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1Abstract—This paper considers a new design of model 

predictive control based on specific models in the form of 

adaptive orthogonal polynomial networks, built around a 

specially tailored basis of generalized orthogonal functions. 

Polynomial model has a single layer structure and a smaller 

number of model parameters than classical neural networks, 

usually used for model predictive control design, leading to 

lower complexity and shorter calculation time. Desired 

property of adaptability of the model is achieved by using 

additional variable factors inside the orthogonal basis. The 

designed controller was applied in control of twin-rotor aero-

dynamic system as a representative of nonlinear multiple 

input-multiple output systems and compared to the other state-

of-the-art control algorithms. 

 
 Index Terms—Adaptive polynomial neural network; 

Generalized orthogonal functions; Model predictive control; 

Twin-rotor aero-dynamic system. 

I. INTRODUCTION 

Model predictive control (MPC) is a feedback control 

algorithm that uses the model of the plant to predict future 

plant outputs over a specified time horizon. These 

predictions are then utilized for selecting the optimal control 

by solving a certain optimization problem while satisfying a 

set of predefined constraints [1], [2]. First applications of 

MPC were in the process industries in chemical plants and 

oil refineries already in the 1980s, but the real boom 

happened only in the last years with the development of 

very strong processors with large memory at an affordable 

price. The reason that slowed the applications of this control 

algorithm for several decades and the main drawback of 

MPC is its need for many calculations, because the 

algorithm must solve a complex online optimization 

problem with constraints at each time step [3]. Necessary 

calculational time was often much greater than the time 

available in real time control, so in the beginning, MPC was 

typically applied only in slow processes. Today, MPC is the 

most widely used advanced control technology in various 

technical fields like aerospace, robotics, energy production, 
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food processing, industrial manufacturing, mining, and 

metallurgy [4]–[6]. 

MPC proved to handle multiple-input multiple-output 

(MIMO) systems exceptionally well because of its 

multivariable control that controls the outputs 

simultaneously by considering all interactions between 

system variables and constraints on the input, output, as well 

as state [7]. On the other hand, traditional control algorithms 

like, e.g., PID control, would be challenging in this situation 

because the separate control loops for different system 

variables would operate independent of each other, as if 

there are no interactions between them [8], [9]. Another 

problem would be tuning too many controller gains. In 

addition, unlike PID control, MPC has the ability to 

anticipate future events and can take control actions 

accordingly, ensuring good tracking performance, closed-

loop stability, and robustness. 

In this work, MPC of a laboratory twin-rotor aero-

dynamic system (TRAS) is considered. Laboratory TRAS 

[10] imitates a simplified helicopter with two degrees of 

freedom represented by two rotors (main and tail) driven by 

DC motors. Control goal usually is to stabilize the beam 

carrying the rotors in an arbitrary position (azimuth and 

pitch angles) or to make it track some desired trajectory. 

This system has MIMO nature with present high-order 

nonlinear dynamics and cross-couplings, and is prone to 

parameter variations, external disturbances, and unwanted 

induced vibrations. These features are making TRAS very 

challenging for designing an appropriate control algorithm. 

Over the years, many different strategies for TRAS control 

have been developed, ranging from classical [11] to 

advanced [12], and intelligent [13], [14].  

In recent years, the best results in the control of TRAS 

have been achieved by using various modifications of MPC. 

Authors of the papers in [15], [16] deal with MPC design 

for achieving positioning or trajectory tracking for TRAS in 

coupled form by using linearized models. These solutions 

provide a simplification of the control problem to a series of 

direct matrix algebra calculations that are fast and robust. 

On the other hand, the main shortcoming of using such 

linearized models in the vicinity of some operating point for 

highly nonlinear plants is their inadequate accuracy for 
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changed operating conditions. This problem can be partially 

mitigated either by recalculating and changing linearized 

models on the fly (adaptive MPC) or by having a set of 

predefined models and switching between already designed 

different linear MPC controllers (gain-scheduled MPC). 

