. of the Fourteenth International Conference on

Artificial Intelligence and Statistics, 2011, vol. 15 of JMLR: W&CP

15, pp. 315–323.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training

deep feedforward neural networks”, in Proc. of the 13th International

Conference on Artificial Intelligence and Statistics (AISTATS), 2010,

vol. 9 of JMLR: W&CP 9, pp. 249–256.

[25] C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook.

Cham: Springer, 2018. DOI: 10.1007/978-3-319-94463-0.

[26] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with

deep recurrent neural networks”, in Proc. of 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

2013, pp. 6645–6649. DOI: 10.1109/ICASSP.2013.6638947.

[27] S. Ioffe and Ch. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift”, in Proc. of the

32nd International Conference on Machine Learning, 2015, vol. 37,

pp. 448–456.

[28] D. Arpit, Y. Zhou, B. U. Kota, and V. Govindaraju, “Normalization

propagation: A parametric technique for removing internal covariate

shift in deep networks”, in Proc. of the 33rd International Conference

on Machine Learning, ICML 2016, 2016, pp. 1168–1176.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: A simple way to prevent neural networks

from overfitting”, J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,

2014.

[30] P. Kromer, P. Musilek, J. Rodway, M. Reformat, and M. Prauzek,

“Estimating harvestable solar energy from atmospheric pressure using

support vector regression”, in Proc. of 2015 International Conference

on Intelligent Networking and Collaborative Systems, 2015, pp. 192–

199. DOI: 10.1109/INCoS.2015.58.

[31] T. Szul, K. Nęcka, and T. G. Mathia, “Neural methods comparison for

prediction of heating energy based on few hundreds enhanced

buildings in four season’s climate”, Energies, vol. 13, no. 20, p. 5453,

2020. DOI: 10.3390/en13205453.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

25

https://doi.org/10.1109/ICASSP.2013.6638947