One interesting approach is also offered in [17] wherein an 

online linearization of the nonlinear TRAS mathematical 

model is used both for transforming the optimization 

problem into a convex one and for optimal estimation of the 

states.  

The other set of solutions deals with the insufficient 

accuracy of MPC with linearized models by using nonlinear 

models directly in the control application at a price of 

significantly increased computational burden. The most 

widely used generic nonlinear models are those based on 

neural networks (NN) [18], as it is well known that NNs can 

approximate any nonlinear function to arbitrary high 

accuracy. NNs belong to the black box modelling methods, 

where we use only input-output signals for training, while 

the knowledge of the physical principles of a modelled plant 

and the solution of possibly complicated set of mathematical 

equations are not required. Radial basis function NN was 

successfully applied in MPC of dissolved oxygen 

concentration in a wastewater treatment process in [19]. 

Similar approach can be found in [20], where a nonlinear 

auto-regressive moving average with exogenous inputs 

(NARMAX) model, implemented as multilayer NN, was 

applied in the nonlinear MPC of piezoelectric actuators. 

Finding the optimal architecture and setting the initial 

values of NN parameters can be a very tedious process 

where we need to find the right measure of the trade-off 

between accuracy and network complexity [21]. NN 

complexity directly affects both the training time and real 

time calculations of the network’s outputs essential for 

successful MPC. The solution for these drawbacks, 

proposed in this paper, is to use a special type of networks 

(known as polynomial neural networks [22]) for modelling 

of the plant. These are single-layer neural networks based 

on orthogonal functions, where the desired output accuracy 

determines the required number of processing elements. 

Variations of Legendre orthogonal polynomial basis 

demonstrated excellent performance in the approximation of 

arbitrary functions in the sense of convergence time and 

approximation error due to their natural in-build optimality 

relative to the basis made of other types of functions [23], 

[24]. These orthogonal polynomials were already 

successfully applied in the design of very efficient tools for 

modelling [25] and control [26] of dynamic systems. 

In this paper, TRAS was modelled by adaptive 

orthogonal polynomial network (AOPN) based on 

generalized Legendre quasi-orthogonal polynomials. These 

polynomials are specifically tailored for the application in 

the modelling of complex dynamical systems with time-

varying behaviour. Variable factors incorporated inside the 

orthogonal functions enable the adaptivity of the designed 

models to the ever-changing operating environment. In 

addition, thanks to the single-layer structure and less model 

parameters, AOPN models demand a lot less calculation 

during determining outputs compared to their classical NN 

competitors. The main idea tested here is that the 

incorporation of these newly designed models into MPC 

structure could provide better performances for MPC in the 

sense of shorter calculation time for the same time 

prediction horizon or the larger horizon for the same 

calculation time comparing to the other MPC approaches. 

The reminder of the paper is structured as follows. 

Section II explains the basic principles of classical MPC, as 

well as the proposed modifications. Section III describes the 

generalized Legendre quasi-orthogonal functions and 

designing of the general AOPN model. The process of 

modelling twin-rotor aero-dynamic system by using the 

developed polynomial network is explained in detail in 

Section IV. Performances of the designed MPC are then 

compared to the other state-of-the-art control algorithms in 

Section V. Finally, Section VI concludes the paper. 

II. MODEL PREDICTIVE CONTROL 

The characteristics of the general MPC-based strategy are 

given in Fig. 1. The predictive future outputs of the plant 

(controlled system), calculated using the model within the 

prediction horizon Np are denoted as yk+j for j = 1, ..., Np. 

These future outputs are the result of the past outputs or 

equivalently the value of the state at time k and the control 

signals uk+j for j = 0, ..., Nc, where Nc represents the control 

horizon. Optimal future control signal uk+j, which should be 

applied to the plant, is obtained by minimization of some 

objective function J (usually in quadratic form), with the 

goal to keep the plant output as close as possible to the 

given reference trajectory xk+j. When the optimal sequence 

of control signals is calculated, only the first sample is 

applied to the plant. The same optimization process is 

repeated at every time instant. This concept, known as the 

receding horizon method, is used in all controllers based on 

MPC with numerous variations depending on the nature of 

the controlled system [1], [2]. 

 
Fig. 1.  The general MPC-based strategy. 

Adapted MPC structure applied in this paper is shown in 

Fig. 2. Model predictive controller consists of an orthogonal 

polynomial model and the optimization block. The first step 

is to determine the plant model in the form of a polynomial 

neural network, and this process will be explained in detail 

in Section III. Although the model is trained offline by 

using previously recorded sets of input-output plant data for 

training, it also incorporates an adaptive factor δ dependant 

on the current plant conditions, which enables online 

adaptiveness of the model to the ever-changing operating 
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environment. This mechanism will be also elaborated in the 

next section. 

 
Fig. 2.  Model predictive controller. 

Orthogonal polynomial model, trained in this way, is then 

embedded into the MPC controller, where the model uses 

the currently applied tentative control input uʹ, the previous 

values of the actually used control inputs u, as well as the 

previous plant outputs yp to calculate the possible future 

values of the plant output ym. Then these values are used by 

the optimization program, together with the desired 

response (trajectory) x, to determine the next optimal control 

value by minimizing the objective function. In the case of 

TRAS control in this paper, the objective function was 

calculated as the weighted squared sum of the predicted 

errors and control signal increments, emphasizing not only 

the small tracking error, but also the smooth control. When 

the optimal value of the control signal is determined, it is 

then applied to the plant and the process is repeated for each 

time sample. 

III. ADAPTIVE MODEL BASED ON ORTHOGONAL 

POLYNOMIAL NETWORK 

The property of orthogonal polynomials to provide the 

optimal approximation of arbitrary functions in the sense of 

the number of addends needed in the approximation sum to 

reach the desired approximation accuracy, compared to 

other types of basis functions, is already well known [27]. 

Authors of this paper have previously designed some new 

forms (generalizations) of orthogonal polynomials and 

developed a comprehensive mathematical framework 

around them [23], [24]. Newly developed orthogonal 

functions were successfully applied in modelling [25] and 

control of dynamic systems [13], [26]. One form of 

Legendre polynomials, particularly interesting for control 

systems applications, will be considered here. These 

polynomials, labelled as quasi-orthogonal, represent a 

generalization of the classical Legendre polynomials and 

can be defined by a polynomial sequence 
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Parameter k marks the order of quasi-orthogonality, and 

previous research [23]–[25] proved that the best results in 

the modelling of dynamical systems are achieved for k = 1, 

2. The main advantage of generalized Legendre polynomials 

defined in such a way lies in the adaptive factor δ. That 

factor has a value very close to one (δ ≈ 1) and it enables a 

small perturbation of different polynomials inside the 

sequence, making their integral of the inner product not zero 

anymore (definition of classical orthogonality), but rather 

some constant very close to zero. In such a way, we can use 

the adaptive factor δ to model the operating of systems in 

real-world conditions, time-varying behaviour, and 

uncertainties due to wearing over time or environmental 

changes. Further information relating generalized 

orthogonal polynomials, including definitions and derived 

mathematical relations, can be found in [23], [24]. 

For example, here are the first few second-order 

generalized quasi-orthogonal Legendre polynomials (k = 2) 

in the sequence defined by (2) and (3) 
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These quasi-orthogonal functions will be the basis for 

designing models of dynamical systems in the form of 

adaptive orthogonal polynomial neural networks shown in 

Fig. 3. Such a network generates function, a sum of 

weighted Legendre (or some other kind) polynomials, 

capable of approximating an arbitrary function. Thereby the 

orthogonal polynomial expansion guaranties the natural 

optimality in the sense of approximation accuracy and 

shorter convergence time compared to the basis made of 

other functions. The expansion also incorporates additional 

adaptivity thanks to the built-in adaptive factor (δ). Block 

marked as Legendre expansion generates quasi-orthogonal 

Legendre polynomials (Pi) based on the current and time-

delayed valued of the inputs and outputs of the plant (a 

previous input values and b previous output values). Past 

instances are provided by the blocks Tapped Delay Line 

(TDL), whose role is to buffer previous values of signals. 

The AOPN model depicted in Fig. 3 provides model of 

the plant in the form of approximation function 
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where X represents the vector of inputs, wi are weights of 

the network, and f is the activation function. 

Model of the considered plant is obtained after the 

polynomial network training, i.e., after optimizing the 
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weights wi (i = 1, 2, …, n) of the network. This optimization 

is performed by minimizing the modelling error, which is 

calculated as the difference between the plant (yp) and the 

model (ym) outputs. Training algorithm applied in the 

modelling of TRAS was Levenberg-Marquardt or dumped 

least-squares method [28], [29], which is the most efficient 

algorithm for the training of polynomial networks [22], [30]. 

The algorithm is based on a gradient vector and the Jacobian 

matrix and uses the sum of squared errors as the 

performance (cost) function 
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Fig. 3.  Orthogonal neural network applied in the modelling of an arbitrary 

dynamic system. 

IV. MODELLING OF TWIN-ROTOR AERO-DYNAMIC SYSTEM 

Laboratory twin-rotor aero-dynamic system (TRAS) will 

be considered as a case study for MPC of nonlinear MIMO 

systems based on AOPN model. The system [10] is 

controlled from a PC with software operating under 

MATLAB/Simulink environment. Main components of 

TRAS can be seen in Fig. 4. Position of the system with two 

degrees of freedom (azimuth and pitch angles labelled as αh 

and αv, respectively) is controlled by two DC motors 

representing the drives for the main and tail rotors. These 

two propellers, which are located at the ends of the 

beamwith a counterbalance pivoted on its base, enable 

rotation of the beam in horizontal and vertical planes. 

Embedded sensors (encoders for angular positions and 

tachogenerators for angular velocities) are responsible for 

measuring state variables in real time. 

Tracking of the desired trajectory is achieved by 

calculating and applying adequate control inputs, i.e., 

supply voltages for DC motors labelled as Uh and Uv. 

Variations in these control voltages result in different 

rotational speed of the corresponding propeller and change 

in the position of beams. However, due to significant cross-

couplings, each rotor actually affects both position angles. 

Cross-coupling, together with some other TRAS features 

like high-order nonlinear dynamics, susceptibility to 

external disturbances, parameter variations, and unwanted 

induced vibrations, make TRAS an extremely difficult 

system to model (or control) by conventional white box 

first-principle methods, but also to black-box methods based 

on identification by using input/output data sets. 

AOPN modelling (Fig. 3) can be used for laboratory 

TRAS after adapting the general structure for two-input (Uh, 

Uv), two-output (αh, αv) system. Legendre expansion 

generates generalized quasi-orthogonal polynomials 

according to (1) and (2) based on current, but also buffered 

values (blocks TDL) of previous input/output samples. In 

this concrete case, one previous time instance was used for 

inputs and two for output signals. Presence of both inputs 

and outputs in polynomial development guaranties adequate 

modelling of existing cross-couplings in the system. 

Sigmoidal function f(x) = 1/(1 + e-x) was applied as the 

activation function. As already stated, Levenberg-Marquardt 

algorithm was used for training of the network, i.e., for 

determining the optimal values of network weights (wi) and 

bias (b), based on modelling error - difference between the 

measured outputs of the laboratory TRAS and those 

obtained by the AOPN model. Initial modelling was 

performed with the nominal value of parameter δ set to one, 

but in the following experiments, this parameter was 

perturbated to simulate models’ adaptivity to environmental 

changes, measurement uncertainties, and sensed 

disturbances. 

 
Fig. 4.  Laboratory TRAS system. 

The AOPN model is trained on experimental input/output 

data sets. The same input signals were applied both to the 

plant and AOPN models: Uh - square wave with 0.15 

amplitude and 1/50 [Hz] frequency; Uv - sine wave with the 

amplitude of 0.25 and frequency of 1/50 [Hz]. These signals 

were first normalized to a range of [-1, +1] corresponding to 

a voltage range of [-24 V, +24 V]. Signals in the 

input/output data sets were sampled with a period of 0.01 

seconds with an overall duration of the excitation of 90 

seconds. AOPN model was trained with six terms in 

polynomial expansion (4) because that number makes the 

best trade-off between model accuracy and training time 

(network complexity), as can be seen in Table I, where root-

mean-square error (RMSE) was calculated as 
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TABLE I. PERFORMANCES OF AOPN MODELS WITH DIFFERENT 

NUMBER OF TERMS IN THE ORTHOGONAL EXPANSION. 

Number of terms 

in the orthogonal 

expansion 

3 4 5 6 7 

Training set 

RMSE 
9.9739 4.8690 2.1492 0.8231 0.5636 

Training time (s) 4.22 6.52 11.02 24.05 78.84 

V. MODEL PREDICTIVE CONTROL OF TWIN-ROTOR AERO-

DYNAMIC SYSTEM 

Validation of the proposed control algorithm, i.e., Model 

Predictive Control based on Adaptive Orthogonal 

Polynomial Networks (AOPNMPC), given in Fig. 2, was 

performed by comparing the performances with the other 

two control strategies already proven to be suitable for 

TRAS. One complex control structure, labelled as 

Orthogonal Endocrine Intelligent Controller (OEIC), is 

presented in [13] and has a form of an intelligent hybrid 

controller with two main components: orthogonal endocrine 

neural network and adaptive neuro-fuzzy inference system 

(ANFIS). The second controller is a classical MPC 

controller designed with linearized model of TRAS given in 

[15]. 

Optimization of the MPC was done by default functions 

provided by Matlab for backtracking search best suited to 

use with the quasi-Newton optimization algorithms. 

Polynomial model was described in Matlab similarly to the 

neural state-space model presented in [18]. Objective 

function had the following form 
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and it emphasized not only minimizing the tracking error, 

but also smoothing the control of TRAS and avoiding sharp 

turns. The importance (contribution) of each of these two 

factors is controlled by an adjustable parameter ρ. All 

experiments were executed with ρ = 0.25. 

Reference tracking positions were: azimuth - square wave 

with amplitude of 0.4 rad and frequency of 1/50 Hz and 

pitch - sine wave with amplitude of 0.25 rad and frequency 

of 1/60 Hz. Duration of the experiments was 90 seconds 

with a sample time of 0.01 s. Obtained results for azimuth 

and pitch angles for all three applied controllers 

(AOPNMPC, OEIC, MPC) are given in Figs. 5 and 6. 

 
Fig. 5.  Azimuth angles for different controllers. 

 
Fig. 6.  Pitch angles for different controllers. 

We can see from the figures that all three controllers fulfil 

their purpose in tracking the desired trajectory relatively 

well, but the real difference can be detected if we calculate 

root-mean-square-error 
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where xhr and xvr are the inputs - referent azimuth and pitch 

trajectories, yhr and yvr are outputs - obtained trajectories for 

a given controller, and N = 9000. Results for all three 

controllers, together with the training times for AOPNMPC 

and OEIC, are given in Table II. 

TABLE II. PERFORMANCES FOR DIFFERENT CONTROLLERS. 

Controller RMSE Training time 

AOPNMPC 0.176 8.2 

OEIC 0.151 25.4 

MPC 0.52 - 
 

Plain MPC has the worst tracking accuracy because of the 

shorter prediction horizon due to a lot of online 

recalculation. AOPNMPC has much better tracking 

accuracy, but still worse than OEIC, although with shorter 

network training time. On the other hand, OEIC achieves its 

best accuracy with enormous controller complexity and cost 

[13]. Real strength of AOPNMPC can be noticed if we 

artificially introduce disturbances into the original nominal 

system to imitate environmental changes, measurement 

errors or occurred uncertainties. This was achieved by 

programming the artificial measurement error (noise) into 

feedback signals coming from position sensors (encoders) 

responsible for reporting azimuth and pitch angles. Two 

more sets of experiments were performed with the 

introduced change in nominal system response with a noise 

to signal ratio (SNR) of 1 % and 3 %. We can see from 

Table III that OEIC and MPC cannot adjust well to the 

changes without either new network training or finding new 

state-space matrixes because their RMSE significantly 

increases. On the other hand, AOPNMPC has incorporated 

the measure of variations δ directly inside its AOPN model, 

so this controller does not need to be trained again. The only 

modification, which has to be implemented, is to set δ to 
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1.01 and 1.03 for changes of 1 % and 3 %, respectively, and 

the controller will keep its tracking accuracy. 

TABLE III. TRACKING ACCURACY IN CASE OF DISTURBANCES. 

Controller RMSE (SNR = 1 %) RMSE (SNR = 3 %) 

AOPNMPC 0.185 0.144 

OEIC 0.331 0.46 

MPC 0.935 1.772 

VI. CONCLUSIONS 

This paper considers a new approach to model predictive 

control of nonlinear multiple-input multiple-output systems. 

The approach implies an innovative design of the model of 

the plant based on adaptive orthogonal polynomial 

networks, which uses the basis of specially tailored 

generalized quasi-orthogonal functions. Such models take 

advantage of the natural superiority of orthogonal 

polynomials, compared to other functions, to approximate 

arbitrary functions with better accuracy for a lower number 

of terms in expansion. Additionally, thanks to the 

incorporated adaptive factor, quasi-orthogonality enables 

these models to easily accommodate to time-varying 

behaviour and perturbations occurring during the work of 

real systems.  

AOPN models are similar to the classical neural 

networks, but much simpler to design, with a single-layer 

structure and weights actually representing coefficients in 

polynomial expansion. Optimal coefficients can be 

determined by a training process (in this case, Levenberg-

Marquard), during which we try to minimize the modelling 

error (difference between the plant and the model outputs 

for the same applied inputs). AOPN model can be 

embedded into the MPC controller, where it is used for 

calculating possible plant outputs based on the currently 

applied tentative control input, previous values of actually 

used control inputs, and previous plant outputs. Matlab 

optimization routine was applied in choosing the optimal 

control based on the desired and possible outputs, whereby 

the objective function was designed in such a way to take 

into account not only the small tracking error, but also to 

smooth the control as much as possible. 

As a case study for validation of the described control 

approach, twin-rotor aero-dynamic system was chosen as a 

suitable representative of complex nonlinear MIMO systems 

with cross-couplings very susceptible to unwanted 

vibrations and external disturbances. Comparative analysis 

of the proposed AOPNMPC controller was performed with 

two other state-of-the-art controllers: a classical MPC with a 

linearized model recalculated online and a complex hybrid 

intelligent controller (OEIC) built as a combination of 

orthogonal endocrine neural network and ANFIS. The new 

controller demonstrated satisfactory performances in 

conducted experiments in pairs with a much more complex 

and expensive OEIC and much better accuracy than the 

classical MPC. The superiority of the novel controller 

becomes even more obvious when we introduced 

disturbances into the original nominal system to imitate 

environmental changes and measurement errors, thanks to 

built-in adaptability of AOPN model. 
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